

Highlights

- N_2O mitigation calls for the modeling of all production pathways under changing DO.
- If complete nitrification occurs, low aeration decreases the WWTP carbon footprint.
- Partial nitrification combined with high stripping caused the highest N₂O emission.

- 1 Development of an ASM2d-N₂O model to describe nitrous oxide emissions in municipal
- 2 WWTPs under dynamic conditions
- 3 Theoni Maria Massara ^{a,b}, Borja Solís ^c, Albert Guisasola ^c, Evina Katsou ^{a,b}, Juan Antonio

4 Baeza^c

- ⁵ ^a Department of Mechanical, Aerospace and Civil Engineering, Brunel University London,
- 6 Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK.
- 7 ^b Institute of Environment, Health and Societies, Brunel University London, Kingston Lane,
- 8 Middlesex, UB8 3PH, Uxbridge, UK.
- 9 ^c GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria,
- 10 Universitat Autònoma de Barcelona, Cerdanyola del Vallés (Barcelona), 08193, Barcelona,
- 11 Spain.

12

13 Corresponding Author:

- 14 Prof. Juan Antonio Baeza,
- 15 Email: JuanAntonio.Baeza@uab.cat, Tel.: +34 93 581 1587

16

17

20 Nitrous oxide (N_2O) , a significant contributor to the greenhouse effect, is generated during the biological nutrient removal in wastewater treatment plants (WWTPs). Developing mathematical 21 models estimating the N₂O dynamics under changing operational conditions (e.g. dissolved 22 23 oxygen, DO) is essential to design mitigation strategies. Based on the activated sludge models (ASM) structure, this work presents an ASM2d-N₂O model including all the biological N₂O 24 production pathways for a municipal WWTP under an anaerobic/anoxic/oxic (A^2/O) 25 configuration with biological removal of organic matter, nitrogen and phosphorus, and its 26 27 application in different dynamic scenarios. Three microbial N₂O production pathways were considered: nitrifier denitrification, hydroxylamine oxidation, and heterotrophic denitrification, 28 with the first two being activated by ammonia oxidizing bacteria (AOB). A stripping effectivity 29 (SE) coefficient was added to reflect the non-ideality of the stripping modeling. With the DO in 30 the aerobic compartment ranging from 1.8 to 2.5 mg L^{-1} , partial nitrification and high N₂O 31 production via nitrifier denitrification were noted, indicating that low aeration strategies lead to a 32 low overall carbon footprint only if complete nitrification is not hindered. High N₂O emissions 33 were predicted as a combination of low DO (\sim 1.1 mg L⁻¹) with high ammonium concentration. 34 With the AOB prevailing over the Nitrite Oxidizing Bacteria (NOB), nitrite was accumulated, 35 thus activating the nitrifier denitrification pathway. After suddenly increasing the influent 36 ammonium load, the AOB had a greater growth compared to the NOB and the same pathway 37 was considered as N₂O hotspot. Especially under conditions promoting partial nitrification (i.e. 38 39 low DO) and raising the stripping effect importance (i.e. high SEs), the highest N_2O emission factors were predicted. 40

42 Keywords A²/O, nitrous oxide, emission factor, modeling, N₂O production pathways, N₂O

- 43 stripping

Abbreviations	
A^2/O	Anaerobic/Anoxic/Oxic WWTP configuration
AOB	Ammonia Oxidizing Bacteria
AOR	Ammonium Oxidation Rate
ASM	Activated Sludge Models
ASMN	Activated Sludge Model for Nitrogen
BNR	Biological Nutrient Removal
С	Carbon
COD	Chemical Oxygen Demand
DO	Dissolved Oxygen
EF	Emission Factor
EBPR	Enhanced Biological Phosphorus Removal
GHG	Greenhouse Gas
GWP	Global Warming Potential
HRT	Hydraulic Retention Time
IWA	International Water Association
Ν	Nitrogen
NOB	Nitrite Oxidizing Bacteria
OHO	Ordinary Heterotrophic Organisms
Р	Phosphorus
PAO	Phosphorus Accumulating Organisms
PHA	Polyhydroxyalkanoates
PP	Polyphosphates
SA	Sensitivity Analysis
SBR	Sequencing Batch Reactor
SE	Stripping Effectivity
TKN	Total Kjeldahl Nitrogen
TSS	Total Suspended Solids
WWTP	Wastewater Treatment Plant

Nitrous oxide (N_2O) is a particularly important greenhouse gas (GHG) because of its high global 49 warming potential (GWP) compared to other GHGs such as methane (CH_4) and carbon dioxide 50 (CO_2) . N₂O has a GWP 265 times higher than CO₂, in contrast to CH₄ that has a GWP only 28 51 52 times higher than CO_2 [1]. Moreover, N₂O has been characterized as the predominant ozonedepleting substance of the century [2]. N₂O can be produced and directly emitted during the 53 biological nutrient removal (BNR) in wastewater treatment plants (WWTPs) [3-4]. More 54 importantly, it has been proved that the total carbon (C) footprint of full-scale WWTPs can be 55 56 affected by N₂O emissions to an impressive extent: e.g. around 60% [5], or even around 75% [6].

57 The currently known microbial pathways for N₂O production during the BNR are connected to 58 the biochemical processes of nitrification and denitrification. Those related to nitrification occur through the activity of the ammonia oxidizing bacteria (AOB) (i.e. the nitrifier denitrification 59 60 and the hydroxylamine (NH₂OH) oxidation). Heterotrophic denitrification, during which N₂O is an intermediate product, is the third biological pathway [5, 7-9]. The parameters mostly 61 contributing to the N₂O generation have been reviewed and linked to insufficient levels of 62 dissolved oxygen (DO) at the nitrification stage, increased nitrite (NO_2) concentration during 63 both nitrification and denitrification, in addition to low chemical oxygen demand to nitrogen 64 ratio (COD/N) during denitrification [10-12]. 65

Studies have revealed a considerable variation in the N_2O emission in WWTPs, thus rendering the emission factor (EF) estimation difficult. For example, Law et al. [13] reported an EF range of 0-25% amongst different full-scale WWTPs. The significant variation can be explained through the highly dynamic conditions in WWTPs, as well as the different configurations and operational conditions applied in each plant [13-14]. Furthermore, the N_2O EF calculation can be 71 influenced by the N_2O quantification method [13, 15]. After examining twelve different WWTPs in the United States, Ahn et al. [3] found that the EFs ranged from 0.01 to 1.8% when normalized 72 to the influent Total Kjeldahl Nitrogen (TKN) load. This variability was correlated with the 73 74 diurnal variations of the influent N-loading. Similarly, Rodriguez-Caballero et al. [16] examined the N₂O dynamics in a municipal WWTP. Due to instable nitrification in the bioreactor, the 75 76 emissions presented a significant decreasing trend within the day; the reported N_2O EF decreased from 0.116 to 0.064% of the influent TKN. In both cases, the authors captured the changing N_2O 77 dynamics because of the continuous online reporting of the data. Foley et al. [4] studied seven 78 79 full-scale BNR WWTPs in Australia with various configurations, concluding to a minimum N₂O EF of 0.6% and a maximum of 25.3% of the N-denitrified. The authors recommended online 80 emission monitoring in the biological compartments for the in-depth understanding of the 81 influent dynamics and process characteristics in WWTPs. Daelman et al. [6] examined different 82 monitoring scenarios on a 16-month dataset of a fully covered WWTP in the Netherlands to 83 conclude to the most accurate and cost-effective one. The estimation of the average annual N_2O 84 emission required the description of seasonal dynamics and, thus, the acquisition of long-term, 85 online or grab samples (the latter including nightly and weekend sampling). On the other hand, 86 87 short-term campaigns focusing on the diurnal trends proved to be more expensive since they called for high-frequency online sampling. Thus, the accurate estimation of the N_2O EF within a 88 WWTP is a highly challenging task depending on various factors such as the operational 89 90 conditions, the configuration type, the quantification method, the sampling strategy, etc.

The development of mathematical tools for the prediction of N_2O emissions during the operation of WWTPs seems essential to allow the study of different scenarios. The simulation of N_2O production allows the optimization of BNR processes, thus facilitating the decrease of N_2O 94 emissions. N₂O modeling is constantly advancing; models describing different pathways and
95 based on different assumptions have been developed [9, 17].

For instance, models that focus on the nitrifier denitrification pathway have been suggested: Ni 96 et al. [18] developed a model describing how low DO levels (i.e. $\leq 1.5 \text{ mg L}^{-1}$) can inhibit 97 98 complete nitrification, induce NO_2^- accumulation and, subsequently, increase N_2O emissions. Similarly, Mampaey et al. [19] observed that N₂O production and emission was mainly observed 99 during the aerated phases under relatively low DO (i.e. $\leq 1.5 \text{ mg L}^{-1}$). The NH₂OH oxidation 100 pathway was the basis for the models by Law et al. [20] and Ni et al. [21]. Law et al. [20] 101 observed the N₂O production rate increasing with the ammonium oxidation rate (AOR) within an 102 enriched AOB culture. The simulations by Ni et al. [21] indicated that ammonium (NH_4^+) 103 accumulation during aeration was translated into a high specific AOR and, finally, into the 104 increased production of by-products such as NH₂OH. 105

Given that the AOB pathways are regarded as major contributors to the N₂O production amongst the three microbial routes [7, 17, 22], 2-(AOB) pathway models have emerged. For example, the Ni et al. [23] model which depicted the following trends: (i) NH₂OH oxidation predominance under extremely low/high NO₂⁻ concentration along with high DO, and (ii) nitrifier denitrification predominance at low DO with moderate NO₂⁻ accumulation. In the 2-AOB pathway model by Pocquet et al. [17], the DO increase was combined with decreased N₂O emission along with a slightly higher contribution of the NH₂OH oxidation pathway.

Regarding the heterotrophic denitrification pathway, the activated sludge model for nitrogen (ASMN) developed by Hiatt and Grady [24] described denitrification as a four-step reaction with different specific growth rates. In a more recent model, Pan et al. [25] considered the electron 116 competition amongst the four heterotrophic denitrification steps by dissociating the C-oxidation117 and the N-reduction.

Nevertheless, N_2O is likely to be produced/consumed by both the AOB and the heterotrophic 118 119 denitrifiers during the BNR in WWTPs. As a result, the development of models including all the 120 possible pathways gives a deeper insight into the N₂O production/consumption dynamics and 121 enhances the study of strategies for the N_2O emission mitigation, especially in cases of full-scale modeling [9-10, 12]. With the view to investigating the significant spatial variations in the N_2O 122 flux of a step-feed 2-pass full-scale activated sludge plant, Ni et al. [26] combined the 2-(AOB) 123 124 pathway modeling part by Ni et al. [23] and the heterotrophic denitrification processes appearing 125 in Ni et al. [21] in an integrated model.

Multiple-pathway models seem more apt to elucidate the effect of changing operational parameters (e.g. DO, NO_2^- concentration, etc.) and explain possible spatial/temporal variations, thus helping plant operators with designing mitigation strategies [12]. Given the influence of aeration and DO profiles on the emissions, it is necessary to develop even more integrated models which include all the production pathways and, simultaneously, consider the N₂O transfer from the liquid to the gas phase under varying gas flow patterns.

The activated sludge models (ASM) introduced by the International Water Association (IWA) task group have been widely used for the description of BNR processes during wastewater treatment [12]. Extensions to these models have been made to consider the N₂O production with emphasis either on the nitrifier denitrification or the NH₂OH oxidation pathway, and on the impact of changing influent (e.g. influent N-loading, COD/N) and/or operational conditions (e.g. DO) [18, 21]. Nevertheless, these models lack consideration of other nutrients removal (e.g. P). Moreover, they do not necessarily pay equal attention to all biological N₂O production routes 139 and/or deal with the N₂O stripping modeling. Hence, the aim of this work was to develop an 140 ASM-type model which: (i) includes N, P and organic matter removal, (ii) integrates all the microbial pathways for N₂O production/consumption, (iii) contains N₂O stripping modeling, and 141 142 (iv) estimates the N₂O EF under different DO levels. To this end, the IWA ASM2d model was modified and expanded into an ASM2d-N₂O model to include all the biological N₂O production 143 pathways and the calculation of the N₂O EF. The continuity of the model was also examined to 144 detect typing and/or conceptual errors, inconsistencies and gaps in the proposed model. Finally, 145 sensitivity analysis (SA) was performed to reveal the parameters most sensitive to the N_2O EF as 146 147 estimated using the proposed model.

148

149 **2.** Materials and methods

150 **2.1 Brief description of the WWTP configuration and influent data**

The kinetic model was developed to describe the simultaneous N, P and COD removal for a WWTP with three continuous stirred tank reactors and one settler operating as an anaerobicanoxic-aerobic (A^2/O) configuration (Fig. 1).

The first reactor (Hydraulic Retention Time: HRT=1.6 h) was anaerobic with the view to facilitating the phosphorus accumulating organisms (PAO) predominance over the ordinary heterotrophic organisms (OHO) and, subsequently, enhancing the P-removal. Nitrate (NO_3^{-1}) entering the second (anoxic) reactor (HRT=1.6 h) through the internal recycle of the mixed liquor was denitrified by the OHO or the denitrifying PAO. Finally, the third (aerobic) reactor (HRT=5 h) coupled P and organic matter removal along with nitrification. After settling the treated effluent, the settler (HRT=2.9 h) produced two streams; the effluent and an external recycle of biomass returned to the first reactor. The total WWTP HRT was 11.1 h, and the purge, internal and external recirculation ratios with respect to the influent flowrate were equal to 0.007, 2 and 1/3, respectively. The typical DO control setpoints for the three reactors were: 0 mg L⁻¹ (anaerobic and anoxic) and 3 mg L⁻¹ (aerobic).

Figure 1. A²/O WWTP configuration integrated in the current study (adapted from Guerrero et al. [27]).

The influent composition was typical for the municipal WWTP of Manresa (Catalonia, Spain) (Machado et al. [28]). The influent characterization considered S_I (inert soluble material), X_I (inert particulate organic material), X_S (slowly biodegradable substrates), and S_F (fermentable, readily biodegradable organic substrates) fractions as follows: S_I=0.07*COD, X_I=0.11*COD, X_S=0.6*COD, and S_F= 0.4*COD (Machado et al. [28]). All the remaining COD state variables were fixed to zero. The influent composition is shown in Table 1.

Composition	$mg L^{-1}$
$N-NH_4^+$	20
BOD ₅	170
COD	420
Total N	35
N-NO ₃	2.6
P-PO4 ³⁻	9
TKN (Kjeldahl N)	33
TSS	189

Table 1. Influent composition (pH=7 and T=20 °C)

177

178 2.2 Model description

179 The core of our ASM2d-N₂O model emerged as an extension of the IWA ASM2d (i.e. an ASM 180 version including the bioprocesses related to the heterotrophic biomass, the PAO and the nitrifiers) [29]. The scope of this study was to describe the N₂O production/consumption 181 dynamics within a WWTP with enhanced biological phosphorus removal (EBPR). In that sense, 182 183 the assumptions for the description of the two AOB pathways were made upon the Pocquet et al. 184 [17] model, while those for the heterotrophic denitrification upon the Hiatt and Grady [24] model, always by extending and adapting the same processes to PAOs. It was considered as a 185 holistic approach for the description of the N₂O dynamics during the BNR in WWTPs. Thus, the 186 187 final model describes the following: N₂O production through all the three microbial pathways, 188 but also N₂O consumption during denitrification (Fig. 2).

Figure 2. The three pathways for the N₂O production considered in our model: NH₂OH oxidation pathway (AOB pathway), nitrifier denitrification (AOB pathway) and heterotrophic denitrification. The assumptions concerning the AOB and heterotrophic denitrification-related reactions were made in accordance to what was reported by Pocquet et al. [17] and Ni and Yuan [9].

Considering the assumptions made by Pocquet et al. [17], our work included the following five AOB reactions (Fig. 2): (1) NH_4^+ oxidation to NH_2OH , (2) NH_2OH oxidation to nitric oxide (NO), (3) NO oxidation to NO_2^- , (4) NO reduction to N_2O along with the NH_2OH oxidation to NO_2^- (N_2O production via the NH_2OH oxidation pathway), (5) NO_2^- reduction combined with NH₂OH oxidation to produce N_2O (N_2O production by the nitrifier denitrification pathway, 200 combination of reactions 5a and 5b). The additional four reactions related to the heterotrophic 201 denitrification pathway and the enzymes catalyzing all the steps of the three pathways are schematically shown in Fig. 2. The enzymes involved are: AMO (NH_4^+ monooxygenase), HAO 202 203 (NH₂OH oxidoreductase), Nor (NO reductase), NirK (NO₂⁻ reductase) for the AOB, and NaR (NO₃⁻ reductase), NiR (NO₂⁻ reductase), NOR (NO reductase), and N₂OR (N₂O reductase) for the 204 heterotrophs [9, 17]. Pocquet et al. [17] grouped together the NO₂⁻ reduction to NO (NirK 205 enzyme) and the reduction of NO to N_2O (Nor enzyme) into one reaction: NO_2^- being directly 206 reduced to N_2O (Fig. 2, eq. 5). They assumed that the Nor quickly consumed the NO produced 207 208 by the aid of NirK or, equivalently, that the NO produced through the nitrifier denitrification pathway was converted to N_2O at a high rate. The latter was necessary in order to avoid a NO 209 210 loop.

The model also considered P removal. Based on the ASM2d [29] structure, the following PAOrelated processes were included: storage of polyhydroxyalkanoate (PHA), aerobic storage of polyphosphate (PP), aerobic growth of PAO and lysis of PHA, PP and PAO. Moreover, the anoxic processes of PP storage and PAO growth were expanded to cover all the four possible electron acceptors included in the current model: NO_3^- , NO_2^- , NO and N_2O , following the same reactions as those for the ordinary heterotrophs (Fig. 2).

The final model was developed in Matlab[®] using the *ode15s* function, which is a variable order method recommended for stiff systems. The settling was modeled with reference to the study by Takács et al. [30]. Steady-state was achieved by simulating the WWTP with constant influent composition for a period of 200 d. All the kinetic parameter values were normalized for 20 °C from the ASM2d section of Henze et al. [29]. The AOB decay and growth rates were taken from Hiatt and Grady [24]; $\mu_{AOB}=0.78 \text{ d}^{-1}$, $b_{AOB}=0.096 \text{ d}^{-1}$. As far as the growth/decay rates for the nitrite oxidizing bacteria (NOB) are concerned, two different sets were tested for comparative purposes; the first from Hiatt and Grady [24] ($\mu_{NOB}=0.78 \text{ d}^{-1}$, $b_{NOB}=0.096 \text{ d}^{-1}$), and the second one from Jubany et al. [31] ($\mu_{NOB}=1.02 \text{ d}^{-1}$, $b_{NOB}=0.17 \text{ d}^{-1}$).

Tables presenting the stoichiometric/kinetic parameters, the stoichiometry, and the process rates
of the processes integrated into our model are given in detail as Supportive Material.

229

230 2.3 N₂O emission factor (EF) modeling

The N₂O emission factor in our model was calculated in three ways: i) considering both the stripped N₂O and the N₂O in the effluent to reflect the most conservative estimation (N₂O- EF_{TOTAL} , Eq. 1.1), ii) considering only the stripping contribution (N₂O- EF_{GAS} , Eq. 1.2), and iii) considering only the effluent contribution (N₂O- EF_{EF} , Eq. 1.3).

$N_2 O - EF_{TOTAL}(\%) = 100 \cdot \frac{N_2 O_{ST} + N_2 O_{ST}}{N_{IN}}$	D _{EF} (Equation 1.1)
$N_2 O\text{-}EF_{GAS}(\%) = 100 \cdot \frac{N_2 O_{ST}}{N_{IN}}$	(Equation 1.2)
$N_2 O - EF_{EF} (\%) = 100 \cdot \frac{N_2 O_{EF}}{N_{IN}}$	(Equation 1.3)

Where N_2O_{ST} is the amount of N_2O stripped from the aerobic reactor, N_2O_{EF} the N_2O in the effluent of the plant and N_{IN} the total N-content of the influent, which was calculated with Eq. 2.

$$N_{IN} (gN \cdot d^{-1}) = Q_{IN} \cdot (S_{NH4} + S_{NO3} + S_F \cdot i_{NS_F} + X_S \cdot i_{NX_S} + S_I \cdot i_{NS_I} + X_I \cdot i_{NX_I})$$

(Equation 2)

238

With Q_{IN} as the influent flowrate, and the rest of terms following the ASM2d nomenclature reported by Henze et al. [29]: S_{NH4} , S_{NO3} , S_F , X_S , S_I and X_I denote the influent concentrations for NH₄⁺ (gNH₄⁺-N m⁻³), NO₃⁻ (gNO₃⁻-N m⁻³), fermentable substrate (gCOD m⁻³), slowly biodegradable substrate (gCOD m⁻³), inert soluble substrate (gCOD m⁻³) and inert particulate substrate (gCOD m⁻³), respectively. i_{NS_F} , i_{NX_S} , i_{NS_I} and i_{NX_I} are the N-content (gN g⁻¹COD) of S_F, X_S, S_I and X_I, respectively.

The N₂O in the effluent (N₂O_{EF}) was calculated using the N₂O concentration (gN m⁻³) in the aerobic reactor (N₂O_{AE}) as in Eq. 3:

$$N_2 O_{EF} (gN \cdot d^{-1}) = Q_{IN} \cdot N_2 O_{AE} \quad \text{(Equation 3)}$$

247

Finally, the stripped N₂O (N₂O_{ST}) was calculated using Eq. 4, where $k_{L}a_{N2O}$ is the volumetric mass transfer coefficient for N₂O, V_{AE} is the volume of the aerobic reactor and the SE factor denotes 'stripping effectivity'. We applied SE values in the range 0-1 as a mechanism enabling us to investigate the impact of the non-ideality of this typical simplified modeling approach on the N₂O EF.

$$N_2 O_{ST} (gN \cdot d^{-1}) = k_L a_{N_2 O} \cdot V_{AE} \cdot N_2 O_{AE} \cdot SE \qquad \text{(Equation 4)}$$

The volumetric mass transfer coefficient (k_La) comprises the global transfer coefficient k_L along with the interfacial area a (interphase transport surface between liquid and gas per unit of reactor volume). The $k_L a_{N2O}$ resulted from Eq. 5 following Higbie's penetration model [32]:

$$k_L a_{N_2 0}(d^{-1}) = k_L a_{0_2} \cdot \sqrt{\frac{Dif_{N_2 0}}{Dif_{0_2}}}$$
 (Equation 5)

258

k_La_{0₂} is the volumetric mass transfer of oxygen in the aerobic reactor, which was automatically calculated by including the DO control system in the model. Dif_{N2O} is the molecular diffusivity of N₂O in water (2.11·10⁻⁹ m² s⁻¹ at 20 °C) and Dif_{O2} the molecular diffusivity of oxygen in water (2.01·10⁻⁹ m² s⁻¹ at 20 °C) [33].

263

264 **2.4 Continuity check**

The continuity of the model was verified to detect typos, inconsistencies, gaps or conceptual 265 errors in the proposed extension following the methodology proposed by Hauduc et al. [34] who 266 267 checked and corrected seven of the most commonly used ASM models. The method consists in the analysis of the matrix which results after multiplying the stoichiometric matrix (available in 268 the Supportive Material section) and the composition matrix (i.e. conversion factors of each state 269 variable to COD, N, P, charge and total suspended solids (TSS)). The tolerance allowing the 270 acceptance of the continuity matrix was set at 10⁻¹⁵ as suggested by Hauduc et al. [34]. The 271 stoichiometric matrix, the composition matrix (definitions and numerical values) and the 272 273 continuity check can be found in the Supportive Material.

275 **2.5 Sensitivity analysis (SA)**

A local SA was conducted to establish the parameters that were more sensitive to N₂O-EF_{TOTAL} (Eq. 1.1). Reichert and Vanrolleghem [35] defined the relative sensitivity $(S_{i,j})$ of an output (y_i) with respect to a parameter (θ_i) as in Eq. 6:

S _{i,j} =	$=\frac{\theta_j}{2}\cdot\frac{\partial y_i}{\partial y_i}$	(Equation 6)
	y_i ∂θj	(Equation 0)

279

In our case, the N₂O-EF_{TOTAL} at steady state was used as the model output. The parameters involved in the SA were all the kinetic and stoichiometric parameters as well as the conversion factors that are given in the Supportive Material. However, the S_I production in hydrolysis (f_{SI}) and the P-content of S_I (i_{PSI}) were excepted since they were fixed at zero. Furthermore, the anoxic growth factor (n_{G}) parameter was adjusted to 0.9 (instead of 1) to compute the forward difference. The NOB growth and decay parameters were retrieved from the study by Hiatt and Grady [24]. A total number of 104 parameters were included in the SA.

The central difference method was used to calculate the sensitivity for each parameter. Different perturbation factors, ranging from 0.01% to 10%, were tested to ensure that the perturbation factor selection did not affect the parameter ranking.

As will be discussed in sections 3.1, 3.2 and 3.4, different DO values in the aerobic reactor (e.g. varying from 1 to 4 mg L^{-1}), resulted in very different EFs. Hence, the SA was performed under two different steady-state scenarios (i.e. at high and low DO setpoint in the aerobic reactor, set as equal to 3 and 1 mg L^{-1} , respectively). The latter was decided to better understand the causes of high N₂O emission. During the SA tests, the influent S_{NH4} was fixed at 30 mg L⁻¹ and the SE at 0.5.

296 **3. Results and discussion**

297 3.1 DO impact on nitrification and N₂O emissions

The model was applied to investigate the effect of DO concentration (from 0 to 4 mg L^{-1}) in the aerobic reactor on the nitrification process and, finally, on the N₂O emissions. The evolution of

- 300 N₂O-EF_{TOTAL}, AOB and NOB activity and NH_4^+ , NO_2^- and NO_3^- concentrations with respect to
- 301 different DO levels are shown in Fig. 3.

Figure 3. DO effect in the aerobic reactor on the steady state values of (A) N_2O emission factor, (B) AOB and NOB concentration, and (C) NO_2^- , NO_3^- and NH_4^+ , concentration. The SE was 1 and both the AOB and NOB growth and decay parameters were taken from the study by Hiatt and Grady [24].

Fig. 3B and 3C show that neither AOB/NOB growth nor NO₂⁻/NO₃⁻ production was observed 308 under oxygen-limiting conditions (i.e. for DO values lower than approximately 0.8 mg L^{-1}). The 309 NH_4^+ concentration increased compared to the respective influent one (S_{NH4}=20 mgN L⁻¹) 310 because of hydrolysis processes releasing NH_4^+ and no nitrification happening due to the low 311 DO. The DO increase from 0.8 mg L⁻¹ onwards enhanced the AOB growth. On the contrary, the 312 NOB growth only commenced at a DO around 1.1 mg L^{-1} (Fig. 3B). These threshold values (i.e. 313 0.8 and 1.1 mg L^{-1}) are mainly determined by the oxygen affinity constants values and, thus, 314 from mass transfer and operational conditions. The NOB have a lower affinity to oxygen 315 compared to the AOB [36], which explains why synergies that result in partial 316 nitrification/nitritation (i.e. NH_4^+ oxidation to NO_2^-) are based on the selection of a proper DO 317 setpoint [37]. In accordance to this, our simulation results demonstrated that the AOB prevailed 318 over the NOB under relatively low DO levels (i.e. DO between 0.8 and 1.1 mg L⁻¹) (Fig. 3B). In 319 this range, the NH_4^+ concentration decreased, while NO_2^- started increasing; nitritation resulted 320 in NO₂⁻ accumulation (Fig. 3C). Within the same DO range (0.8-1.1 mg L^{-1}), we observed a 321 significant N₂O emission factor increase up to almost 10.5% (Fig. 3A). In this case, the dominant 322 N₂O production pathway was nitrifier denitrification; under such oxygen-limiting conditions, 323 NO_2^- substitutes oxygen at the role of the final electron acceptor and, thus, the AOB perform 324 nitrifier denitrification [11, 38-39]. Our observations agree with previous studies investigating 325 the preferred N₂O production pathway at different DO levels. For example, Law et al. [40] 326 worked with an enriched AOB culture in a lab-scale nitritation system fed with anaerobic 327 digester liquor; amongst the two AOB pathways, nitrifier denitrification was suggested as 328 predominant at the lowest DO values tested (i.e. 0.55 and 1.3 mg L^{-1} ; the highest tested was 2.3 329 mg L^{-1}) and decreased NO₂⁻ concentrations. Similarly, the DO effect on N₂O production by an 330

enriched nitrifying sludge was investigated in a lab-scale sequencing batch reactor (SBR); the DO increase from 0.2 to 3 mg L^{-1} was correlated with a decreased contribution of the nitrifier denitrification pathway [41].

Our simulations showed that, as soon as DO reached the level of 1.5 mg L⁻¹, AOB and NOB 334 were stabilized around 70 mg L^{-1} and 40 mg L^{-1} , respectively (Fig. 3B). Complete nitrification 335 336 started and resulted in less NO₂⁻ accumulation as well as in the gradual nitrifier denitrification pathway deactivation. This is depicted in Fig. 3A through a continuous N₂O-EF_{TOTAL} decrease 337 that initiated at a DO around 1.5 mg L^{-1} and was reinforced with the further DO increase. 338 339 Furthermore, NO₃⁻ production began; the latter indicating that full nitrification was happening (Fig. 3C). At high DO levels (i.e. $>3 \text{ mg L}^{-1}$), the N₂O emission factor was significantly lower; 340 less than 2%. In terms of N_2O emission mitigation, high DO (i.e. >3 mg L⁻¹) proved to be 341 beneficial. However, it is an energy-consuming option. For instance, a study on a plug-flow 342 (three-pass) full-scale municipal WWTP in the UK indicated that N₂O emissions added 13% to 343 the carbon footprint of the plant because of the electricity needed to run the nitrifying process 344 [42]. Intermittent aeration regimes can be applied as a promising option to reduce aeration costs 345 by 33-45%. However, this strategy is likely to disturb the bioreactor operation, hinder the 346 nitrifying population activity, and, hence, create conditions favouring the N₂O generation. 347 Consequently, an additional carbon footprint related to the N₂O emissions can arise [43]. 348 Therefore, it is essential to consider the potential magnitude of N₂O process emissions before 349 350 adopting low-energy strategies [42]. Increased N₂O production and emission is probable under low-DO conditions suggesting a high final overall carbon footprint for a WWTP. It is useful to 351 investigate multiple DO values to find an interval inside which neither the nitrification process 352

nor the plant's carbon footprint is compromised; this can be between 1.8 and 2.5 mg L^{-1} for our study.

3.2 Influence of two different parameter sets for the NOB growth and decay on the N₂O emission factor (EF)

As explained in section 2.2, two different sets regarding the growth/decay rates for the NOB were tested for comparative purposes; one from Hiatt and Grady [24] ($\mu_{NOB}=0.78 d^{-1}$, b_{NOB}=0.096 d⁻¹) and the second one from Jubany et al. [31] ($\mu_{NOB}=1.02 d^{-1}$, b_{NOB}=0.17 d⁻¹).

Short-cut biological nitrogen removal, i.e. nitritation $(NH_4^+ \text{ oxidation to } NO_2^-)$ followed by 360 denitritation (NO₂⁻ reduction to N₂) emerged as extremely interesting in the domain of 361 wastewater treatment, especially in the cases of wastewaters with high NH_4^+ content [44]. 362 Compared to full nitrification (i.e. NH_4^+ oxidation to NO_3^-), the short-cut process has proved to 363 be more advantageous in terms of COD demand (40% reduction during denitrification) and 364 denitrification rate (63% higher) [45]. Furthermore, it can induce a 25% decrease in the oxygen 365 demand during nitrification because of the avoidance of nitratation (i.e. NO_2^- oxidation to NO_3^-) 366 367 [46]. If nitritation is the target for the plant operators, it is essential to apply conditions which favour the AOB activity but suppress the NOB community. The relative influential parameters 368 include temperature, pH and DO [44]. The current study focused on the DO effect; temperature 369 370 and pH were considered stable for all simulations (T=20 °C and pH=7). Low-DO environments are expected to enhance the NO_2^- accumulation [47-49]. 371

Figure 4. The steady-state N₂O emission factor with respect to different DO setpoints in the aerobic reactor (0 to 4 mg L⁻¹) and influent S_{NH4} concentrations (10 to 40 mg L⁻¹). The selected SE was 1. A) NOB parameters of Hiatt and Grady [24]. B) NOB parameters of Jubany et al. [31].

Fig. 4 shows the effect on N₂O-EF_{TOTAL} in different scenarios with the DO concentration ranging 376 from 0 to 4 mg L^{-1} and the influent S_{NH4} from 10 to 40 mg L^{-1} . For this part of the simulations, 377 we used the maximum theoretical stripping efficiency (SE=1). The latter offered the possibility 378 to examine a range of DO and influent NH_4^+ values which embodied the worst-case scenario (i.e. 379 highest N₂O emissions). The simulations were executed for each one of the different parameter 380 sets for the NOB growth and decay. In both cases, the general trends were similar. First, no 381 nitrification and, subsequently, no N₂O emission was noticed at very low DO (i.e. below 0.8 mg 382 L^{-1}). The DO increase provided the conditions for the initiation of nitritation. The highest N₂O 383 emissions occurred for (still relatively low) DO levels between 0.8 and 1.8 mg L^{-1} ; it is when 384 nitritation led to NO2⁻ accumulation and, afterwards, to N2O production through the nitrifier 385 denitrification pathway. The model predicted the highest N₂O emission (around 22%) under the 386 following combination: DO around 1.1 mg L⁻¹, influent N-NH₄⁺=40 mg L⁻¹ (i.e. the highest 387 tested) and SE=1. The further DO increase above 1.8 mg L^{-1} resulted in the significant N₂O-388 EF_{TOTAL} decrease (reaching almost 2% after DO>2.5 mg L⁻¹), as a consequence of the NO₂⁻¹ 389 390 consumption through full nitrification. Similar results have been reported in past experimental studies. Pijuan et al. [50] monitored the nitritation process in an airlift system with granular 391 biomass to explore the DO effect. N₂O emissions decreased from 6% to 2.2% of N-oxidized 392 when DO increased from 1 to 4.5 mg L^{-1} . Moreover, Rathnayake et al. [51] observed that the 393 N₂O emissions over the oxidized NH₄⁺ decreased from 2.9% (DO=0.6 mg L¹) to 1.4% (DO=2.3 394 $mg L^{1}$) in a lab-scale nitritation reactor fed with synthetic wastewater. 395

Furthermore, according to the trends noted while examining the N_2O -EF_{TOTAL} versus the influent S_{NH4} concentration, the N₂O emissions increased with the increase of the influent NH₄⁺ load. As a result, lower loaded influents are expected to have lower emissions. While investigating the

399 combined effect of N-loading rate and DO in a pilot-scale SBR treating reject water, Frison et al. [52] tested two different combinations of these parameters (first combination: volumetric N-400 loading rate=1.08 kg N m⁻³ d⁻¹ & DO=0.95 mg L⁻¹; second combination: volumetric N-loading 401 rate=0.81 kg N m⁻³ d⁻¹ & DO=1.48 mg L⁻¹). N₂O emissions decreased from 1.49% to 0.24% of 402 the influent N-load when switching from the first to the second combination. The higher DO 403 along with an influent N-loading not exceeding the system's capacity resulted in lower NO₂⁻ 404 accumulation and N₂O emissions. Similarly, our model predicted the increase in N₂O emissions 405 after applying higher S_{NH4} influent concentrations along with lower DO. 406

407 However, it is noted that the N-removal via NO₂⁻ was prolonged with the NOB growth and decay parameters from Jubany et al. [31]. Nitritation occurred at around 0.8<DO<1.8 mg L⁻¹ with the 408 parameters from Hiatt and Grady [24], whereas at around 0.8<DO<2.2 mg L⁻¹ with the 409 parameters from Jubany et al. [31] (Fig. 4). The NOB growth and decay rates of Jubany et al. 410 [31] are 23.5% and 43.5% higher, respectively, than the ones of Hiatt and Grady [24]. However, 411 the most important parameter affecting the N-removal via NO2⁻ is the NOB-related half-412 saturation coefficient for oxygen. This parameter was 1.2 mg L^{-1} for Hiatt and Grady [24]. 413 whereas equal to 1.75 mg L^{-1} [44, 48] for Jubany et al. [31]. This higher value increases the 414 range of DO values leading to a limitation of NOB activity, and hence provokes a higher 415 operational region with important N₂O emission. 416

Finally, the results obtained in this section match with past experimental observations according to which the operational parameters mostly contributing to the N_2O generation are linked to insufficient DO levels at the nitrification stage and increased NO_2^- concentration during both nitrification and denitrification [10-12].

422 **3.3** Effect of the stripping effectivity (SE) on the N₂O emission factor (EF)

Even though N_2O is an intermediate of heterotrophic denitrification, aerobic (nitrificationrelated) compartments in WWTPs are the major N_2O emission hotspots. Stripping occurs during aeration and the produced N_2O is emitted into the atmosphere [13, 53].

As mentioned in section 2.3, our modeling concerning the N₂O stripping was based on the k_Ia 426 427 approach. Moreover, it was enriched by the SE which acted as a coefficient describing the divergence of the model prediction (Eq. 4) with respect to ideality (SE=1). Eq. 4 simplifies the 428 real stripping process by assuming the following: i) the air bubbles are always free of N₂O; their 429 430 enrichment in N_2O is negligible as they rise up in the basin, ii) the liquid phase (as DO or N_2O concentration) has a homogeneous composition, and iii) the same $k_I a$ independently of the liquid 431 depth. The combined effect of different DO levels and the highest influent S_{NH4} value tested (i.e. 432 40 mg L^{-1}) on the N₂O-EF under different SEs (i.e. 0, 0.1, 0.25, 0.5, 0.75, 1) was evaluated using 433 the parameters by Hiatt and Grady [24]. It is presented in Fig. 5 for N₂O-EF_{TOTAL} (i.e. 434 considering both the N2O stripped and the N2O contained in the effluent) as well as for the 435 N₂O-EF_{GAS} (referring exclusively to the stripping contribution). 436

Under the application of the highest influent S_{NH4} value tested in this study (i.e. 40 mg L⁻¹), the trends were always similar and the maximum N₂O-EF was always observed for a DO around 1.2 mg L⁻¹. However, the maximum absolute values differed. In specific, the maximum N₂O-EF_{GAS} values ranged from 0% (SE=0) to ~21.1% (SE=1), while the maximum N₂O-EF_{TOTAL} values were between 6.3% (SE=0) and ~22% (SE=1). In other words, the SE increase led to a general rise in the EF. This was sharper in the beginning (SE: 0→0.1) and, then, more gradual (SE: 0.25→1) (Fig. 5). The observed trend reflects that a lower SE gives more chances for N₂O to follow the denitrification pathway (reaction 4 of denitrification in Fig. 2), thus favouring itsconsumption instead of its stripping.

For each of the SE values tested, the N2O-EFTOTAL was always higher than the respective 446 N₂O-EF_{GAS} one, but not significantly (Fig. 5). The latter showed that the N₂O stripping majorly 447 contributed to the N₂O EF estimation. Only in the case of SE=0 (the hypothetical case of no 448 449 stripping) the contribution of the dissolved N₂O was very significant. More importantly, our 450 results indicated that the SE factor was a very significant contributor to the final EF results. Hence, a more detailed modeling of the stripping process in the future, avoiding the 451 452 simplifications previously commented can potentially increase the accuracy in the EF prediction 453 and prevent its overestimation.

Figure 5. The maximum N₂O emission factor (N₂O-EF_{TOTAL} considering both the N₂O stripped and the N₂O contained in the effluent; N₂O-EF_{GAS} referring exclusively to the contribution of the N₂O stripping) observed for the different SE values (0, 0.1, 0.25, 0.5, 0.75, 1) tested during our simulations. The influent S_{NH4} value was considered equal to 40 mg L⁻¹ and the parameters were retrieved from the study by Hiatt and Grady [24].

460

461 **3.4 Modeling of dynamic N₂O emissions under disturbances**

An additional goal of this work was to examine how the N₂O emissions were influenced by influent disturbances under different DO scenarios. Transition states after a disturbance are the most favourable scenarios for intermediates accumulation and, thus, higher N₂O emissions. As an example, the effect of a S_{NH4} concentration increase in the influent was studied (as a 'step' increase from 20 to 30 mgN L⁻¹ on the 10th day of the plant operation). This was examined for various scenarios with different combinations of SE and DO control values in the aerobic reactor.

Figure 6. The effect of increasing the influent S_{NH4} concentration (from 20 to 30 mgN L⁻¹) at the 10th day of the plant operation on the N₂O-EF. Different SE values (1 and 0.1) and DO setpoints (3 mg L⁻¹, 1.5 mg L⁻¹, 1.2 mg L⁻¹ and no DO control) were tested.

473

For the scenarios a and b, the SE was 1 to enable the observance of the full stripping effect under 474 the sudden change of the operational conditions. The fast S_{NH4} increase resulted in a rapid 475 increase of N₂O emissions. The N₂O-EF_{TOTAL} presented the following trends: $1.4 \rightarrow 3.1\%$ almost 476 up to the 12^{th} day of operation (scenario a) and $4.5 \rightarrow 9.6\%$ until the 17^{th} day (scenario b). Then, a 477 gradual EF reduction started until it was stabilized at lower levels: at ~2.1% after the 30th day 478 (scenario a), and at ~7.5% after the 40^{th} day (scenario b) (Fig. 6). The DO control setpoint in case 479 b was significantly lower than in scenario a; thus, higher absolute EF values were expected as 480 previously seen in Fig. 4A. Under such conditions, the AOB bacteria are known to induce 481 nitritation, use NO_2^- as terminal electron acceptor and, finally, produce N_2O (nitrifier 482 denitrification pathway) [54-56]. Indeed, low DO (e.g. $<1.5 \text{ mg L}^{-1}$) has been experimentally 483 connected with the achievement of nitritation, the subsequent NO_2^- accumulation and NOB 484 washout [57-60]. For both scenarios a and b, the downward trend of the N₂O-EF indicated that 485 486 NOB were growing and performing NO_2^- oxidation. However, the fact that the final N₂O-EF never recovered its initial value implies that the NOB growth only covered part of the new NO_2^{-1} 487 oxidation requirements. Fig. 7 shows the effect of scenarios a and b on the AOB and NOB 488 growth. In both cases, the AOB growth was always sharper than the respective NOB one after 489 the operational change on the 10th day. In accordance to what is seen in Fig. 7, the AOB 490 population has been reported to prevail over the NOB under increased NH₄⁺ availability and 491 controlled aeration [61]. 492

Figure 7. The AOB and NOB evolution after increasing the influent S_{NH4} concentration (from 20 to 30 mgN L⁻¹) on the 10th day of the plant operation. Different DO control setpoints (3 mg L⁻¹ and 1.5 mg L⁻¹) were compared for a SE=1.

For the same DO levels, different SE values were tested to simulate the full and reduced 498 499 stripping effect via fixing the SE as equal to 1 and 0.1, respectively (comparison between scenarios a and c, and comparison between scenarios b and d in Fig. 6). In terms of N₂O-500 EF_{TOTAL}, the same trends were observed: a fast increase followed by a decrease with a final value 501 stabilized higher than the one observed before the S_{NH4} increase. The SE decrease (from 1 to 0.1) 502 explains the increased distance between the lines of N2O-EFTOTAL and N2O-EFGAS. The 503 emissions were lower in the SE=0.1 cases (Fig. 6c and 6d) and more N₂O was considered as 504 remaining dissolved, thus coming out in the effluent. A lower SE value (i.e. 0.1) imposes less 505 stripping to the system, which results in: i) an increased N₂O concentration in the aerobic reactor, 506 507 and ii) an increased recycling of N₂O to the anoxic reactor leading to higher N₂O consumption.

Scenario e studies the effect of working at the DO setpoint of $1.2 \text{ mg} \cdot \text{L}^{-1}$ and SE =0.1, in order to show clearly the effect of working under DO conditions unfavorable to the NOB growth. N₂O emissions higher than 9% were observed because of N-removal via NO₂⁻ and NOB washout, as detailed in sections 3.1 and 3.2.

However, all the scenarios previously commented (i.e. scenarios a - e) were DO-controlled; this enabled simulating how increasing aeration by the control loop allowed the maintenance of the desired DO concentration. Scenario f, though, showed that the effect of the S_{NH4} influent increase can be higher and more persistent in a non-DO-controlled environment. The increase of NH_4^+ load decreases the DO concentration, and can move the system from an operational point with full nitrification to a point with N-removal via NO_2^- which explains the higher EF noted.

A sudden operational change imposed to the system such as the one examined in this section (i.e. 518 a step increase in the influent S_{NH4} from 20 to 30 mg L⁻¹) increased the N₂O emissions. The AOB 519 and NOB populations were affected, with the AOB growth being quicker and higher compared 520 to the respective NOB one. Thus, N-removal via NO2⁻ was increased and N2O was produced 521 through nitrifier denitrification. The magnitude of the emissions depended on the imposed SE 522 value and DO control setpoint; the higher the imposed SE value, the higher the stripping effect 523 and, thus, the anticipated emissions. Moreover, a lower DO setpoint placed the system under 524 nitritation regime, thus creating the conditions for the activation of the nitrifier denitrification 525 pathway. Under no DO control, the environment within the reactor became even more favorable 526 to N-removal via NO₂, hence greatly increasing the EF. 527

528

530 **3.5 Sensitivity Analysis (SA) of the developed model**

Table 2 shows the 40 most sensitive parameters to the N₂O-EF_{TOTAL} for the two studied 531 scenarios with influent $S_{NH4}=30 \text{ mg } \text{L}^{-1}$ and SE=0.5 (first: DO in the aerobic reactor=3 mg L⁻¹; 532 second: DO in the aerobic reactor=1 mg L^{-1}). The values are listed in descending order 533 considering the S_{i,j} absolute values calculated with Eq. 6. The sign of the sensitivity indices is 534 535 maintained since it contains information: a positive sensitivity index indicates that an increase in the parameter results in an increase of the N₂O-EF_{TOTAL}, while a negative sensitivity suggests 536 that an increase in the parameter will lead to a decrease in the N₂O-EF_{TOTAL}. The results showed 537 538 in Table 2 were obtained with a perturbation factor of 0.01%. The choice on the perturbation factor was based on the work by De Pauw [62] who suggested to use a factor producing equal 539 derivative values for forward and backward differences. Nevertheless, the perturbation factor did 540 not significantly affect the parameter categorization (data not shown). 541

Table 2. Sensitivity analysis results for the two different operational modes (first: $DO_{AE} = 3 \text{ mg}$ L⁻¹; second: $DO_{AE} = 1 \text{ mg } \text{L}^{-1}$); both with influent $S_{NH4}=30 \text{ mg } \text{L}^{-1}$ and SE=0.5. DO_{AE} stands for the DO control setpoint in the aerobic reactor.

Order	$DO_{AE}=3 \text{ mg } L^{-1}$		$DO_{AE}=1 \text{ mg } L^{-1}$	
	Parameter	Si,j	Parameter	Si,j
1	$\mu_{ m NOB}$	-2.138	Y _{AOB}	2.233
2	$\eta_{ m G}$	1.489	$\eta_{ m G}$	1.978
3	b _{NOB}	1.059	q _{AOB_AMO}	1.407
4	q _{AOB_N2O_ND}	0.997	Y _{PAO}	1.108
5	μ_{AOB_HAO}	-0.926	b _{AOB}	-1.024
6	K _{I_O2_AOB}	0.878	η_{G5}	-0.947
7	Y _{AOB}	0.863	K _{OH5}	-0.853
8	K _{HNO2_AOB}	-0.857	q _{AOB_N2O_ND}	0.841
9	K _{NO2_NOB}	0.851	K _{O2} _AOB1	-0.738

Order –	$DO_{AE}=3 \text{ mg } L^{-1}$		$DO_{AE}=1 \text{ mg } L^{-1}$	
	Parameter	Si,j	Parameter	Si,j
10	Y _{PAO}	0.739	i _{NXS}	0.674
11	K _{O2_NOB}	0.629	Y _H	-0.470
12	η_{G5}	-0.620	Y _{PO4}	-0.435
13	K _{OH5}	-0.470	Q _{PP}	0.400
14	K _{N2O Den}	0.435	μ_{PAO}	-0.386
15	i _{NXS}	0.428	i _{NBM}	-0.375
16	b _{PAO}	-0.408	K _{HNO2 AOB}	-0.360
17	SE	0.375	i _{NSF}	0.338
18	Y _H	-0.364	K _{I_O2_AOB}	0.299
19	K _{MAX P}	0.259	K _{MAX P}	0.292
20	i _{NBM}	-0.247	SE	0.223
21	μ_{PAO}	0.246	K _{NH2OH AOB}	-0.209
22	i _{NSF}	0.207	K _{O2 AOB ND}	0.198
23	K _{O2 AOB ND}	0.192	$\mu_{AOB HAO}$	-0.175
24	D _{O2}	-0.187	K _{N2O Den}	0.170
25	D _{N2O}	-0.187	K _{S5}	0.166
26	K _{P_P}	-0.169	K _F	-0.157
27	K _{O2_AOB2}	0.167	Y _{PHA}	-0.149
28	K _{S5}	0.151	K _{NH4_AOB}	-0.137
29	b _H	0.149	n _{fe_H}	-0.134
30	Y _{PO4}	-0.135	K _{O2_P}	-0.132
31	K _{P_NOB}	0.122	b _H	0.121
32	q _{AOB_AMO}	-0.120	D _{O2}	-0.111
33	q _{PHA}	0.118	D _{N2O}	-0.111
34	K _H	-0.101	b _{PAO}	-0.101
35	K _F	-0.099	K _H	-0.098
36	n _{fe_H}	-0.094	k _L a	0.089
37	Y _{PHA}	-0.094	K _{O2_AOB2}	0.082
38	q _{PP}	0.085	K _{IPP_P}	-0.074
39	η _{G3}	0.077	i _{PXS}	-0.073
40	i _{PXS}	-0.064	b _{PP}	-0.071

548 Different parameter ranking was found between the two scenarios: the most sensitive parameters 549 to the N₂O-EF_{TOTAL} factor varied under the different DO setpoints. For the DO setpoint of 3 mg 550 L^{-1} , the most sensitive parameters were those related to NOB metabolism, followed by those

551 related to the AOB activity and, finally, by those connected to PAO. The sensitivity of parameters referring to the NOB metabolism is important to understand potential NO₂⁻ 552 accumulation. The latter will inevitably lead to changes in the total N₂O emission factor through 553 the activation/deactivation of the nitrifier denitrification pathway, as discussed in section 3.1. On 554 the other hand, under the DO setpoint of 1 mg L⁻¹, the AOB-related parameters were the most 555 sensitive since limited NOB growth is anticipated in a low-DO environment (Fig. 3B). Hence, 556 the NOB-related parameters became insensitive. For this scenario, the WWTP model operates 557 under nitritation and increased N₂O production through nitrifier denitrification is expected 558 559 (section 3.1).

For both tested scenarios, the anoxic growth factor (η_G) (i.e. the stoichiometric factor implicated in the growth of heterotrophs and PAO under anoxic conditions) had a severe impact on the N₂O emission factor. Considering that this parameter affects all the anoxic processes, its perturbation will change the stoichiometry of various processes.

It is worth mentioning that the SE only appears in the middle range of the table $(17^{th} \text{ and } 20^{th} \text{ for}$ a DO setpoint of 3 and 1 mg L⁻¹, respectively). The reference value of this parameter (0.5) is essential to understand the sensitivity results. According to Fig. 5, the SE parameter has a significant effect on the N₂O-EF_{TOTAL} while increasing from 0 to 0.2; its further increase from 0.2 to 1 has a lesser influence on the N₂O-EF values. Had this parameter been set at a lower value, its relative sensitivity would have increased.

570 Moreover, the conversion factors mostly affecting the N_2O -EF_{TOTAL} were those related to the N-571 content (i_{NXS} , i_{NSF}) of state variables X_S and S_F . The latter can be justified by their interference in 572 the calculation of the N_{IN} content (Eq. 2) and their subsequent effect on the N_2O -EF_{TOTAL} 573 estimation (Eq. 1.1).
574 Finally, we examined Table 2 again to see if any common parameters appeared in the first ten places for both scenarios. It was noted that n_{G_2} , $q_{AOB N2O ND}$ (maximum N₂O production rate by 575 the nitrifier denitrification pathway), Y_{PAO} (yield coefficient for the PAO) and Y_H (yield 576 coefficient for the heterotrophs) were amongst the first ten parameters for both DO setpoints; all 577 with positive sensitivity. Hence, it can be deduced that decreasing these values leads to a 578 decrease in the N₂O-EF_{TOTAL}. The n_G, Y_{PAO} and Y_H stoichiometric parameters, in specific, are 579 included in the stoichiometry of the processes referring to the anoxic growth of PAO and 580 heterotrophs. These processes can indeed be considered as significantly influencing the EF since 581 they occur in an anoxic environment where N_2O can be consumed through denitrification. These 582 results also show that the inclusion of PAO in our model has a significant impact in the EF 583 related to the denitrification of N₂O. Lastly, the impact of the q_{AOB N2O ND} kinetic parameter 584 proved to be important in both scenarios. Given that $q_{AOB N2O ND}$ expresses the N₂O production 585 rate through nitrifier denitrification, this observation indicates that nitrifier denitrification is 586 probably the most important pathway to consider for the N₂O mitigation. 587

588

589 **4.** Conclusions

In this work, an ASM2d-N₂O model including COD, N and P removal along with all the known N₂O microbial pathways was developed for a municipal A^2/O WWTP, which can be highly useful for the estimation of the N₂O-EF. The following major conclusions were reached:

Plant operators often opt for lower aeration to decrease a WWTP's energy requirements.
 With the aerobic DO ranging from 0.8 to 1.8 mg L⁻¹, the AOB prevailed over the NOB,
 thus promoting the shift from full to partial nitrification and, subsequently, the N₂O

production through nitrifier denitrification. Due to the important N_2O GWP, this operational change can result in a high final overall WWTP carbon footprint. Consequently, low aeration is desired only if it does not disturb the nitrification process.

A SE coefficient (from 0 to 1) was added to reflect the non-ideality of the stripping modeling. Decreasing the SE was translated into higher N₂O concentration in the mixed liquor; the latter led to a higher N₂O denitrification rate and lower emissions.

• The effect of a sudden increase in the influent S_{NH4} from 20 to 30 mg L⁻¹ was simulated. The AOB predominance over the NOB enabled NO₂⁻ accumulation and increased the nitrifier denitrification pathway. Higher emissions were observed under the following conditions: lower DO setpoints that created an environment more advantageous to nitrifier denitrification combined with higher SE values that raised the significance of the stripping effect.

The sensitivity analysis showed that the NOB-related parameters had minor influence over the N₂O-EF under low-DO conditions, given the limited NOB growth at low DO. However, they were very significant at high DO due to its effect on the NO₂⁻ oxidation rate. The parameters n_G, q_{AOB_N2O_ND}, Y_{PAO} and Y_H were amongst the top ten for both DO setpoints tested. n_G, Y_{PAO} and Y_H are related to the N₂O consumption through denitrification. q_{AOB_N2O_ND} indicates that nitrifier denitrification is probably the most important pathway to consider for the N₂O mitigation.

615

616 Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie C-FOOT-CTRL project (grant agreement No 645769). T.M. Massara is also grateful to the Natural Environment Research Council (NERC) of the UK for the 4-year full PhD studentship. B. Solís also acknowledges the support of Universitat Autònoma de Barcelona with a PIF pre-doctoral grant. J.A. Baeza, A. Guisasola and B. Solís are members of the GENOCOV research group (*Grup de Recerca Consolidat de la Generalitat de Catalunya*, 2014 SGR 1255).

624

625 **References**

[1] IPCC, Climate change 2013: the physical science basis. Contribution of Working Group I to

627 the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, in: T.F.

628 Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex,

629 P.M. Midgley (Eds.), Cambridge University Press, Cambridge and New York, 2013, pp. 1535.

[2] A.R. Ravishankara, J.S. Daniel, R.W. Portmann, Nitrous Oxide (N₂O): The Dominant
 Ozone-Depleting Substance Emitted in the 21st Century, Science 326 (2009) 123 LP-125.
 http://science.sciencemag.org/content/326/5949/123.abstract.

[3] J.H. Ahn, S. Kim, H. Park, B. Rahm, K. Pagilla, K. Chandran, N₂O emissions from activated

634 sludge processes, 2008-2009: results of a national monitoring survey in the United States.,

635 Environ. Sci. Technol. 44 (2010) 4505–4511. doi:10.1021/es903845y.

[4] J. Foley, D. de Haas, Z. Yuan, P. Lant, Nitrous oxide generation in full-scale biological
nutrient removal wastewater treatment plants, Water Res. 44 (2010) 831-844.
doi:10.1016/j.watres.2009.10.033.

[5] A. Rodríguez-Caballero, I. Aymerich, R. Marques, M. Poch, M. Pijuan, Minimizing N₂O
emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor, Water
Res. 71 (2015) 1-10. doi:10.1016/j.watres.2014.12.032.

[6] M.R.J. Daelman, B. De Baets, M.C.M. van Loosdrecht, E.I.P. Volcke, Influence of sampling
strategies on the estimated nitrous oxide emission from wastewater treatment plants, Water Res.
47 (2013) 3120-3130. doi:10.1016/j.watres.2013.03.016.

[7] P. Wunderlin, J. Mohn, A. Joss, L. Emmenegger, H. Siegrist, Mechanisms of N₂O production
in biological wastewater treatment under nitrifying and denitrifying conditions, Water Res. 46
(2012) 1027-1037. doi:10.1016/j.watres.2011.11.080.

[8] P. Wunderlin, M.F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, J. Mohn,
Isotope Signatures of N₂O in a Mixed Microbial Population System: Constraints on N₂O
Producing Pathways in Wastewater Treatment, Environ. Sci. Technol. 47 (2013) 1339-1348.
doi:10.1021/es303174x.

[9] B.J. Ni, Z. Yuan, Recent advances in mathematical modeling of nitrous oxides emissions
from wastewater treatment processes, Water Res. 87 (2015) 336-346.
doi:10.1016/j.watres.2015.09.049.

- [10] M.J. Kampschreur, H. Temmink, R. Kleerebezem, M.S.M. Jetten, M.C.M. van Loosdrecht,
 Nitrous oxide emission during wastewater treatment, Water Res. 43 (2009) 4093-4103.
 doi:10.1016/j.watres.2009.03.001.
- [11] J. Desloover, S.E. Vlaeminck, P. Clauwaert, W. Verstraete, N. Boon, Strategies to mitigate
 N₂O emissions from biological nitrogen removal systems, Curr. Opin. Biotechnol. 23 (2012)
 474-482. doi:10.1016/j.copbio.2011.12.030.
- [12] T.M. Massara, S. Malamis, A. Guisasola, J.A. Baeza, C. Noutsopoulos, E. Katsou, A review 661 on nitrous oxide (N₂O) emissions during biological nutrient removal from municipal wastewater 662 sludge Environ. 596-597 (2017)663 and reject water, Sci. Total 106-123. doi:10.1016/j.scitotenv.2017.03.191. 664
- [13] Y. Law, L. Ye, Y. Pan, Z. Yuan, Nitrous oxide emissions from wastewater treatment 665 Philos. R. Soc. Lond. B. Biol. Sci. 666 processes., Trans. 367 (2012)1265-77. doi:10.1098/rstb.2011.0317. 667
- [14] R. Marques, A. Rodríguez-Caballero, A. Oehmen, M. Pijuan, Assessment of online
 monitoring strategies for measuring N₂O emissions from full-scale wastewater treatment
 systems, Water Res. 99 (2016) 171-179. doi:10.1016/j.watres.2016.04.052.
- [15] Y. Lim, D.-J. Kim, Quantification method of N₂O emission from full-scale biological
 nutrient removal wastewater treatment plant by laboratory batch reactor analysis., Bioresour.
 Technol. 165 (2014) 111-115. doi:10.1016/j.biortech.2014.03.021.

[16] A. Rodríguez-Caballero, I. Aymerich, M. Poch, M. Pijuan, Evaluation of process conditions
triggering emissions of green-house gases from a biological wastewater treatment system, Sci.
Total Environ. 493 (2014) 384-391. doi:10.1016/j.scitotenv.2014.06.015.

[17] M. Pocquet, Z. Wu, I. Queinnec, M. Spérandio, A two pathway model for N₂O emissions by
ammonium oxidizing bacteria supported by the NO/N₂O variation, Water Res. 88 (2016) 948959. doi:10.1016/j.watres.2015.11.029.

680 [18] B.-J. Ni, M. Ruscalleda, C. Pellicer-Nacher, B.F. Smets, Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions 681 Technol. (2011)7768-7776. 682 the General ASM Models, Environ. Sci. 45 to doi:10.1021/es201489n. 683

[19] K.E. Mampaey, B. Beuckels, M.J. Kampschreur, R. Kleerebezem, M.C.M. van Loosdrecht,

E.I.P. Volcke, Modelling nitrous and nitric oxide emissions by autotrophic ammonia-oxidizing

bacteria, Environ. Technol. 34 (2013) 1555-1566. doi:10.1080/09593330.2012.758666.

685

[20] Y. Law, B.J. Ni, P. Lant, Z. Yuan, N₂O production rate of an enriched ammonia-oxidising
bacteria culture exponentially correlates to its ammonia oxidation rate, Water Res. 46 (2012)
3409-3419. doi:10.1016/j.watres.2012.03.043.

[21] B.-J. Ni, L. Ye, Y. Law, C. Byers, Z. Yuan, Mathematical modeling of nitrous oxide (N₂O)
emissions from full-scale wastewater treatment plants., Environ. Sci. Technol. 47 (2013) 77957803. doi:10.1021/es4005398.

[22] K. Chandran, L.Y. Stein, M.G. Klotz, M.C.M. van Loosdrecht, Nitrous oxide production by
lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal
systems, Biochem. Soc. Trans. 39 (2011) 1832 LP-1837.
http://www.biochemsoctrans.org/content/39/6/1832.abstract.

- [23] B.-J. Ni, L. Peng, Y. Law, J. Guo, Z. Yuan, Modeling of Nitrous Oxide Production by
 Autotrophic Ammonia-Oxidizing Bacteria with Multiple Production Pathways, Environ. Sci.
 Technol. 48 (2014) 3916-3924. doi:10.1021/es405592h.
- 700 [24] W.C. Hiatt, C.P.L. Grady, An updated process model for carbon oxidation, nitrification, and
- 701 denitrification., Water Environ. Res. 80 (2008) 2145-2156. doi:10.2175/106143008X304776.
- [25] Y. Pan, B.J. Ni, Z. Yuan, Modeling electron competition among nitrogen oxides reduction
 and N₂O accumulation in denitrification, Environ. Sci. Technol. 47 (2013) 11083-11091.
 doi:10.1021/es402348n.
- [26] B.J. Ni, Y. Pan, B. Van Den Akker, L. Ye, Z. Yuan, Full-Scale Modeling Explaining Large
 Spatial Variations of Nitrous Oxide Fluxes in a Step-Feed Plug-Flow Wastewater Treatment
 Reactor, Environ. Sci. Technol. 49 (2015) 9176-9184. doi:10.1021/acs.est.5b02038.
- [27] J. Guerrero, A. Guisasola, J.A. Baeza, The nature of the carbon source rules the competition
 between PAO and denitrifiers in systems for simultaneous biological nitrogen and phosphorus
 removal, Water Res. 45 (2011) 4793-4802. doi:10.1016/j.watres.2011.06.019.
- 711 [28] V.C. Machado, J. Lafuente, J.A. Baeza, Activated sludge model 2d calibration with full-
- scale WWTP data: Comparing model parameter identifiability with influent and operational
- uncertainty, Bioprocess Biosyst. Eng. 37 (2014) 1271-1287. doi:10.1007/s00449-013-1099-8.

- [29] M. Henze, W. Gujer, T. Mino, M.C.M. van Loosdrecht, Activated Sludge Models ASM1,
 ASM2, ASM2d, and ASM3, IWA Scientific and Technical Report n.9., IWA Publishing,
 London, 2000.
- 717 [30] I. Takács, G.G. Patry, D. Nolasco, A dynamic model of the clarification-thickening process,
- 718 Water Res. 25 (1991) 1263-1271. doi:10.1016/0043-1354(91)90066-Y.
- [31] I. Jubany, J. Carrera, J. Lafuente, J.A. Baeza, Start-up of a nitrification system with
 automatic control to treat highly concentrated ammonium wastewater: Experimental results and
 modeling, Chem. Eng. J. 144 (2008) 407-419. doi:10.1016/j.cej.2008.02.010.
- [32] S. Capela, M. Roustan, A. Heduit, Transfer number in fine bubble diffused aeration
 systems, Water Sci. Technol. 43 (2001) 145-152.
- [33] D.R. Lide, CRC Handbook of Chemistry and Physics, 87th ed., CRC Press/Taylor and
 Francis Group, Boca Raton, 2007.
- [34] H. Hauduc, L. Rieger, I. Takács, A. Héduit, P.A. Vanrolleghem, S. Gillot, A systematic
 approach for model verification: application on seven published activated sludge models, Water
 Sci. Technol. 61(2010) 825-839. doi: 10.2166/wst.2010.898
- [35] P. Reichert, P.A. Vanrolleghem, Identifiability and uncertainty analysis of the river water
 quality model no. 1 (RWQM1), Water Sci. Technol. 43 (2001) 329-338.
- [36] U. Wiesmann, Biological nitrogen removal from wastewater, in: A. Fiechter (Eds.),
 Advances in Biochemical Engineering Bio- technology, Springer-Verlag, Berlin, 1994, pp. 113154.

[37] A. Guisasola, M. Marcelino, R. Lemaire, J.A. Baeza, Z. Yuan, Modelling and simulation
revealing mechanisms likely responsible for achieving the nitrite pathway through aeration
control, Water Sci. Technol. 61 (2010) 1459-1465. doi: 10.2166/wst.2010.017

- [38] G. Tallec, J. Garnier, G. Billen, M. Gousailles, Nitrous oxide emissions from secondary
 activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of
 oxygenation level, Water Res. 40 (2006) 2972-2980. doi:10.1016/j.watres.2006.05.037.
- [39] M.J. Kampschreur, W.R.L. van der Star, H.A. Wielders, J.W. Mulder, M.S.M. Jetten,
 M.C.M. van Loosdrecht, Dynamics of nitric oxide and nitrous oxide emission during full-scale
 reject water treatment, Water Res. 42 (2008) 812-826. doi:10.1016/j.watres.2007.08.022.
- [40] Y. Law, P. Lant, Z. Yuan, The confounding effect of nitrite on N₂O production by an
 enriched ammonia-oxidizing culture, Environ. Sci. Technol. 47 (2013) 7186-7194.
 doi:10.1021/es4009689.
- [41] L. Peng, B.J. Ni, D. Erler, L. Ye, Z. Yuan, The effect of dissolved oxygen on N₂O
 production by ammonia-oxidizing bacteria in an enriched nitrifying sludge, Water Res. 66 (2014)
 12-21. doi:10.1016/j.watres.2014.08.009.
- [42] A. Aboobakar, E. Cartmell, T. Stephenson, M. Jones, P. Vale, G. Dotro, Nitrous oxide
 emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment
 plant, Water Res. 47 (2013) 524-534. doi:10.1016/j.watres.2012.10.004.

[43] G. Dotro, B. Jefferson, M. Jones, P. Vale, E. Cartmell, T. Stephenson, A review of the
impact and potential of intermittent aeration on continuous flow nitrifying activated sludge,
Environ. Technol. 32 (2011) 1685-1697. doi:10.1080/09593330.2011.597783.

755 [44] I. Jubany, J. Lafuente, J.A. Baeza, J. Carrera, Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on 756 43 757 Oxygen Uptake Rate measurements, Water Res. (2009)2761-2772. 758 doi:10.1016/j.watres.2009.03.022.

[45] O. Turk, D.S. Mavinic, Benefits of using selective inhibition to remove nitrogen from
highly nitrogenous wastes, Environ. Technol. Lett. 8 (1987) 419-426.
doi:10.1080/09593338709384500.

[46] Y. Peng, G. Zhu, Biological nitrogen removal with nitrification and denitrification via nitrite
pathway, Appl. Microbiol. Biotechnol. 73 (2006) 15-26. doi:10.1007/s00253-006-0534-z.

[47] G. Ruiz, D. Jeison, R. Chamy, Nitrification with high nitrite accumulation for the treatment
of wastewater with high ammonia concentration, Water Res. 37 (2003) 1371-1377.

[48] A. Guisasola, I. Jubany, J.A. Baeza, J. Carrera, J. Lafuente, Respirometric estimation of the
oxygen affinity constants for biological ammonium and nitrite oxidation, J. Chem. Technol.
Biotechnol. 80 (2005) 388-396. doi:10.1002/jctb.1202.

[49] M. Soliman, A. Eldyasti, Development of partial nitrification as a first step of nitrite shunt
process in a Sequential Batch Reactor (SBR) using Ammonium Oxidizing Bacteria (AOB)

771 controlled by mixing regime, Bioresour. Technol. 221 (2016) 85-95.
772 doi:10.1016/j.biortech.2016.09.023.

[50] M. Pijuan, J. Torà, A. Rodríguez-Caballero, E. César, J. Carrera, J. Pérez, Effect of process
parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating

reject wastewater, Water Res. 49 (2014) 23-33. doi:10.1016/j.watres.2013.11.009.

775

[51] R.M.L.D. Rathnayake, M. Oshiki, S. Ishii, T. Segawa, H. Satoh, S. Okabe, Effects of
dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification
granules, Bioresour. Technol. 197 (2015) 15-22. doi:10.1016/j.biortech.2015.08.054.

[52] N. Frison, A. Chiumenti, E. Katsou, S. Malamis, D. Bolzonella, F. Fatone, Mitigating offgas emissions in the biological nitrogen removal via nitrite process treating anaerobic effluents,
J. Clean. Prod. 93 (2015) 126-133. doi:http://dx.doi.org/10.1016/j.jclepro.2015.01.017.

- [53] G. Mannina, A. Cosenza, D. Di Trapani, V.A. Laudicina, C. Morici, H. Ødegaard, Nitrous
 oxide emissions in a membrane bioreactor treating saline wastewater contaminated by
 hydrocarbons, Bioresour. Technol. 219 (2016) 289-297. doi:10.1016/j.biortech.2016.07.124.
- [54] J.G. Kuenen, Anammox bacteria: from discovery to application., Nat. Rev. Microbiol. 6
 (2008) 320-326. doi:10.1038/nrmicro1857.
- [55] L. Peng, B.-J. Ni, L. Ye, Z. Yuan, The combined effect of dissolved oxygen and nitrite on
 N₂O production by ammonia oxidizing bacteria in an enriched nitrifying sludge, Water Res. 73
 (2015) 29-36. doi:10.1016/j.watres.2015.01.021.

[56] Y. Jin, D. Wang, W. Zhang, Effects of substrates on N₂O emissions in an anaerobic
ammonium oxidation (anammox) reactor, Springerplus. (2016) 1-12. doi:10.1186/s40064-0162392-1.

[57] J.M. Garrido, W.A.J. Van Benthum, M.C.M. Van Loosdrecht, J.J. Heijnen, Influence of
dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor,
Biotechnol. Bioeng. 53 (1997) 168-178. doi:10.1002/(SICI)10970290(19970120)53:2<168::AID-BIT6>3.0.CO;2-M.

[58] W. Bae, S. Baek, J. Chung, Y. Lee, Optimal operational factors for nitrite accumulation in
batch reactors, Biodegradation. 12 (2001) 359-366. doi:10.1023/A:1014308229656.

[59] G. Ciudad, O. Rubilar, P. Muñoz, G. Ruiz, R. Chamy, C. Vergara, D. Jeison, Partial
nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen
removal process, Process Biochem. 40 (2005) 1715-1719. doi:10.1016/j.procbio.2004.06.058.

[60] R. Blackburne, Z. Yuan, J. Keller, Partial nitrification to nitrite using low dissolved oxygen
concentration as the main selection factor, Biodegradation. 19 (2008) 303-312.
doi:10.1007/s10532-007-9136-4.

[61] M. Pan, Z. Hu, R. Liu, X. Zhan, Effects of loading rate and aeration on nitrogen removal
and N₂O emissions in intermittently aerated sequencing batch reactors treating slaughterhouse
wastewater at 11 °C, Bioprocess Biosyst. Eng. 38 (2015) 681-689. doi:10.1007/s00449-0141307-1.

- 809 [62] D.J.W. De Pauw, Optimal Experimental Design for Calibration of Bioprocess Models: A
- 810 Validated Software Toolbox, PhD thesis in Applied Biological Sciences, University of Gent,
- 811 Belgium. <u>http://biomath.urgent.be/publications/download/</u>, 2005 (accessed 17.06.17).

1	Development of an	ASM2d-N ₂ O n	nodel to	describe	nitrous	oxide	emissions	in	municipal
	1	-							

- 2 WWTPs under dynamic conditions
- 3 Theoni Maria Massara ^{a,b}, Borja Solís ^c, Albert Guisasola ^c, Evina Katsou ^{a,b}, Juan Antonio

4 Baeza^c

- ⁵ ^a Department of Mechanical, Aerospace and Civil Engineering, Brunel University London,
- 6 Uxbridge Campus, Middlesex, UB8 3PH, Uxbridge, UK.
- 7 ^b Institute of Environment, Health and Societies, Brunel University London, Kingston Lane,
- 8 Middlesex, UB8 3PH, Uxbridge, UK.
- 9 [°] GENOCOV. Departament d'Enginyeria Química, Biològica i Ambiental, Escola d'Enginyeria,

10 Universitat Autònoma de Barcelona, Cerdanyola del Vallés (Barcelona), 08193, Barcelona,

11 Spain.

12

13 Corresponding Author:

- 14 Prof. Juan Antonio Baeza,
- 15 Email: JuanAntonio.Baeza@uab.cat, Tel.: +34 93 581 1587

16

17

20 Nitrous oxide (N_2O) , a significant contributor to the greenhouse effect, is generated during the biological nutrient removal in wastewater treatment plants (WWTPs). Developing mathematical 21 models estimating the N₂O dynamics under changing operational conditions (e.g. dissolved 22 23 oxygen, DO) is essential to design mitigation strategies. Based on the activated sludge models (ASM) structure, this work presents an ASM2d-N₂O model including all the biological N₂O 24 production pathways for a municipal WWTP under an anaerobic/anoxic/oxic (A^2/O) 25 configuration with biological removal of organic matter, nitrogen and phosphorus, and its 26 27 application in different dynamic scenarios. Three microbial N₂O production pathways were considered: nitrifier denitrification, hydroxylamine oxidation, and heterotrophic denitrification, 28 with the first two being activated by ammonia oxidizing bacteria (AOB). A stripping effectivity 29 (SE) coefficient was added to reflect the non-ideality of the stripping modeling. With the DO in 30 the aerobic compartment ranging from 1.8 to 2.5 mg L^{-1} , partial nitrification and high N₂O 31 production via nitrifier denitrification were noted, indicating that low aeration strategies lead to a 32 low overall carbon footprint only if complete nitrification is not hindered. High N₂O emissions 33 were predicted as a combination of low DO (\sim 1.1 mg L⁻¹) with high ammonium concentration. 34 With the AOB prevailing over the Nitrite Oxidizing Bacteria (NOB), nitrite was accumulated, 35 thus activating the nitrifier denitrification pathway. After suddenly increasing the influent 36 ammonium load, the AOB had a greater growth compared to the NOB and the same pathway 37 was considered as N₂O hotspot. Especially under conditions promoting partial nitrification (i.e. 38 39 low DO) and raising the stripping effect importance (i.e. high SEs), the highest N_2O emission factors were predicted. 40

42 Keywords A^2/O , nitrous oxide, emission factor, modeling, N₂O production pathways, N₂O

- 43 stripping

Abbreviations	
A^2/O	Anaerobic/Anoxic/Oxic WWTP configuration
AOB	Ammonia Oxidizing Bacteria
AOR	Ammonium Oxidation Rate
ASM	Activated Sludge Models
ASMN	Activated Sludge Model for Nitrogen
BNR	Biological Nutrient Removal
С	Carbon
COD	Chemical Oxygen Demand
DO	Dissolved Oxygen
EF	Emission Factor
EBPR	Enhanced Biological Phosphorus Removal
GHG	Greenhouse Gas
GWP	Global Warming Potential
HRT	Hydraulic Retention Time
IWA	International Water Association
Ν	Nitrogen
NOB	Nitrite Oxidizing Bacteria
OHO	Ordinary Heterotrophic Organisms
Р	Phosphorus
PAO	Phosphorus Accumulating Organisms
PHA	Polyhydroxyalkanoates
PP	Polyphosphates
SA	Sensitivity Analysis
SBR	Sequencing Batch Reactor
SE	Stripping Effectivity
TKN	Total Kjeldahl Nitrogen
TSS	Total Suspended Solids
WWTP	Wastewater Treatment Plant

Nitrous oxide (N_2O) is a particularly important greenhouse gas (GHG) because of its high global 49 warming potential (GWP) compared to other GHGs such as methane (CH_4) and carbon dioxide 50 (CO₂). N₂O has a GWP 265 times higher than CO₂, in contrast to CH₄ that has a GWP only 28 51 52 times higher than CO_2 [1]. Moreover, N₂O has been characterized as the predominant ozonedepleting substance of the century [2]. N₂O can be produced and directly emitted during the 53 biological nutrient removal (BNR) in wastewater treatment plants (WWTPs) [3-4]. More 54 importantly, it has been proved that the total carbon (C) footprint of full-scale WWTPs can be 55 56 affected by N₂O emissions to an impressive extent: e.g. around 60% [5], or even around 75% [6].

57 The currently known microbial pathways for N₂O production during the BNR are connected to 58 the biochemical processes of nitrification and denitrification. Those related to nitrification occur through the activity of the ammonia oxidizing bacteria (AOB) (i.e. the nitrifier denitrification 59 60 and the hydroxylamine (NH₂OH) oxidation). Heterotrophic denitrification, during which N₂O is an intermediate product, is the third biological pathway [5, 7-9]. The parameters mostly 61 contributing to the N₂O generation have been reviewed and linked to insufficient levels of 62 dissolved oxygen (DO) at the nitrification stage, increased nitrite (NO₂) concentration during 63 both nitrification and denitrification, in addition to low chemical oxygen demand to nitrogen 64 ratio (COD/N) during denitrification [10-12]. 65

Studies have revealed a considerable variation in the N_2O emission in WWTPs, thus rendering the emission factor (EF) estimation difficult. For example, Law et al. [13] reported an EF range of 0-25% amongst different full-scale WWTPs. The significant variation can be explained through the highly dynamic conditions in WWTPs, as well as the different configurations and operational conditions applied in each plant [13-14]. Furthermore, the N_2O EF calculation can be 71 influenced by the N₂O quantification method [13, 15]. After examining twelve different WWTPs in the United States, Ahn et al. [3] found that the EFs ranged from 0.01 to 1.8% when normalized 72 to the influent Total Kjeldahl Nitrogen (TKN) load. This variability was correlated with the 73 74 diurnal variations of the influent N-loading. Similarly, Rodriguez-Caballero et al. [16] examined the N₂O dynamics in a municipal WWTP. Due to instable nitrification in the bioreactor, the 75 76 emissions presented a significant decreasing trend within the day; the reported N_2O EF decreased from 0.116 to 0.064% of the influent TKN. In both cases, the authors captured the changing N_2O 77 dynamics because of the continuous online reporting of the data. Foley et al. [4] studied seven 78 79 full-scale BNR WWTPs in Australia with various configurations, concluding to a minimum N₂O EF of 0.6% and a maximum of 25.3% of the N-denitrified. The authors recommended online 80 emission monitoring in the biological compartments for the in-depth understanding of the 81 influent dynamics and process characteristics in WWTPs. Daelman et al. [6] examined different 82 monitoring scenarios on a 16-month dataset of a fully covered WWTP in the Netherlands to 83 conclude to the most accurate and cost-effective one. The estimation of the average annual N_2O 84 emission required the description of seasonal dynamics and, thus, the acquisition of long-term, 85 online or grab samples (the latter including nightly and weekend sampling). On the other hand, 86 87 short-term campaigns focusing on the diurnal trends proved to be more expensive since they called for high-frequency online sampling. Thus, the accurate estimation of the N₂O EF within a 88 WWTP is a highly challenging task depending on various factors such as the operational 89 90 conditions, the configuration type, the quantification method, the sampling strategy, etc.

The development of mathematical tools for the prediction of N_2O emissions during the operation of WWTPs seems essential to allow the study of different scenarios. The simulation of N_2O production allows the optimization of BNR processes, thus facilitating the decrease of N_2O 94 emissions. N₂O modeling is constantly advancing; models describing different pathways and
95 based on different assumptions have been developed [9, 17].

For instance, models that focus on the nitrifier denitrification pathway have been suggested: Ni 96 et al. [18] developed a model describing how low DO levels (i.e. $\leq 1.5 \text{ mg L}^{-1}$) can inhibit 97 98 complete nitrification, induce NO_2^- accumulation and, subsequently, increase N_2O emissions. Similarly, Mampaey et al. [19] observed that N₂O production and emission was mainly observed 99 during the aerated phases under relatively low DO (i.e. $\leq 1.5 \text{ mg L}^{-1}$). The NH₂OH oxidation 100 pathway was the basis for the models by Law et al. [20] and Ni et al. [21]. Law et al. [20] 101 observed the N₂O production rate increasing with the ammonium oxidation rate (AOR) within an 102 enriched AOB culture. The simulations by Ni et al. [21] indicated that ammonium (NH_4^+) 103 accumulation during aeration was translated into a high specific AOR and, finally, into the 104 increased production of by-products such as NH₂OH. 105

Given that the AOB pathways are regarded as major contributors to the N₂O production amongst the three microbial routes [7, 17, 22], 2-(AOB) pathway models have emerged. For example, the Ni et al. [23] model which depicted the following trends: (i) NH₂OH oxidation predominance under extremely low/high NO₂⁻ concentration along with high DO, and (ii) nitrifier denitrification predominance at low DO with moderate NO₂⁻ accumulation. In the 2-AOB pathway model by Pocquet et al. [17], the DO increase was combined with decreased N₂O emission along with a slightly higher contribution of the NH₂OH oxidation pathway.

Regarding the heterotrophic denitrification pathway, the activated sludge model for nitrogen (ASMN) developed by Hiatt and Grady [24] described denitrification as a four-step reaction with different specific growth rates. In a more recent model, Pan et al. [25] considered the electron 116 competition amongst the four heterotrophic denitrification steps by dissociating the C-oxidation117 and the N-reduction.

Nevertheless, N_2O is likely to be produced/consumed by both the AOB and the heterotrophic 118 119 denitrifiers during the BNR in WWTPs. As a result, the development of models including all the 120 possible pathways gives a deeper insight into the N₂O production/consumption dynamics and enhances the study of strategies for the N₂O emission mitigation, especially in cases of full-scale 121 modeling [9-10, 12]. With the view to investigating the significant spatial variations in the N_2O 122 flux of a step-feed 2-pass full-scale activated sludge plant, Ni et al. [26] combined the 2-(AOB) 123 124 pathway modeling part by Ni et al. [23] and the heterotrophic denitrification processes appearing 125 in Ni et al. [21] in an integrated model.

Multiple-pathway models seem more apt to elucidate the effect of changing operational parameters (e.g. DO, NO_2^- concentration, etc.) and explain possible spatial/temporal variations, thus helping plant operators with designing mitigation strategies [12]. Given the influence of aeration and DO profiles on the emissions, it is necessary to develop even more integrated models which include all the production pathways and, simultaneously, consider the N₂O transfer from the liquid to the gas phase under varying gas flow patterns.

The activated sludge models (ASM) introduced by the International Water Association (IWA) task group have been widely used for the description of BNR processes during wastewater treatment [12]. Extensions to these models have been made to consider the N₂O production with emphasis either on the nitrifier denitrification or the NH₂OH oxidation pathway, and on the impact of changing influent (e.g. influent N-loading, COD/N) and/or operational conditions (e.g. DO) [18, 21]. Nevertheless, these models lack consideration of other nutrients removal (e.g. P). Moreover, they do not necessarily pay equal attention to all biological N₂O production routes 139 and/or deal with the N₂O stripping modeling. Hence, the aim of this work was to develop an 140 ASM-type model which: (i) includes N, P and organic matter removal, (ii) integrates all the microbial pathways for N₂O production/consumption, (iii) contains N₂O stripping modeling, and 141 142 (iv) estimates the N₂O EF under different DO levels. To this end, the IWA ASM2d model was modified and expanded into an ASM2d-N₂O model to include all the biological N₂O production 143 pathways and the calculation of the N₂O EF. The continuity of the model was also examined to 144 detect typing and/or conceptual errors, inconsistencies and gaps in the proposed model. Finally, 145 sensitivity analysis (SA) was performed to reveal the parameters most sensitive to the N_2O EF as 146 147 estimated using the proposed model.

148

149 **2.** Materials and methods

150 **2.1 Brief description of the WWTP configuration and influent data**

The kinetic model was developed to describe the simultaneous N, P and COD removal for a WWTP with three continuous stirred tank reactors and one settler operating as an anaerobicanoxic-aerobic (A^2/O) configuration (Fig. 1).

The first reactor (Hydraulic Retention Time: HRT=1.6 h) was anaerobic with the view to facilitating the phosphorus accumulating organisms (PAO) predominance over the ordinary heterotrophic organisms (OHO) and, subsequently, enhancing the P-removal. Nitrate (NO_3^{-1}) entering the second (anoxic) reactor (HRT=1.6 h) through the internal recycle of the mixed liquor was denitrified by the OHO or the denitrifying PAO. Finally, the third (aerobic) reactor (HRT=5 h) coupled P and organic matter removal along with nitrification. After settling the treated effluent, the settler (HRT=2.9 h) produced two streams; the effluent and an external recycle of biomass returned to the first reactor. The total WWTP HRT was 11.1 h, and the purge, internal and external recirculation ratios with respect to the influent flowrate were equal to 0.007, 2 and 1/3, respectively. The typical DO control setpoints for the three reactors were: 0 mg L⁻¹ (anaerobic and anoxic) and 3 mg L⁻¹ (aerobic).

Figure 1. A²/O WWTP configuration integrated in the current study (adapted from Guerrero et al. [27]).

The influent composition was typical for the municipal WWTP of Manresa (Catalonia, Spain) (Machado et al. [28]). The influent characterization considered S_I (inert soluble material), X_I (inert particulate organic material), X_S (slowly biodegradable substrates), and S_F (fermentable, readily biodegradable organic substrates) fractions as follows: S_I=0.07*COD, X_I=0.11*COD, X_S=0.6*COD, and S_F= 0.4*COD (Machado et al. [28]). All the remaining COD state variables were fixed to zero. The influent composition is shown in Table 1.

Composition	mg L ⁻¹
$N-NH_4^+$	20
BOD_5	170
COD	420
Total N	35
N-NO ₃	2.6
P-PO ₄ ³⁻	9
TKN (Kjeldahl N)	33
TSS	189

Table 1. Influent composition (pH=7 and T=20 °C)

176

177

178 2.2 Model description

179 The core of our ASM2d-N₂O model emerged as an extension of the IWA ASM2d (i.e. an ASM 180 version including the bioprocesses related to the heterotrophic biomass, the PAO and the nitrifiers) [29]. The scope of this study was to describe the N₂O production/consumption 181 dynamics within a WWTP with enhanced biological phosphorus removal (EBPR). In that sense, 182 183 the assumptions for the description of the two AOB pathways were made upon the Pocquet et al. 184 [17] model, while those for the heterotrophic denitrification upon the Hiatt and Grady [24] model, always by extending and adapting the same processes to PAOs. It was considered as a 185 holistic approach for the description of the N₂O dynamics during the BNR in WWTPs. Thus, the 186 187 final model describes the following: N₂O production through all the three microbial pathways, 188 but also N₂O consumption during denitrification (Fig. 2).

189

Figure 2. The three pathways for the N₂O production considered in our model: NH₂OH oxidation pathway (AOB pathway), nitrifier denitrification (AOB pathway) and heterotrophic denitrification. The assumptions concerning the AOB and heterotrophic denitrification-related reactions were made in accordance to what was reported by Pocquet et al. [17] and Ni and Yuan [9].

Considering the assumptions made by Pocquet et al. [17], our work included the following five AOB reactions (Fig. 2): (1) NH_4^+ oxidation to NH_2OH , (2) NH_2OH oxidation to nitric oxide (NO), (3) NO oxidation to NO_2^- , (4) NO reduction to N_2O along with the NH_2OH oxidation to NO_2^- (N_2O production via the NH_2OH oxidation pathway), (5) NO_2^- reduction combined with NH₂OH oxidation to produce N_2O (N_2O production by the nitrifier denitrification pathway, 200 combination of reactions 5a and 5b). The additional four reactions related to the heterotrophic 201 denitrification pathway and the enzymes catalyzing all the steps of the three pathways are schematically shown in Fig. 2. The enzymes involved are: AMO (NH_4^+ monooxygenase), HAO 202 203 (NH₂OH oxidoreductase), Nor (NO reductase), NirK (NO₂⁻ reductase) for the AOB, and NaR (NO₃⁻ reductase), NiR (NO₂⁻ reductase), NOR (NO reductase), and N₂OR (N₂O reductase) for the 204 heterotrophs [9, 17]. Pocquet et al. [17] grouped together the NO₂⁻ reduction to NO (NirK 205 enzyme) and the reduction of NO to N_2O (Nor enzyme) into one reaction: NO_2^- being directly 206 reduced to N_2O (Fig. 2, eq. 5). They assumed that the Nor quickly consumed the NO produced 207 208 by the aid of NirK or, equivalently, that the NO produced through the nitrifier denitrification pathway was converted to N₂O at a high rate. The latter was necessary in order to avoid a NO 209 210 loop.

The model also considered P removal. Based on the ASM2d [29] structure, the following PAOrelated processes were included: storage of polyhydroxyalkanoate (PHA), aerobic storage of polyphosphate (PP), aerobic growth of PAO and lysis of PHA, PP and PAO. Moreover, the anoxic processes of PP storage and PAO growth were expanded to cover all the four possible electron acceptors included in the current model: NO_3^- , NO_2^- , NO and N_2O , following the same reactions as those for the ordinary heterotrophs (Fig. 2).

The final model was developed in Matlab[®] using the *ode15s* function, which is a variable order method recommended for stiff systems. The settling was modeled with reference to the study by Takács et al. [30]. Steady-state was achieved by simulating the WWTP with constant influent composition for a period of 200 d. All the kinetic parameter values were normalized for 20 °C from the ASM2d section of Henze et al. [29]. The AOB decay and growth rates were taken from Hiatt and Grady [24]; $\mu_{AOB}=0.78 \text{ d}^{-1}$, $b_{AOB}=0.096 \text{ d}^{-1}$. As far as the growth/decay rates for the nitrite oxidizing bacteria (NOB) are concerned, two different sets were tested for comparative purposes; the first from Hiatt and Grady [24] ($\mu_{NOB}=0.78 \text{ d}^{-1}$, $b_{NOB}=0.096 \text{ d}^{-1}$), and the second one from Jubany et al. [31] ($\mu_{NOB}=1.02 \text{ d}^{-1}$, $b_{NOB}=0.17 \text{ d}^{-1}$).

Tables presenting the stoichiometric/kinetic parameters, the stoichiometry, and the process ratesof the processes integrated into our model are given in detail as Supportive Material.

229

230 2.3 N₂O emission factor (EF) modeling

The N₂O emission factor in our model was calculated in three ways: i) considering both the stripped N₂O and the N₂O in the effluent to reflect the most conservative estimation (N₂O- EF_{TOTAL} , Eq. 1.1), ii) considering only the stripping contribution (N₂O- EF_{GAS} , Eq. 1.2), and iii) considering only the effluent contribution (N₂O- EF_{EF} , Eq. 1.3).

$N_2 O-EF_{TOTAL}(\%) = 100 \cdot \frac{N_2 O_{ST} + N_2 O_{ST}}{N_{IN}}$	\mathcal{O}_{EF} (Equation 1.1)
$N_2 O - EF_{GAS} (\%) = 100 \cdot \frac{N_2 O_{ST}}{N_{IN}}$	(Equation 1.2)
$N_2 0 - \mathbf{E} \mathbf{F}_{EF} (\%) = 100 \cdot \frac{N_2 0_{EF}}{N_{IN}}$	(Equation 1.3)

Where N_2O_{ST} is the amount of N_2O stripped from the aerobic reactor, N_2O_{EF} the N_2O in the effluent of the plant and N_{IN} the total N-content of the influent, which was calculated with Eq. 2.

$$N_{IN} (gN \cdot d^{-1}) = Q_{IN} \cdot (S_{NH4} + S_{NO3} + S_F \cdot i_{NS_F} + X_S \cdot i_{NX_S} + S_I \cdot i_{NS_I} + X_I \cdot i_{NX_I})$$

(Equation 2)

238

With Q_{IN} as the influent flowrate, and the rest of terms following the ASM2d nomenclature reported by Henze et al. [29]: S_{NH4} , S_{NO3} , S_F , X_S , S_I and X_I denote the influent concentrations for NH₄⁺ (gNH₄⁺-N m⁻³), NO₃⁻ (gNO₃⁻-N m⁻³), fermentable substrate (gCOD m⁻³), slowly biodegradable substrate (gCOD m⁻³), inert soluble substrate (gCOD m⁻³) and inert particulate substrate (gCOD m⁻³), respectively. i_{NS_F} , i_{NX_S} , i_{NS_I} and i_{NX_I} are the N-content (gN g⁻¹COD) of S_F, X_S, S_I and X_I, respectively.

The N₂O in the effluent (N₂O_{EF}) was calculated using the N₂O concentration (gN m⁻³) in the aerobic reactor (N₂O_{AE}) as in Eq. 3:

$$N_2 O_{EF} (gN \cdot d^{-1}) = Q_{IN} \cdot N_2 O_{AE} \quad \text{(Equation 3)}$$

247

Finally, the stripped N₂O (N₂O_{ST}) was calculated using Eq. 4, where $k_{L}a_{N2O}$ is the volumetric mass transfer coefficient for N₂O, V_{AE} is the volume of the aerobic reactor and the SE factor denotes 'stripping effectivity'. We applied SE values in the range 0-1 as a mechanism enabling us to investigate the impact of the non-ideality of this typical simplified modeling approach on the N₂O EF.

$$N_2 O_{ST} (gN \cdot d^{-1}) = k_L a_{N_2 O} \cdot V_{AE} \cdot N_2 O_{AE} \cdot SE \qquad \text{(Equation 4)}$$

The volumetric mass transfer coefficient (k_La) comprises the global transfer coefficient k_L along with the interfacial area a (interphase transport surface between liquid and gas per unit of reactor volume). The $k_L a_{N2O}$ resulted from Eq. 5 following Higbie's penetration model [32]:

$$k_L a_{N_2 0}(d^{-1}) = k_L a_{0_2} \cdot \sqrt{\frac{Dif_{N_2 0}}{Dif_{0_2}}}$$
 (Equation 5)

258

k_La_{O₂} is the volumetric mass transfer of oxygen in the aerobic reactor, which was automatically calculated by including the DO control system in the model. Dif_{N2O} is the molecular diffusivity of N₂O in water (2.11 · 10⁻⁹ m² s⁻¹ at 20 °C) and Dif_{O2} the molecular diffusivity of oxygen in water (2.01 · 10⁻⁹ m² s⁻¹ at 20 °C) [33].

263

264 **2.4 Continuity check**

The continuity of the model was verified to detect typos, inconsistencies, gaps or conceptual 265 errors in the proposed extension following the methodology proposed by Hauduc et al. [34] who 266 267 checked and corrected seven of the most commonly used ASM models. The method consists in the analysis of the matrix which results after multiplying the stoichiometric matrix (available in 268 the Supportive Material section) and the composition matrix (i.e. conversion factors of each state 269 variable to COD, N, P, charge and total suspended solids (TSS)). The tolerance allowing the 270 acceptance of the continuity matrix was set at 10⁻¹⁵ as suggested by Hauduc et al. [34]. The 271 stoichiometric matrix, the composition matrix (definitions and numerical values) and the 272 273 continuity check can be found in the Supportive Material.

275 **2.5 Sensitivity analysis (SA)**

A local SA was conducted to establish the parameters that were more sensitive to N₂O-EF_{TOTAL} (Eq. 1.1). Reichert and Vanrolleghem [35] defined the relative sensitivity $(S_{i,j})$ of an output (y_i) with respect to a parameter (θ_i) as in Eq. 6:

$$\mathbf{S}_{i,j} = \frac{\mathbf{\theta}_j}{\mathbf{y}_i} \cdot \frac{\mathbf{\partial} \mathbf{y}_i}{\mathbf{\partial} \mathbf{\theta}_j}$$
 (Equation 6)

279

In our case, the N₂O-EF_{TOTAL} at steady state was used as the model output. The parameters involved in the SA were all the kinetic and stoichiometric parameters as well as the conversion factors that are given in the Supportive Material. However, the S_I production in hydrolysis (f_{SI}) and the P-content of S_I (i_{PSI}) were excepted since they were fixed at zero. Furthermore, the anoxic growth factor (n_G) parameter was adjusted to 0.9 (instead of 1) to compute the forward difference. The NOB growth and decay parameters were retrieved from the study by Hiatt and Grady [24]. A total number of 104 parameters were included in the SA.

The central difference method was used to calculate the sensitivity for each parameter. Different perturbation factors, ranging from 0.01% to 10%, were tested to ensure that the perturbation factor selection did not affect the parameter ranking.

As will be discussed in sections 3.1, 3.2 and 3.4, different DO values in the aerobic reactor (e.g. varying from 1 to 4 mg L^{-1}), resulted in very different EFs. Hence, the SA was performed under two different steady-state scenarios (i.e. at high and low DO setpoint in the aerobic reactor, set as equal to 3 and 1 mg L^{-1} , respectively). The latter was decided to better understand the causes of high N₂O emission. During the SA tests, the influent S_{NH4} was fixed at 30 mg L⁻¹ and the SE at 0.5.

296 **3. Results and discussion**

297 3.1 DO impact on nitrification and N₂O emissions

The model was applied to investigate the effect of DO concentration (from 0 to 4 mg L^{-1}) in the aerobic reactor on the nitrification process and, finally, on the N₂O emissions. The evolution of

- 300 N₂O-EF_{TOTAL}, AOB and NOB activity and NH_4^+ , NO_2^- and NO_3^- concentrations with respect to
- 301 different DO levels are shown in Fig. 3.

302

Figure 3. DO effect in the aerobic reactor on the steady state values of (A) N_2O emission factor, (B) AOB and NOB concentration, and (C) NO_2^- , NO_3^- and NH_4^+ , concentration. The SE was 1 and both the AOB and NOB growth and decay parameters were taken from the study by Hiatt and Grady [24].

Fig. 3B and 3C show that neither AOB/NOB growth nor NO₂⁻/NO₃⁻ production was observed 308 under oxygen-limiting conditions (i.e. for DO values lower than approximately 0.8 mg L^{-1}). The 309 NH_4^+ concentration increased compared to the respective influent one (S_{NH4}=20 mgN L⁻¹) 310 because of hydrolysis processes releasing NH_4^+ and no nitrification happening due to the low 311 DO. The DO increase from 0.8 mg L⁻¹ onwards enhanced the AOB growth. On the contrary, the 312 NOB growth only commenced at a DO around 1.1 mg L^{-1} (Fig. 3B). These threshold values (i.e. 313 0.8 and 1.1 mg L^{-1}) are mainly determined by the oxygen affinity constants values and, thus, 314 from mass transfer and operational conditions. The NOB have a lower affinity to oxygen 315 compared to the AOB [36], which explains why synergies that result in partial 316 nitrification/nitritation (i.e. NH_4^+ oxidation to NO_2^-) are based on the selection of a proper DO 317 setpoint [37]. In accordance to this, our simulation results demonstrated that the AOB prevailed 318 over the NOB under relatively low DO levels (i.e. DO between 0.8 and 1.1 mg L⁻¹) (Fig. 3B). In 319 this range, the NH_4^+ concentration decreased, while NO_2^- started increasing; nitritation resulted 320 in NO₂⁻ accumulation (Fig. 3C). Within the same DO range (0.8-1.1 mg L^{-1}), we observed a 321 significant N₂O emission factor increase up to almost 10.5% (Fig. 3A). In this case, the dominant 322 N₂O production pathway was nitrifier denitrification; under such oxygen-limiting conditions, 323 NO_2^- substitutes oxygen at the role of the final electron acceptor and, thus, the AOB perform 324 nitrifier denitrification [11, 38-39]. Our observations agree with previous studies investigating 325 the preferred N₂O production pathway at different DO levels. For example, Law et al. [40] 326 worked with an enriched AOB culture in a lab-scale nitritation system fed with anaerobic 327 digester liquor; amongst the two AOB pathways, nitrifier denitrification was suggested as 328 predominant at the lowest DO values tested (i.e. 0.55 and 1.3 mg L^{-1} ; the highest tested was 2.3 329 mg L^{-1}) and decreased NO₂⁻ concentrations. Similarly, the DO effect on N₂O production by an 330

enriched nitrifying sludge was investigated in a lab-scale sequencing batch reactor (SBR); the DO increase from 0.2 to 3 mg L^{-1} was correlated with a decreased contribution of the nitrifier denitrification pathway [41].

Our simulations showed that, as soon as DO reached the level of 1.5 mg L⁻¹, AOB and NOB 334 were stabilized around 70 mg L^{-1} and 40 mg L^{-1} , respectively (Fig. 3B). Complete nitrification 335 336 started and resulted in less NO₂⁻ accumulation as well as in the gradual nitrifier denitrification pathway deactivation. This is depicted in Fig. 3A through a continuous N₂O-EF_{TOTAL} decrease 337 that initiated at a DO around 1.5 mg L^{-1} and was reinforced with the further DO increase. 338 339 Furthermore, NO₃⁻ production began; the latter indicating that full nitrification was happening (Fig. 3C). At high DO levels (i.e. $>3 \text{ mg L}^{-1}$), the N₂O emission factor was significantly lower; 340 less than 2%. In terms of N_2O emission mitigation, high DO (i.e. >3 mg L⁻¹) proved to be 341 beneficial. However, it is an energy-consuming option. For instance, a study on a plug-flow 342 (three-pass) full-scale municipal WWTP in the UK indicated that N₂O emissions added 13% to 343 the carbon footprint of the plant because of the electricity needed to run the nitrifying process 344 [42]. Intermittent aeration regimes can be applied as a promising option to reduce aeration costs 345 by 33-45%. However, this strategy is likely to disturb the bioreactor operation, hinder the 346 nitrifying population activity, and, hence, create conditions favouring the N₂O generation. 347 Consequently, an additional carbon footprint related to the N₂O emissions can arise [43]. 348 Therefore, it is essential to consider the potential magnitude of N₂O process emissions before 349 350 adopting low-energy strategies [42]. Increased N₂O production and emission is probable under low-DO conditions suggesting a high final overall carbon footprint for a WWTP. It is useful to 351 investigate multiple DO values to find an interval inside which neither the nitrification process 352

nor the plant's carbon footprint is compromised; this can be between 1.8 and 2.5 mg L^{-1} for our study.

3.2 Influence of two different parameter sets for the NOB growth and decay on the N₂O emission factor (EF)

As explained in section 2.2, two different sets regarding the growth/decay rates for the NOB were tested for comparative purposes; one from Hiatt and Grady [24] ($\mu_{NOB}=0.78 d^{-1}$, b_{NOB}=0.096 d⁻¹) and the second one from Jubany et al. [31] ($\mu_{NOB}=1.02 d^{-1}$, b_{NOB}=0.17 d⁻¹).

Short-cut biological nitrogen removal, i.e. nitritation $(NH_4^+ \text{ oxidation to } NO_2^-)$ followed by 360 denitritation (NO₂⁻ reduction to N₂) emerged as extremely interesting in the domain of 361 wastewater treatment, especially in the cases of wastewaters with high NH_4^+ content [44]. 362 Compared to full nitrification (i.e. NH_4^+ oxidation to NO_3^-), the short-cut process has proved to 363 be more advantageous in terms of COD demand (40% reduction during denitrification) and 364 denitrification rate (63% higher) [45]. Furthermore, it can induce a 25% decrease in the oxygen 365 demand during nitrification because of the avoidance of nitratation (i.e. NO_2^- oxidation to NO_3^-) 366 367 [46]. If nitritation is the target for the plant operators, it is essential to apply conditions which favour the AOB activity but suppress the NOB community. The relative influential parameters 368 include temperature, pH and DO [44]. The current study focused on the DO effect; temperature 369 370 and pH were considered stable for all simulations (T=20 °C and pH=7). Low-DO environments are expected to enhance the NO_2^- accumulation [47-49]. 371

Figure 4. The steady-state N₂O emission factor with respect to different DO setpoints in the aerobic reactor (0 to 4 mg L⁻¹) and influent S_{NH4} concentrations (10 to 40 mg L⁻¹). The selected SE was 1. A) NOB parameters of Hiatt and Grady [24]. B) NOB parameters of Jubany et al. [31].

Fig. 4 shows the effect on N₂O-EF_{TOTAL} in different scenarios with the DO concentration ranging 376 from 0 to 4 mg L^{-1} and the influent S_{NH4} from 10 to 40 mg L^{-1} . For this part of the simulations, 377 we used the maximum theoretical stripping efficiency (SE=1). The latter offered the possibility 378 to examine a range of DO and influent NH_4^+ values which embodied the worst-case scenario (i.e. 379 highest N₂O emissions). The simulations were executed for each one of the different parameter 380 sets for the NOB growth and decay. In both cases, the general trends were similar. First, no 381 nitrification and, subsequently, no N₂O emission was noticed at very low DO (i.e. below 0.8 mg 382 L^{-1}). The DO increase provided the conditions for the initiation of nitritation. The highest N₂O 383 emissions occurred for (still relatively low) DO levels between 0.8 and 1.8 mg L^{-1} ; it is when 384 nitritation led to NO2⁻ accumulation and, afterwards, to N2O production through the nitrifier 385 denitrification pathway. The model predicted the highest N₂O emission (around 22%) under the 386 following combination: DO around 1.1 mg L⁻¹, influent N-NH₄⁺=40 mg L⁻¹ (i.e. the highest 387 tested) and SE=1. The further DO increase above 1.8 mg L^{-1} resulted in the significant N₂O-388 EF_{TOTAL} decrease (reaching almost 2% after DO>2.5 mg L⁻¹), as a consequence of the NO₂⁻¹ 389 390 consumption through full nitrification. Similar results have been reported in past experimental studies. Pijuan et al. [50] monitored the nitritation process in an airlift system with granular 391 biomass to explore the DO effect. N₂O emissions decreased from 6% to 2.2% of N-oxidized 392 when DO increased from 1 to 4.5 mg L^{-1} . Moreover, Rathnayake et al. [51] observed that the 393 N₂O emissions over the oxidized NH₄⁺ decreased from 2.9% (DO=0.6 mg L¹) to 1.4% (DO=2.3 394 mg L^1) in a lab-scale nitritation reactor fed with synthetic wastewater. 395

Furthermore, according to the trends noted while examining the N_2O -EF_{TOTAL} versus the influent S_{NH4} concentration, the N₂O emissions increased with the increase of the influent NH₄⁺ load. As a result, lower loaded influents are expected to have lower emissions. While investigating the
399 combined effect of N-loading rate and DO in a pilot-scale SBR treating reject water, Frison et al. [52] tested two different combinations of these parameters (first combination: volumetric N-400 loading rate=1.08 kg N m⁻³ d⁻¹ & DO=0.95 mg L⁻¹; second combination: volumetric N-loading 401 rate=0.81 kg N m⁻³ d⁻¹ & DO=1.48 mg L⁻¹). N₂O emissions decreased from 1.49% to 0.24% of 402 the influent N-load when switching from the first to the second combination. The higher DO 403 along with an influent N-loading not exceeding the system's capacity resulted in lower NO₂⁻ 404 accumulation and N₂O emissions. Similarly, our model predicted the increase in N₂O emissions 405 after applying higher S_{NH4} influent concentrations along with lower DO. 406

407 However, it is noted that the N-removal via NO₂⁻ was prolonged with the NOB growth and decay parameters from Jubany et al. [31]. Nitritation occurred at around 0.8<DO<1.8 mg L⁻¹ with the 408 parameters from Hiatt and Grady [24], whereas at around 0.8<DO<2.2 mg L⁻¹ with the 409 parameters from Jubany et al. [31] (Fig. 4). The NOB growth and decay rates of Jubany et al. 410 [31] are 23.5% and 43.5% higher, respectively, than the ones of Hiatt and Grady [24]. However, 411 the most important parameter affecting the N-removal via NO2⁻ is the NOB-related half-412 saturation coefficient for oxygen. This parameter was 1.2 mg L^{-1} for Hiatt and Grady [24], 413 whereas equal to 1.75 mg L^{-1} [44, 48] for Jubany et al. [31]. This higher value increases the 414 range of DO values leading to a limitation of NOB activity, and hence provokes a higher 415 operational region with important N₂O emission. 416

Finally, the results obtained in this section match with past experimental observations according to which the operational parameters mostly contributing to the N_2O generation are linked to insufficient DO levels at the nitrification stage and increased NO_2^- concentration during both nitrification and denitrification [10-12].

422 **3.3** Effect of the stripping effectivity (SE) on the N₂O emission factor (EF)

Even though N_2O is an intermediate of heterotrophic denitrification, aerobic (nitrificationrelated) compartments in WWTPs are the major N_2O emission hotspots. Stripping occurs during aeration and the produced N_2O is emitted into the atmosphere [13, 53].

As mentioned in section 2.3, our modeling concerning the N₂O stripping was based on the k_Ia 426 427 approach. Moreover, it was enriched by the SE which acted as a coefficient describing the divergence of the model prediction (Eq. 4) with respect to ideality (SE=1). Eq. 4 simplifies the 428 real stripping process by assuming the following: i) the air bubbles are always free of N₂O; their 429 430 enrichment in N_2O is negligible as they rise up in the basin, ii) the liquid phase (as DO or N_2O concentration) has a homogeneous composition, and iii) the same $k_I a$ independently of the liquid 431 depth. The combined effect of different DO levels and the highest influent S_{NH4} value tested (i.e. 432 40 mg L^{-1}) on the N₂O-EF under different SEs (i.e. 0, 0.1, 0.25, 0.5, 0.75, 1) was evaluated using 433 the parameters by Hiatt and Grady [24]. It is presented in Fig. 5 for N₂O-EF_{TOTAL} (i.e. 434 considering both the N2O stripped and the N2O contained in the effluent) as well as for the 435 N₂O-EF_{GAS} (referring exclusively to the stripping contribution). 436

Under the application of the highest influent S_{NH4} value tested in this study (i.e. 40 mg L⁻¹), the trends were always similar and the maximum N₂O-EF was always observed for a DO around 1.2 mg L⁻¹. However, the maximum absolute values differed. In specific, the maximum N₂O-EF_{GAS} values ranged from 0% (SE=0) to ~21.1% (SE=1), while the maximum N₂O-EF_{TOTAL} values were between 6.3% (SE=0) and ~22% (SE=1). In other words, the SE increase led to a general rise in the EF. This was sharper in the beginning (SE: 0→0.1) and, then, more gradual (SE: 0.25→1) (Fig. 5). The observed trend reflects that a lower SE gives more chances for N₂O to follow the denitrification pathway (reaction 4 of denitrification in Fig. 2), thus favouring itsconsumption instead of its stripping.

For each of the SE values tested, the N2O-EFTOTAL was always higher than the respective 446 N₂O-EF_{GAS} one, but not significantly (Fig. 5). The latter showed that the N₂O stripping majorly 447 contributed to the N₂O EF estimation. Only in the case of SE=0 (the hypothetical case of no 448 449 stripping) the contribution of the dissolved N₂O was very significant. More importantly, our 450 results indicated that the SE factor was a very significant contributor to the final EF results. Hence, a more detailed modeling of the stripping process in the future, avoiding the 451 452 simplifications previously commented can potentially increase the accuracy in the EF prediction 453 and prevent its overestimation.

Figure 5. The maximum N₂O emission factor (N₂O-EF_{TOTAL} considering both the N₂O stripped and the N₂O contained in the effluent; N₂O-EF_{GAS} referring exclusively to the contribution of the N₂O stripping) observed for the different SE values (0, 0.1, 0.25, 0.5, 0.75, 1) tested during our simulations. The influent S_{NH4} value was considered equal to 40 mg L⁻¹ and the parameters were retrieved from the study by Hiatt and Grady [24].

460

461 **3.4 Modeling of dynamic N₂O emissions under disturbances**

An additional goal of this work was to examine how the N₂O emissions were influenced by influent disturbances under different DO scenarios. Transition states after a disturbance are the most favourable scenarios for intermediates accumulation and, thus, higher N₂O emissions. As an example, the effect of a S_{NH4} concentration increase in the influent was studied (as a 'step' increase from 20 to 30 mgN L⁻¹ on the 10th day of the plant operation). This was examined for various scenarios with different combinations of SE and DO control values in the aerobic reactor.

Figure 6. The effect of increasing the influent S_{NH4} concentration (from 20 to 30 mgN L⁻¹) at the 10th day of the plant operation on the N₂O-EF. Different SE values (1 and 0.1) and DO setpoints (3 mg L⁻¹, 1.5 mg L⁻¹, 1.2 mg L⁻¹ and no DO control) were tested.

473

For the scenarios a and b, the SE was 1 to enable the observance of the full stripping effect under 474 the sudden change of the operational conditions. The fast S_{NH4} increase resulted in a rapid 475 increase of N₂O emissions. The N₂O-EF_{TOTAL} presented the following trends: $1.4 \rightarrow 3.1\%$ almost 476 up to the 12^{th} day of operation (scenario a) and $4.5 \rightarrow 9.6\%$ until the 17^{th} day (scenario b). Then, a 477 gradual EF reduction started until it was stabilized at lower levels: at ~2.1% after the 30th day 478 (scenario a), and at ~7.5% after the 40^{th} day (scenario b) (Fig. 6). The DO control setpoint in case 479 b was significantly lower than in scenario a; thus, higher absolute EF values were expected as 480 previously seen in Fig. 4A. Under such conditions, the AOB bacteria are known to induce 481 nitritation, use NO_2^- as terminal electron acceptor and, finally, produce N_2O (nitrifier 482 denitrification pathway) [54-56]. Indeed, low DO (e.g. $<1.5 \text{ mg L}^{-1}$) has been experimentally 483 connected with the achievement of nitritation, the subsequent NO_2^- accumulation and NOB 484 washout [57-60]. For both scenarios a and b, the downward trend of the N₂O-EF indicated that 485 486 NOB were growing and performing NO_2^- oxidation. However, the fact that the final N₂O-EF never recovered its initial value implies that the NOB growth only covered part of the new NO_2^{-1} 487 oxidation requirements. Fig. 7 shows the effect of scenarios a and b on the AOB and NOB 488 growth. In both cases, the AOB growth was always sharper than the respective NOB one after 489 the operational change on the 10th day. In accordance to what is seen in Fig. 7, the AOB 490 population has been reported to prevail over the NOB under increased NH₄⁺ availability and 491 controlled aeration [61]. 492

Figure 7. The AOB and NOB evolution after increasing the influent S_{NH4} concentration (from 20 to 30 mgN L⁻¹) on the 10th day of the plant operation. Different DO control setpoints (3 mg L⁻¹ and 1.5 mg L⁻¹) were compared for a SE=1.

497

For the same DO levels, different SE values were tested to simulate the full and reduced 498 499 stripping effect via fixing the SE as equal to 1 and 0.1, respectively (comparison between scenarios a and c, and comparison between scenarios b and d in Fig. 6). In terms of N₂O-500 EF_{TOTAL}, the same trends were observed: a fast increase followed by a decrease with a final value 501 stabilized higher than the one observed before the S_{NH4} increase. The SE decrease (from 1 to 0.1) 502 explains the increased distance between the lines of N2O-EFTOTAL and N2O-EFGAS. The 503 emissions were lower in the SE=0.1 cases (Fig. 6c and 6d) and more N₂O was considered as 504 remaining dissolved, thus coming out in the effluent. A lower SE value (i.e. 0.1) imposes less 505 stripping to the system, which results in: i) an increased N₂O concentration in the aerobic reactor, 506 507 and ii) an increased recycling of N₂O to the anoxic reactor leading to higher N₂O consumption.

Scenario e studies the effect of working at the DO setpoint of $1.2 \text{ mg} \cdot \text{L}^{-1}$ and SE =0.1, in order to show clearly the effect of working under DO conditions unfavorable to the NOB growth. N₂O emissions higher than 9% were observed because of N-removal via NO₂⁻ and NOB washout, as detailed in sections 3.1 and 3.2.

However, all the scenarios previously commented (i.e. scenarios a - e) were DO-controlled; this enabled simulating how increasing aeration by the control loop allowed the maintenance of the desired DO concentration. Scenario f, though, showed that the effect of the S_{NH4} influent increase can be higher and more persistent in a non-DO-controlled environment. The increase of NH_4^+ load decreases the DO concentration, and can move the system from an operational point with full nitrification to a point with N-removal via NO_2^- which explains the higher EF noted.

A sudden operational change imposed to the system such as the one examined in this section (i.e. 518 a step increase in the influent S_{NH4} from 20 to 30 mg L⁻¹) increased the N₂O emissions. The AOB 519 and NOB populations were affected, with the AOB growth being quicker and higher compared 520 to the respective NOB one. Thus, N-removal via NO2⁻ was increased and N2O was produced 521 through nitrifier denitrification. The magnitude of the emissions depended on the imposed SE 522 value and DO control setpoint; the higher the imposed SE value, the higher the stripping effect 523 and, thus, the anticipated emissions. Moreover, a lower DO setpoint placed the system under 524 nitritation regime, thus creating the conditions for the activation of the nitrifier denitrification 525 pathway. Under no DO control, the environment within the reactor became even more favorable 526 to N-removal via NO₂, hence greatly increasing the EF. 527

528

530 **3.5 Sensitivity Analysis (SA) of the developed model**

Table 2 shows the 40 most sensitive parameters to the N₂O-EF_{TOTAL} for the two studied 531 scenarios with influent $S_{NH4}=30 \text{ mg } \text{L}^{-1}$ and SE=0.5 (first: DO in the aerobic reactor=3 mg L⁻¹; 532 second: DO in the aerobic reactor=1 mg L^{-1}). The values are listed in descending order 533 considering the S_{i,j} absolute values calculated with Eq. 6. The sign of the sensitivity indices is 534 535 maintained since it contains information: a positive sensitivity index indicates that an increase in the parameter results in an increase of the N₂O-EF_{TOTAL}, while a negative sensitivity suggests 536 that an increase in the parameter will lead to a decrease in the N₂O-EF_{TOTAL}. The results showed 537 538 in Table 2 were obtained with a perturbation factor of 0.01%. The choice on the perturbation factor was based on the work by De Pauw [62] who suggested to use a factor producing equal 539 derivative values for forward and backward differences. Nevertheless, the perturbation factor did 540 not significantly affect the parameter categorization (data not shown). 541

Table 2. Sensitivity analysis results for the two different operational modes (first: $DO_{AE} = 3 \text{ mg}$ L⁻¹; second: $DO_{AE} = 1 \text{ mg } \text{L}^{-1}$); both with influent $S_{NH4}=30 \text{ mg } \text{L}^{-1}$ and SE=0.5. DO_{AE} stands for the DO control setpoint in the aerobic reactor.

Order	$DO_{AE}=3 \text{ mg } L^{-1}$		$DO_{AE}=1 \text{ mg } L^{-1}$	
	Parameter	Si,j	Parameter	Si,j
1	$\mu_{ m NOB}$	-2.138	Y _{AOB}	2.233
2	$\eta_{ m G}$	1.489	$\eta_{ m G}$	1.978
3	b _{NOB}	1.059	q _{AOB_AMO}	1.407
4	q _{AOB_N2O_ND}	0.997	Y _{PAO}	1.108
5	μ_{AOB_HAO}	-0.926	b _{AOB}	-1.024
6	K _{I_O2_AOB}	0.878	η_{G5}	-0.947
7	Y _{AOB}	0.863	K _{OH5}	-0.853
8	K _{HNO2_AOB}	-0.857	q _{AOB_N2O_ND}	0.841
9	K _{NO2_NOB}	0.851	K _{O2} _AOB1	-0.738

Order	$DO_{AE}=3 \text{ mg } L^{-1}$		DO _{AE} =1 mg L ⁻¹	
	Parameter	Si,j	Parameter	Si,j
10	Y _{PAO}	0.739	i _{NXS}	0.674
11	K _{O2_NOB}	0.629	Y _H	-0.470
12	η_{G5}	-0.620	Y _{PO4}	-0.435
13	K _{OH5}	-0.470	Q _{PP}	0.400
14	K _{N2O Den}	0.435	μ_{PAO}	-0.386
15	i _{NXS}	0.428	i _{NBM}	-0.375
16	b _{PAO}	-0.408	K _{HNO2 AOB}	-0.360
17	SE	0.375	i _{NSF}	0.338
18	Y _H	-0.364	K _{I_O2_AOB}	0.299
19	K _{MAX P}	0.259	K _{MAX P}	0.292
20	i _{NBM}	-0.247	SE	0.223
21	μ_{PAO}	0.246	K _{NH2OH AOB}	-0.209
22	i _{NSF}	0.207	K _{O2 AOB ND}	0.198
23	K _{O2 AOB ND}	0.192	$\mu_{AOB HAO}$	-0.175
24	D _{O2}	-0.187	K _{N2O Den}	0.170
25	D _{N2O}	-0.187	K _{S5}	0.166
26	K _{P_P}	-0.169	K _F	-0.157
27	K _{O2 AOB2}	0.167	Y_{PHA}	-0.149
28	K _{S5}	0.151	K _{NH4_AOB}	-0.137
29	b _H	0.149	n _{fe_H}	-0.134
30	Y _{PO4}	-0.135	K _{O2_P}	-0.132
31	K _{P_NOB}	0.122	b _H	0.121
32	q _{AOB} AMO	-0.120	D _{O2}	-0.111
33	q _{PHA}	0.118	D _{N2O}	-0.111
34	K _H	-0.101	b _{PAO}	-0.101
35	K _F	-0.099	K _H	-0.098
36	n _{fe_H}	-0.094	k _L a	0.089
37	Y _{PHA}	-0.094	K _{O2_AOB2}	0.082
38	q _{PP}	0.085	K _{IPP_P}	-0.074
39	η _{G3}	0.077	i _{PXS}	-0.073
40	i _{PXS}	-0.064	b _{PP}	-0.071

546

548 Different parameter ranking was found between the two scenarios: the most sensitive parameters 549 to the N₂O-EF_{TOTAL} factor varied under the different DO setpoints. For the DO setpoint of 3 mg 550 L^{-1} , the most sensitive parameters were those related to NOB metabolism, followed by those

551 related to the AOB activity and, finally, by those connected to PAO. The sensitivity of parameters referring to the NOB metabolism is important to understand potential NO₂⁻ 552 accumulation. The latter will inevitably lead to changes in the total N₂O emission factor through 553 the activation/deactivation of the nitrifier denitrification pathway, as discussed in section 3.1. On 554 the other hand, under the DO setpoint of 1 mg L⁻¹, the AOB-related parameters were the most 555 sensitive since limited NOB growth is anticipated in a low-DO environment (Fig. 3B). Hence, 556 the NOB-related parameters became insensitive. For this scenario, the WWTP model operates 557 under nitritation and increased N₂O production through nitrifier denitrification is expected 558 559 (section 3.1).

For both tested scenarios, the anoxic growth factor (η_G) (i.e. the stoichiometric factor implicated in the growth of heterotrophs and PAO under anoxic conditions) had a severe impact on the N₂O emission factor. Considering that this parameter affects all the anoxic processes, its perturbation will change the stoichiometry of various processes.

It is worth mentioning that the SE only appears in the middle range of the table $(17^{th} \text{ and } 20^{th} \text{ for}$ a DO setpoint of 3 and 1 mg L⁻¹, respectively). The reference value of this parameter (0.5) is essential to understand the sensitivity results. According to Fig. 5, the SE parameter has a significant effect on the N₂O-EF_{TOTAL} while increasing from 0 to 0.2; its further increase from 0.2 to 1 has a lesser influence on the N₂O-EF values. Had this parameter been set at a lower value, its relative sensitivity would have increased.

570 Moreover, the conversion factors mostly affecting the N_2O -EF_{TOTAL} were those related to the N-571 content (i_{NXS} , i_{NSF}) of state variables X_S and S_F . The latter can be justified by their interference in 572 the calculation of the N_{IN} content (Eq. 2) and their subsequent effect on the N_2O -EF_{TOTAL} 573 estimation (Eq. 1.1). 574 Finally, we examined Table 2 again to see if any common parameters appeared in the first ten places for both scenarios. It was noted that n_{G_2} , $q_{AOB N2O ND}$ (maximum N₂O production rate by 575 the nitrifier denitrification pathway), Y_{PAO} (yield coefficient for the PAO) and Y_H (yield 576 coefficient for the heterotrophs) were amongst the first ten parameters for both DO setpoints; all 577 with positive sensitivity. Hence, it can be deduced that decreasing these values leads to a 578 decrease in the N₂O-EF_{TOTAL}. The n_G, Y_{PAO} and Y_H stoichiometric parameters, in specific, are 579 included in the stoichiometry of the processes referring to the anoxic growth of PAO and 580 heterotrophs. These processes can indeed be considered as significantly influencing the EF since 581 they occur in an anoxic environment where N_2O can be consumed through denitrification. These 582 results also show that the inclusion of PAO in our model has a significant impact in the EF 583 related to the denitrification of N₂O. Lastly, the impact of the q_{AOB N2O ND} kinetic parameter 584 proved to be important in both scenarios. Given that $q_{AOB N2O ND}$ expresses the N₂O production 585 rate through nitrifier denitrification, this observation indicates that nitrifier denitrification is 586 probably the most important pathway to consider for the N₂O mitigation. 587

588

589 **4.** Conclusions

In this work, an ASM2d-N₂O model including COD, N and P removal along with all the known N₂O microbial pathways was developed for a municipal A^2/O WWTP, which can be highly useful for the estimation of the N₂O-EF. The following major conclusions were reached:

Plant operators often opt for lower aeration to decrease a WWTP's energy requirements.
 With the aerobic DO ranging from 0.8 to 1.8 mg L⁻¹, the AOB prevailed over the NOB,
 thus promoting the shift from full to partial nitrification and, subsequently, the N₂O

production through nitrifier denitrification. Due to the important N_2O GWP, this operational change can result in a high final overall WWTP carbon footprint. Consequently, low aeration is desired only if it does not disturb the nitrification process.

A SE coefficient (from 0 to 1) was added to reflect the non-ideality of the stripping modeling. Decreasing the SE was translated into higher N₂O concentration in the mixed liquor; the latter led to a higher N₂O denitrification rate and lower emissions.

• The effect of a sudden increase in the influent S_{NH4} from 20 to 30 mg L⁻¹ was simulated. The AOB predominance over the NOB enabled NO₂⁻ accumulation and increased the nitrifier denitrification pathway. Higher emissions were observed under the following conditions: lower DO setpoints that created an environment more advantageous to nitrifier denitrification combined with higher SE values that raised the significance of the stripping effect.

The sensitivity analysis showed that the NOB-related parameters had minor influence over the N₂O-EF under low-DO conditions, given the limited NOB growth at low DO. However, they were very significant at high DO due to its effect on the NO₂⁻ oxidation rate. The parameters n_G, q_{AOB_N2O_ND}, Y_{PAO} and Y_H were amongst the top ten for both DO setpoints tested. n_G, Y_{PAO} and Y_H are related to the N₂O consumption through denitrification. q_{AOB_N2O_ND} indicates that nitrifier denitrification is probably the most important pathway to consider for the N₂O mitigation.

615

616 Acknowledgments

This project has received funding from the European Union's Horizon 2020 research and 617 innovation program under the Marie Skłodowska-Curie C-FOOT-CTRL project (grant 618 agreement No 645769). T.M. Massara is also grateful to the Natural Environment Research 619 620 Council (NERC) of the UK for the 4-year full PhD studentship. B. Solís also acknowledges the support of Universitat Autònoma de Barcelona with a PIF pre-doctoral grant. J.A. Baeza, A. 621 Guisasola and B. Solís are members of the GENOCOV research group (Grup de Recerca 622 Consolidat de la Generalitat de Catalunya, 2014 SGR 1255). 623

624

627

References 625

[1] IPCC, Climate change 2013: the physical science basis. Contribution of Working Group I to 626 the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, in: T.F.

628 Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex,

P.M. Midgley (Eds.), Cambridge University Press, Cambridge and New York, 2013, pp. 1535. 629

[2] A.R. Ravishankara, J.S. Daniel, R.W. Portmann, Nitrous Oxide (N₂O): The Dominant 630 Ozone-Depleting Substance Emitted in the 21st Century, Science 326 (2009) 123 LP-125. 631 http://science.sciencemag.org/content/326/5949/123.abstract. 632

[3] J.H. Ahn, S. Kim, H. Park, B. Rahm, K. Pagilla, K. Chandran, N₂O emissions from activated 633

sludge processes, 2008-2009: results of a national monitoring survey in the United States., 634

635 Environ. Sci. Technol. 44 (2010) 4505–4511. doi:10.1021/es903845y. [4] J. Foley, D. de Haas, Z. Yuan, P. Lant, Nitrous oxide generation in full-scale biological
nutrient removal wastewater treatment plants, Water Res. 44 (2010) 831-844.
doi:10.1016/j.watres.2009.10.033.

[5] A. Rodríguez-Caballero, I. Aymerich, R. Marques, M. Poch, M. Pijuan, Minimizing N₂O
emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor, Water
Res. 71 (2015) 1-10. doi:10.1016/j.watres.2014.12.032.

[6] M.R.J. Daelman, B. De Baets, M.C.M. van Loosdrecht, E.I.P. Volcke, Influence of sampling
strategies on the estimated nitrous oxide emission from wastewater treatment plants, Water Res.
47 (2013) 3120-3130. doi:10.1016/j.watres.2013.03.016.

[7] P. Wunderlin, J. Mohn, A. Joss, L. Emmenegger, H. Siegrist, Mechanisms of N₂O production
in biological wastewater treatment under nitrifying and denitrifying conditions, Water Res. 46
(2012) 1027-1037. doi:10.1016/j.watres.2011.11.080.

[8] P. Wunderlin, M.F. Lehmann, H. Siegrist, B. Tuzson, A. Joss, L. Emmenegger, J. Mohn,
Isotope Signatures of N₂O in a Mixed Microbial Population System: Constraints on N₂O
Producing Pathways in Wastewater Treatment, Environ. Sci. Technol. 47 (2013) 1339-1348.
doi:10.1021/es303174x.

[9] B.J. Ni, Z. Yuan, Recent advances in mathematical modeling of nitrous oxides emissions
from wastewater treatment processes, Water Res. 87 (2015) 336-346.
doi:10.1016/j.watres.2015.09.049.

- [10] M.J. Kampschreur, H. Temmink, R. Kleerebezem, M.S.M. Jetten, M.C.M. van Loosdrecht,
 Nitrous oxide emission during wastewater treatment, Water Res. 43 (2009) 4093-4103.
 doi:10.1016/j.watres.2009.03.001.
- [11] J. Desloover, S.E. Vlaeminck, P. Clauwaert, W. Verstraete, N. Boon, Strategies to mitigate
 N₂O emissions from biological nitrogen removal systems, Curr. Opin. Biotechnol. 23 (2012)
 474-482. doi:10.1016/j.copbio.2011.12.030.
- [12] T.M. Massara, S. Malamis, A. Guisasola, J.A. Baeza, C. Noutsopoulos, E. Katsou, A review 661 on nitrous oxide (N₂O) emissions during biological nutrient removal from municipal wastewater 662 sludge Environ. 596-597 (2017)663 and reject water, Sci. Total 106-123. doi:10.1016/j.scitotenv.2017.03.191. 664
- [13] Y. Law, L. Ye, Y. Pan, Z. Yuan, Nitrous oxide emissions from wastewater treatment 665 Philos. R. Soc. Lond. B. Biol. Sci. 666 processes., Trans. 367 (2012)1265-77. doi:10.1098/rstb.2011.0317. 667
- [14] R. Marques, A. Rodríguez-Caballero, A. Oehmen, M. Pijuan, Assessment of online
 monitoring strategies for measuring N₂O emissions from full-scale wastewater treatment
 systems, Water Res. 99 (2016) 171-179. doi:10.1016/j.watres.2016.04.052.
- [15] Y. Lim, D.-J. Kim, Quantification method of N₂O emission from full-scale biological
 nutrient removal wastewater treatment plant by laboratory batch reactor analysis., Bioresour.
 Technol. 165 (2014) 111-115. doi:10.1016/j.biortech.2014.03.021.

[16] A. Rodríguez-Caballero, I. Aymerich, M. Poch, M. Pijuan, Evaluation of process conditions
triggering emissions of green-house gases from a biological wastewater treatment system, Sci.
Total Environ. 493 (2014) 384-391. doi:10.1016/j.scitotenv.2014.06.015.

[17] M. Pocquet, Z. Wu, I. Queinnec, M. Spérandio, A two pathway model for N₂O emissions by
ammonium oxidizing bacteria supported by the NO/N₂O variation, Water Res. 88 (2016) 948959. doi:10.1016/j.watres.2015.11.029.

680 [18] B.-J. Ni, M. Ruscalleda, C. Pellicer-Nacher, B.F. Smets, Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions 681 Technol. (2011)7768-7776. 682 the General ASM Models, Environ. Sci. 45 to doi:10.1021/es201489n. 683

[19] K.E. Mampaey, B. Beuckels, M.J. Kampschreur, R. Kleerebezem, M.C.M. van Loosdrecht,

E.I.P. Volcke, Modelling nitrous and nitric oxide emissions by autotrophic ammonia-oxidizing

bacteria, Environ. Technol. 34 (2013) 1555-1566. doi:10.1080/09593330.2012.758666.

- [20] Y. Law, B.J. Ni, P. Lant, Z. Yuan, N₂O production rate of an enriched ammonia-oxidising
 bacteria culture exponentially correlates to its ammonia oxidation rate, Water Res. 46 (2012)
 3409-3419. doi:10.1016/j.watres.2012.03.043.
- [21] B.-J. Ni, L. Ye, Y. Law, C. Byers, Z. Yuan, Mathematical modeling of nitrous oxide (N₂O)
 emissions from full-scale wastewater treatment plants., Environ. Sci. Technol. 47 (2013) 77957803. doi:10.1021/es4005398.

[22] K. Chandran, L.Y. Stein, M.G. Klotz, M.C.M. van Loosdrecht, Nitrous oxide production by
lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal
systems, Biochem. Soc. Trans. 39 (2011) 1832 LP-1837.
http://www.biochemsoctrans.org/content/39/6/1832.abstract.

- [23] B.-J. Ni, L. Peng, Y. Law, J. Guo, Z. Yuan, Modeling of Nitrous Oxide Production by
 Autotrophic Ammonia-Oxidizing Bacteria with Multiple Production Pathways, Environ. Sci.
 Technol. 48 (2014) 3916-3924. doi:10.1021/es405592h.
- 700 [24] W.C. Hiatt, C.P.L. Grady, An updated process model for carbon oxidation, nitrification, and
- 701 denitrification., Water Environ. Res. 80 (2008) 2145-2156. doi:10.2175/106143008X304776.
- [25] Y. Pan, B.J. Ni, Z. Yuan, Modeling electron competition among nitrogen oxides reduction
 and N₂O accumulation in denitrification, Environ. Sci. Technol. 47 (2013) 11083-11091.
 doi:10.1021/es402348n.
- [26] B.J. Ni, Y. Pan, B. Van Den Akker, L. Ye, Z. Yuan, Full-Scale Modeling Explaining Large
 Spatial Variations of Nitrous Oxide Fluxes in a Step-Feed Plug-Flow Wastewater Treatment
 Reactor, Environ. Sci. Technol. 49 (2015) 9176-9184. doi:10.1021/acs.est.5b02038.
- [27] J. Guerrero, A. Guisasola, J.A. Baeza, The nature of the carbon source rules the competition
 between PAO and denitrifiers in systems for simultaneous biological nitrogen and phosphorus
 removal, Water Res. 45 (2011) 4793-4802. doi:10.1016/j.watres.2011.06.019.
- 711 [28] V.C. Machado, J. Lafuente, J.A. Baeza, Activated sludge model 2d calibration with full-
- scale WWTP data: Comparing model parameter identifiability with influent and operational
- uncertainty, Bioprocess Biosyst. Eng. 37 (2014) 1271-1287. doi:10.1007/s00449-013-1099-8.

- [29] M. Henze, W. Gujer, T. Mino, M.C.M. van Loosdrecht, Activated Sludge Models ASM1,
 ASM2, ASM2d, and ASM3, IWA Scientific and Technical Report n.9., IWA Publishing,
 London, 2000.
- 717 [30] I. Takács, G.G. Patry, D. Nolasco, A dynamic model of the clarification-thickening process,
- 718 Water Res. 25 (1991) 1263-1271. doi:10.1016/0043-1354(91)90066-Y.
- [31] I. Jubany, J. Carrera, J. Lafuente, J.A. Baeza, Start-up of a nitrification system with
 automatic control to treat highly concentrated ammonium wastewater: Experimental results and
 modeling, Chem. Eng. J. 144 (2008) 407-419. doi:10.1016/j.cej.2008.02.010.
- [32] S. Capela, M. Roustan, A. Heduit, Transfer number in fine bubble diffused aeration
 systems, Water Sci. Technol. 43 (2001) 145-152.
- [33] D.R. Lide, CRC Handbook of Chemistry and Physics, 87th ed., CRC Press/Taylor and
 Francis Group, Boca Raton, 2007.
- [34] H. Hauduc, L. Rieger, I. Takács, A. Héduit, P.A. Vanrolleghem, S. Gillot, A systematic
 approach for model verification: application on seven published activated sludge models, Water
 Sci. Technol. 61(2010) 825-839. doi: 10.2166/wst.2010.898
- [35] P. Reichert, P.A. Vanrolleghem, Identifiability and uncertainty analysis of the river water
 quality model no. 1 (RWQM1), Water Sci. Technol. 43 (2001) 329-338.
- [36] U. Wiesmann, Biological nitrogen removal from wastewater, in: A. Fiechter (Eds.),
 Advances in Biochemical Engineering Bio- technology, Springer-Verlag, Berlin, 1994, pp. 113154.

[37] A. Guisasola, M. Marcelino, R. Lemaire, J.A. Baeza, Z. Yuan, Modelling and simulation
revealing mechanisms likely responsible for achieving the nitrite pathway through aeration
control, Water Sci. Technol. 61 (2010) 1459-1465. doi: 10.2166/wst.2010.017

- [38] G. Tallec, J. Garnier, G. Billen, M. Gousailles, Nitrous oxide emissions from secondary
 activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of
 oxygenation level, Water Res. 40 (2006) 2972-2980. doi:10.1016/j.watres.2006.05.037.
- [39] M.J. Kampschreur, W.R.L. van der Star, H.A. Wielders, J.W. Mulder, M.S.M. Jetten,
 M.C.M. van Loosdrecht, Dynamics of nitric oxide and nitrous oxide emission during full-scale
 reject water treatment, Water Res. 42 (2008) 812-826. doi:10.1016/j.watres.2007.08.022.
- [40] Y. Law, P. Lant, Z. Yuan, The confounding effect of nitrite on N₂O production by an
 enriched ammonia-oxidizing culture, Environ. Sci. Technol. 47 (2013) 7186-7194.
 doi:10.1021/es4009689.
- [41] L. Peng, B.J. Ni, D. Erler, L. Ye, Z. Yuan, The effect of dissolved oxygen on N₂O
 production by ammonia-oxidizing bacteria in an enriched nitrifying sludge, Water Res. 66 (2014)
 12-21. doi:10.1016/j.watres.2014.08.009.
- [42] A. Aboobakar, E. Cartmell, T. Stephenson, M. Jones, P. Vale, G. Dotro, Nitrous oxide
 emissions and dissolved oxygen profiling in a full-scale nitrifying activated sludge treatment
 plant, Water Res. 47 (2013) 524-534. doi:10.1016/j.watres.2012.10.004.

[43] G. Dotro, B. Jefferson, M. Jones, P. Vale, E. Cartmell, T. Stephenson, A review of the
impact and potential of intermittent aeration on continuous flow nitrifying activated sludge,
Environ. Technol. 32 (2011) 1685-1697. doi:10.1080/09593330.2011.597783.

755 [44] I. Jubany, J. Lafuente, J.A. Baeza, J. Carrera, Total and stable washout of nitrite oxidizing bacteria from a nitrifying continuous activated sludge system using automatic control based on 756 43 757 Oxygen Uptake Rate measurements, Water Res. (2009)2761-2772. 758 doi:10.1016/j.watres.2009.03.022.

[45] O. Turk, D.S. Mavinic, Benefits of using selective inhibition to remove nitrogen from
highly nitrogenous wastes, Environ. Technol. Lett. 8 (1987) 419-426.
doi:10.1080/09593338709384500.

[46] Y. Peng, G. Zhu, Biological nitrogen removal with nitrification and denitrification via nitrite
pathway, Appl. Microbiol. Biotechnol. 73 (2006) 15-26. doi:10.1007/s00253-006-0534-z.

[47] G. Ruiz, D. Jeison, R. Chamy, Nitrification with high nitrite accumulation for the treatment
of wastewater with high ammonia concentration, Water Res. 37 (2003) 1371-1377.

[48] A. Guisasola, I. Jubany, J.A. Baeza, J. Carrera, J. Lafuente, Respirometric estimation of the
oxygen affinity constants for biological ammonium and nitrite oxidation, J. Chem. Technol.
Biotechnol. 80 (2005) 388-396. doi:10.1002/jctb.1202.

[49] M. Soliman, A. Eldyasti, Development of partial nitrification as a first step of nitrite shunt
process in a Sequential Batch Reactor (SBR) using Ammonium Oxidizing Bacteria (AOB)

771 controlled by mixing regime, Bioresour. Technol. 221 (2016) 85-95.
772 doi:10.1016/j.biortech.2016.09.023.

[50] M. Pijuan, J. Torà, A. Rodríguez-Caballero, E. César, J. Carrera, J. Pérez, Effect of process
parameters and operational mode on nitrous oxide emissions from a nitritation reactor treating

reject wastewater, Water Res. 49 (2014) 23-33. doi:10.1016/j.watres.2013.11.009.

[51] R.M.L.D. Rathnayake, M. Oshiki, S. Ishii, T. Segawa, H. Satoh, S. Okabe, Effects of
dissolved oxygen and pH on nitrous oxide production rates in autotrophic partial nitrification
granules, Bioresour. Technol. 197 (2015) 15-22. doi:10.1016/j.biortech.2015.08.054.

[52] N. Frison, A. Chiumenti, E. Katsou, S. Malamis, D. Bolzonella, F. Fatone, Mitigating offgas emissions in the biological nitrogen removal via nitrite process treating anaerobic effluents,
J. Clean. Prod. 93 (2015) 126-133. doi:http://dx.doi.org/10.1016/j.jclepro.2015.01.017.

- [53] G. Mannina, A. Cosenza, D. Di Trapani, V.A. Laudicina, C. Morici, H. Ødegaard, Nitrous
 oxide emissions in a membrane bioreactor treating saline wastewater contaminated by
 hydrocarbons, Bioresour. Technol. 219 (2016) 289-297. doi:10.1016/j.biortech.2016.07.124.
- [54] J.G. Kuenen, Anammox bacteria: from discovery to application., Nat. Rev. Microbiol. 6
 (2008) 320-326. doi:10.1038/nrmicro1857.
- [55] L. Peng, B.-J. Ni, L. Ye, Z. Yuan, The combined effect of dissolved oxygen and nitrite on
 N₂O production by ammonia oxidizing bacteria in an enriched nitrifying sludge, Water Res. 73
 (2015) 29-36. doi:10.1016/j.watres.2015.01.021.

[56] Y. Jin, D. Wang, W. Zhang, Effects of substrates on N₂O emissions in an anaerobic
ammonium oxidation (anammox) reactor, Springerplus. (2016) 1-12. doi:10.1186/s40064-0162392-1.

[57] J.M. Garrido, W.A.J. Van Benthum, M.C.M. Van Loosdrecht, J.J. Heijnen, Influence of
dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor,
Biotechnol. Bioeng. 53 (1997) 168-178. doi:10.1002/(SICI)10970290(19970120)53:2<168::AID-BIT6>3.0.CO;2-M.

[58] W. Bae, S. Baek, J. Chung, Y. Lee, Optimal operational factors for nitrite accumulation in
batch reactors, Biodegradation. 12 (2001) 359-366. doi:10.1023/A:1014308229656.

[59] G. Ciudad, O. Rubilar, P. Muñoz, G. Ruiz, R. Chamy, C. Vergara, D. Jeison, Partial
nitrification of high ammonia concentration wastewater as a part of a shortcut biological nitrogen
removal process, Process Biochem. 40 (2005) 1715-1719. doi:10.1016/j.procbio.2004.06.058.

[60] R. Blackburne, Z. Yuan, J. Keller, Partial nitrification to nitrite using low dissolved oxygen
concentration as the main selection factor, Biodegradation. 19 (2008) 303-312.
doi:10.1007/s10532-007-9136-4.

[61] M. Pan, Z. Hu, R. Liu, X. Zhan, Effects of loading rate and aeration on nitrogen removal
and N₂O emissions in intermittently aerated sequencing batch reactors treating slaughterhouse
wastewater at 11 °C, Bioprocess Biosyst. Eng. 38 (2015) 681-689. doi:10.1007/s00449-0141307-1.

- 809 [62] D.J.W. De Pauw, Optimal Experimental Design for Calibration of Bioprocess Models: A
- 810 Validated Software Toolbox, PhD thesis in Applied Biological Sciences, University of Gent,
- 811 Belgium. <u>http://biomath.urgent.be/publications/download/</u>, 2005 (accessed 17.06.17).

Supplementary Material Click here to download Supplementary Material: ASM2d-N2O_Supportive Material_REVISED.pdf Supplementary Material XLS Click here to download Supplementary Material: ASM2d-N2O_Continuity Check Matrix.xlsx