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Abstract: Ultrasonic guided waves are widely used to inspect and monitor the structural integrity of
plates and plate-like structures, such as ship hulls and large storage-tank floors. Recently, ultrasonic
guided waves have also been used to remove ice and fouling from ship hulls, wind-turbine blades
and aeroplane wings. In these applications, the strength of the sound source must be high for
scanning a large area, or to break the bond between ice, fouling and plate substrate. More than
one transducer may be used to achieve maximum sound power output. However, multiple sources
can interact with each other, and form a sound field in the structure with local constructive and
destructive regions. Destructive regions are weak regions and shall be avoided. When multiple
transducers are used it is important that they are arranged in a particular way so that the desired
wave modes can be excited to cover the whole structure. The objective of this paper is to provide
a theoretical basis for generating particular wave mode patterns in finite-width rectangular plates
whose length is assumed to be infinitely long with respect to its width and thickness. The wave
modes have displacements in both width and thickness directions, and are thus different from
the classical Lamb-type wave modes. A two-dimensional semi-analytical finite element (SAFE)
method was used to study dispersion characteristics and mode shapes in the plate up to ultrasonic
frequencies. The modal analysis provided information on the generation of modes suitable for a
particular application. The number of point sources and direction of loading for the excitation of a
few representative modes was investigated. Based on the SAFE analysis, a standard finite element
modelling package, Abaqus, was used to excite the designed modes in a three-dimensional plate.
The generated wave patterns in Abaqus were then compared with mode shapes predicted in the
SAFE model. Good agreement was observed between the intended modes calculated in SAFE and
the actual, excited modes in Abaqus.

Keywords: SAFE; rectangular plate; guided waves; modal excitation

1. Introduction

Lamb waves are widely used to inspect the structural integrity of plates [1]. The plate is assumed
to be infinitely long and infinitely wide, so that the sound field is considered to be uniform in the
direction perpendicular to wave propagation. In practice, Lamb waves are used for plates whose width
and length are large compared to the wavelength. In reality a plate is finite and the assumption of a
constant sound field in one direction does not hold in all applications, especially in low-frequency
applications where the wavelength is large compared to the dimensions. In this paper, the generation
and propagation of wave modes in a three-dimensional plate is examined, where the sound field varies
in both directions perpendicular to the wave-propagation direction. A semi-analytical finite-element
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(SAFE) method is developed to study guided wave modes. Modal shape, phase and energy velocities
are extracted which provide information on which mode should be selected for non-destructive,
de-icing or de-fouling applications. A number of point sources are used to generate a single wave
mode that is propagating in the length direction only. The point sources are evenly distributed,
and amplitudes of the point sources are determined by the mode shape. The generation and
propagation of this mode is visualised with the commercial software package, Abaqus.

Dispersion equations for guided waves propagating in an infinite isotropic layer were first
investigated by Rayleigh and Lamb [1,2]. The waveguide has very simple (two-dimensional) boundary
conditions, i.e., one or two surfaces and no edges. Analytical and numerical solutions for these
equations have been addressed by different authors [3]. In reality, a plate cannot be infinitely wide
or long, however, when the thickness of the plate and wavelength of the guided wave are small
compared to the other two dimensions Lamb wave theory can be used without considering interactions
between waves and edges or defects. Lamb waves are widely adopted for non-destructive testing
(NDT) of thin-wall plates [4–6]. For waveguides of other cross-section, such as cylinders, rectangular
plates, rails, etc., modal solutions of the governing equations are more complicated due to the
reflection of the waves from boundaries, and analytical solutions are thus often limited to simple
geometries and/or fundamental modes [7–12]. Numerical solutions are attractive due to the flexibility
of dealing with arbitrary geometry and complex boundary conditions. SAFE is one of the most popular
numerical techniques for calculating the eigenmodes of guided waves in an arbitrary cross-sectional
waveguide [13–20]. SAFE introduces analytical modal solutions into the wave equation, and requires
only the cross-sectional area of the waveguide to be meshed.

For embedded or immersed waveguides, the cross-sectional area of the waveguide is infinite,
but the conventional SAFE method cannot be used to model an infinite large area. In this case,
SAFE can be used to model the inner layers of the waveguide, and the SAFE model is then coupled
to other boundary models of the infinite surrounding layer, such as the perfectly matched layer
(PML) method [21–23], the boundary element method (BEM) [24], the infinite element method [25],
or the absorbing layer method [26]. In addition to SAFE, other numerical techniques are available for
calculating the eigenmodes of guided waves, such as the BEM [27,28], the wave finite element method
(WFE) [29–32] and the scaled boundary finite element method (SBFEM) [33–36]. BEM represents
exactly the radiation boundary condition and reduces the dimensions of the numerical problem by
one. However, this method has numerical stability problems and other mathematical challenges [24].
WFE meshes a small three-dimensional section of the waveguide, with a periodicity condition applied
to both ends of the waveguide [29]. This method has the advantage of making use of commercially
available finite element software packages. However, numerical round-off errors could appear when
the axial wavelength (wavelength in the propagation direction) is small [32]. SBFEM also assumes
harmonic wave solutions in the wave propagation direction, and thus discretises only the cross-sectional
area of the waveguide for modal analysis. SBFEM can use higher order spectral elements to improve
computation efficiency [34]; however, the discretisation of higher order elements cannot be generated
using conventional meshing techniques, and element meshing can be difficult for complex geometries.

The above techniques are used to calculate the eigenmodes of guided waves. They assume
the waveguide to be uniform in the wave propagation direction, but for wave scattering problems
the waveguide is no longer uniform. In these cases the conventional finite element method can be
used to model the whole waveguide and the length of the waveguide is often limited [37]. For a
theoretically infinitely long waveguide, it is possible to combine a modal expansion solution with a
conventional finite element solution, requiring only a small non-uniform section of the waveguide to
be meshed [38–41]. SBFEM is also an efficient alternative, which requires only the boundary of the
waveguide to be meshed [42].

This paper studies the excitation of well-designed guided waves in a rectangular plate.
The number of modes that could propagate in a waveguide are indicated by the dispersion curves
which, however, do not reveal how to excite a particular mode using a finite number of point sources.
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Early work on the study of guided waves in rectangular plates was limited to extensional wave modes
associated with two dimensions of the plate [43]. Standing wave patterns were generated to observe
wavelengths and associated wave velocities at different frequencies. Recently, Cegla studied the
excitation of two modes having modal energy focused at the centre of the plate [44]. One of these
modes was a shear horizontal type mode, and the other was a flexural type mode. To excite these
modes, the profile of the excitation force should resemble the mode profile as closely as possible.
However, it is not possible to experimentally implement these mode profiles with a continuous
excitation profile over the cross-sectional area of the plate. Instead, individual transducers are used
which cover only part of the cross-sectional area. The excitation of the two modes (shear and flexural)
was achieved by placing a transducer at the centre of the end of the plate. Furthermore, these two
modes are both strongest at the centre of the plate and the modal energy decreases towards the edge.

The number of excited wave modes for rectangular plates in these reference papers is very
limited, and the potential application of other guided wave modes has not been exploited in the
literature. This paper thus proposes a method to systematically excite three types of guided wave
modes (shear-horizontal, flexural and extensional) and Rayleigh surface waves in a rectangular plate.
These wave modes are relatively non-dispersive, and have the potential to propagate over long
distances. Furthermore, they are designed to cover different areas of the plate, and have a dominant
displacement in different directions. A combination of these modes can be used to cover the whole
plate for NDT, de-icing or de-fouling applications. The remainder of the paper is structured as follows:
the theoretical basis of the semi-analytical finite element method is presented in Section 2; dispersion
curves and modal analysis are presented in Section 3; the excitation of a number of modes is presented
in Section 4; and conclusions are drawn in Section 5.

2. Semi-Analytical Finite-Element Method

A large aspect ratio (width/thickness) rectangular plate is considered. The SAFE technique
meshes only the cross-sectional area of the waveguide. The governing equation for wave propagation
in an elastic medium is given by Navier’s Equation (1) [39]:

(λ + µ)∇
(
∇·u′

)
+ µ∇2u′ = ρ

∂2u′

∂t2 , (1)

where λ and µ are the Lamé constants, u′ is the displacement vector, ρ is density and t is time. A time
dependence of eiωt is assumed, where ω is the radian frequency and i =

√
−1. The displacement vector

can be decomposed as u′x, u′y and u′z in the x, y and z directions, respectively. On the surface of the plate
it is assumed that no external forces are present so that all the tractions over the surface are zero.

The displacements u′1q in the cross-sectional area of the plate are expanded as a sum of eigenmodes
to give:

u′1q(x, y, z) =
∞

∑
n=0

un
1q(x, y)e−ikγnz, (2)

where the subscript q = x, y or z, and u1q(x, y) are the eigenvectors, with k = ω/cT so that γ is a
dimensionless wavenumber. In addition, cT and cL are the shear (transverse) and compressional
(longitudinal) bulk-wave velocities, respectively.

The finite-element analysis proceeds by discretising the displacements of any mode n over the
plate cross-section. Equation (2) is then substituted back into Equation (1) and, by using a weak
formulation and introducing the boundary conditions, one may arrive at the following general eigen
Equation (3):

Pu1 = γSu1, (3)

where u1 =
[

u1x u1y u1z γu1x γu1y γu1z

]T
. The constituents of matrices P and S are given

in [39] and are not reproduced here.
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3. Dispersion Curves and Modal Analysis

The eigen solution Equation (3) was programmed in MATLAB (R2017a, The MathWorks, Inc.,
Natick, MA, USA) and executed on a laptop with a 2.60 GHz Intel Core™ CPU and a 16 GB RAM.
It has been shown that SAFE is able to deliver accurate solutions for dispersion curves in pipes [39].
The accuracy of the model for a rectangular plate is further examined here. The dispersion curves
for a nickel plate are calculated and compared to the dispersion curves shown in ‘Figure 4a’ of
Mukdadi et al.’s paper [13]. The thickness and width of the plate is 0.11 mm and 0.88 mm respectively.
Material properties of the nickel plate can be represented as cT = 3083.39 m/s, cL = 5792.43 m/s,
and ρ = 8910 kg/m3 [13]. Mukdadi et al. [13] used a variational principle to solve the governing
equations. Analytical modal solutions were used in the wave propagation direction as well. A more
general, weighted residual method is used in this paper. In principle, these two methods should
deliver identical solutions, and this is shown in Figure 1 where the two numerical solutions match
very well. Only a few low order modes are presented in Figure 1 for clarity, and this shows that SAFE
is able to accurately calculate dispersion curves for rectangular plates. Note that SAFE is also able to
calculate dispersion curves for Lamb waves in an infinitely wide plate. This can be done by setting
displacements in the width direction to be constant. A number of additional convergence studies for
plates have been carried out, and details are not shown here for the sake of space. Further validation
of the SAFE model can be found in [39].

The dispersion curves shown above are for a small plate of thickness 0.11 mm. In NDT applications
the plate could be much larger than that studied in Figure 1. A large rectangular steel plate is thus
examined in the following sections of the paper, with a plate thickness of 10 mm, width of 400 mm,
and length of 1.5 m. The aspect ratio (width/thickness) is thus 40. The purpose of the modal analysis
here is not only to derive the dispersion curves, but to demonstrate which modes are suitable for NDT
applications, and also how to excite selected modes. The properties of the steel plate are cT = 3260 m/s,
cL = 5960 m/s, ρ = 7932 kg/m3. Eight-node quadratic elements are used to mesh the cross-sectional
area of the plate, with an element size of 2 mm. This ensures at least 32 nodes per wavelength for the
shortest bulk wave up to 100 kHz. This level of element density is higher than that seen in conventional
finite-element models, and this is to ensure that flexural modes (modes with displacement variations
in the thickness direction of the plate) are captured accurately. The total number of degrees of freedom
is 10,233, and the calculation took about 1 s to solve at each frequency.

Figure 1. Dispersion curves for a nickel plate with an aspect ratio of eight. ,
Current semi-analytical finite-element (SAFE) solutions; , numerical solutions given
by Mukdadi et al. [13].
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Figure 2 shows phase and group velocities for guided waves propagating in the rectangular plate.
Dispersion curves for Lamb waves propagating in an infinite plate with a thickness of 10 mm and
400 mm are shown in Figure 3 for comparison. The dispersion curves are shown up to 50 kHz
for clarity. Guided wave modes in the rectangular plate are different to Lamb wave modes in
that these waves are reflected by four surfaces, rather than two. The number of wave modes is
also much larger than corresponding Lamb-type wave modes. Backward waves can also be seen
in Figure 2b with negative group velocities [45,46]. These waves are highly dispersive. For NDT
applications, the incident mode is required to propagate as far as possible, and thus dispersive modes
are normally avoided. Figure 2 shows that none of the modes has a constant velocity throughout
the frequency range. However, it is possible to select a few modes that have a relatively uniform
velocity distribution in a particular frequency band and these are marked in colour in Figure 2,
and investigated further in this paper. The SH0* mode indicates a shear horizontal type mode with
dominant displacement in the width direction of the plate. However, the displacement is not constant
because the wave is reflected by surfaces. The superscript * is thus used to indicate that SH0* is
different to the conventional shear-horizontal mode in an infinitely large plate where displacement
is constant in the width direction. S0* and A0* modes are symmetric and anti-symmetric modes,
respectively, along the width direction of the plate. As frequency increases, the wavelength of these
modes decreases. They become Rayleigh waves in the high frequency range, where modal energy
focuses near the edge of the plate. The detailed modal analysis of these and other modes is presented
in the next section associated with their visualisation in the three-dimensional plate.

Figure 2. Cont.
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Figure 2. Dispersion curves for a steel plate with an aspect ratio of 40: (a) phase velocity; (b) group velocity.

Figure 3. Cont.
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Figure 3. Dispersion curves for Lamb waves in an infinite plate: (a) phase velocity; (b) group velocity.
Red line: 10 mm thickness; black line: 400 mm thickness.

4. Excitation of Guided Wave Modes

A large number of wave modes could exist at a single frequency. It is thus difficult to excite a
pure single wave mode. A general principle is that the loading profile should match the profile of the
wave mode to be excited. However, each mode has a displacement distribution that is continuous
across the cross-sectional area of the plate. In practice, the loading profile can only be controlled by
individual discrete transducers, and it is not possible to generate a continuous loading profile over
the plate transverse plane. For a large plate, such as the one studied here, it is more appropriate to
represent each transducer as a point source. The aim is then to use a finite number of point sources to
excite a particular wave mode. In this case, the loading profile is discrete, rather than continuous.

A commercial finite element software package, Abaqus (version 6.14-4, Dassault Systèmes
Americas Corp., Waltham, MA, USA), has been used to visualise and validate this method. The plate
has a thickness of 10 mm, width of 400 mm, and length of 1.5 m. The point sources are evenly
distributed, and placed at the centre of the plate end (y = 0 and z = 0, see Figure 4). The edges between
two surfaces have surface normals perpendicular to each other. This produces normal stress singularity
lines and so no excitation point sources are placed on the edges of the plate. Suppose the number
of point sources used for excitation of a particular mode is N, then the interval between adjacent
point sources will be 400/(N + 1) mm, where 400 mm is the width of the plate. Thus the position
of each source can be easily calculated based on the number of total point sources. The number of
point sources, and the amplitude of each point source needed to excite a single mode are determined
by the mode shape. The absolute amplitude of all the point sources could be increased or decreased
proportionally; however, the relative amplitude of these point sources shall resemble the mode shape
of the mode to be excited. For different wave modes, the direction of the loading displacement is also
different. This depends on the direction of the dominant displacement seen from the mode shape.
The details of these point sources will be presented in Sections 4.1–4.4. Rayleigh waves and three
other types of waves are studied, i.e., shear type (dominant in x direction), flexural type (dominant in
y direction) and extensional type (dominant in z direction).

The Abaqus Explicit module was used to produce a transient wave field. The incident signal is a
10-cycle Hanning-windowed pulse. Isoparametric linear hexahedral elements were used. The element
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size is 5 mm in the x and z directions. In the y direction (thickness), the element size is reduced
to 0.5 mm in order to capture displacement variations for high order modes. The total number of
elements is 480,000, taking around 35 min to solve for each excitation. The displacement distribution
for the three-dimensional plate can be shown in the form of a colour map in the post-processing stage.
The detailed wave propagation form at a particular receiver position can also be shown as a function
of time. The longitudinal receiver position is fixed to be 0.5 m from the edge of the plate (see Figure 4).
The transverse position (x width direction) of the receiver is associated with the peak amplitude of
each mode and is thus mode dependent.

Figure 4. Point source arrangement to excite a wave mode in the rectangular plate.

4.1. Excitation of Rayleigh Modes

The S0* and A0* modes shown in Figure 2 are fundamental Lamb type modes associated with
the width (400 mm side) of the plate in the low frequency range below 5 kHz. These two modes
become almost non-dispersive in the high frequency range above 20 kHz. However, Rayleigh waves
are surface waves with energy focused near the edge of the plate, and so these modes can only detect
defects near the edge of the plate. Figure 5 shows the mode shape of S0* at 50 kHz. This mode has
a dominant shear displacement near the edge of the plate. The extensional displacement is slightly
smaller than the shear displacement. The vertical displacement is very small and can be ignored.

A number of discretised point sources along the centre line of the plate (shown in Figure 4) is
proposed to excite this mode. The amplitude of point sources is determined by the mode shape shown
in Figure 5. The shear and extensional displacements along the centre line of the plate are extracted
from Figure 5a,c and represented in Figure 6a,b. Note that colour maps shown in Figure 5a,c are based
on absolute displacement amplitude, while Figure 6a,b incorporate phase variations so that positive
and negative displacements are presented. Further details on the amplitude of point sources and
excitation of this wave mode will be presented in Figure 6.

Rayleigh wave S0* has displacements focused near the edge of the plate. The simplest way to
excite this wave mode is to try to place a single transducer on the edge of the plate. This would
indeed generate S0*; however, other compressional and shearing type waves will be generated as well.
To excite a pure Rayleigh S0* mode, a series of numerical experiments were conducted by varying the
number of sources and the direction of the excitation displacement. The generated mode shape was
presented in Figure 6c,d and then compared to the predicted mode shape shown in Figure 5. It was
found that S0* could be excited by applying the shear-displacement loading at a number of point
sources; however, a noise region would appear behind the S0* wave mode. This noise region could
be significantly reduced by applying both shear and extensional displacements at each point source.
This is because the extensional displacement is comparable to the shear displacement, and elimination
of the extensional displacement would produce additional noise. Furthermore, the extensional and the
shear displacement have a phase difference of 90◦. This corresponds to a quarter of a period at 50 kHz
in the time domain with the extensional displacement leading the shear displacement. In the Abaqus
module, both shear and extensional displacements were assigned to each point source in the loading
stage. The number of point sources was gradually reduced from 79 to 3.
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Figure 5. Normalised displacement distribution of the symmetric mode (S0*): (a) shear displacement
(x direction); (b) vertical displacement (y direction); (c) extensional displacement (z direction).

Figure 6. Cont.
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Figure 6. Excitation of Rayleigh mode S0*: (a) shear displacement loading; (b) extensional displacement
loading; (c) generated shear displacement distribution (top view); (d) generated shear displacement
distribution (transverse view); (e) time domain displacement at receiver position. , 79 point
sources; , 39 point sources; , 19 point sources; , 15 point sources.

Figure 6a,b show the profile of the loading displacement calculated from SAFE. The generated
wave propagation displacement from Abaqus is presented in Figure 6c–e. The incident wave is centred
at 50 kHz. Figure 6a,b is used to determine the amplitude of the loading at each point source in
Abaqus. The solid lines in Figure 6a,b is displacement amplitude obtained from SAFE. The shear
displacement is evenly sampled in Figure 6a and the amplitude associated with each location is used as
the amplitude of the corresponding point source in Abaqus. The extensional displacement in Figure 6b
is evenly sampled in the same way. Note that the amplitudes shown in Figure 6a,b are normalized
relative amplitudes between point sources. In Abaqus, these normalized amplitudes are multiplied
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by a constant 10−8, so that displacements have the unit of meter in Abaqus. It can be seen that both
shear and extensional displacements of this mode drop almost exponentially from the edge of the
plate towards the centre in the width direction (see Figure 6a,b). The point sources from x = −50 mm
to x = 50 mm play a minimal role and could be discarded in actual applications. The distance between
adjacent point sources should be small to capture the rapid drop of displacements near the edge of the
plate (x→−200 mm or 200 mm).

The generated wave will start to propagate from z = 0 towards the far end of the plate z = 1.5 m.
The displacement distribution of the generated wave will be a function of both position and time.
To verify that the generated wave is indeed the designed wave mode, the generated wave propagation
form has been observed in different ways, shown in Figure 6c–e. Figure 6c,d is top and transverse
view of the plate at a fixed time, and Figure 6e is the time-domain wave propagation form at a fixed
position. Wave speed and mode shape are compared with each other. The intended wave mode has
a group velocity of 2979.5 m/s, and the wave speed of the generated wave mode is calculated to be
2978.6 m/s. The difference in terms of wave speed is less than 0.1%. The shear displacement of the
intended wave mode is shown in Figure 5a, and this can be compared to the shear displacement of
the generated wave mode shown in Figure 6d. It can be seen that the two figures match each other
very well, considering phase variation and the symmetric nature of this mode. In addition to the
shear displacement, the intended and generated extensional displacement distribution have also been
compared and they match each other very well.

Figure 6c,d is generated wave distribution from 79 point sources, and it is clear that a single pure
Rayleigh wave has been generated which propagates near the edges of the plate. Figure 6e compares
the received time-domain wave forms from a varying number of point sources. As the number of
sources decreases, the distance between adjacent point sources increases. The discretised loading
displacement profile starts to deviate from the continuous displacement profile, and the noise level
increases. When 15 point sources are used, the Rayleigh wave has been significantly influenced by
other shearing waves from individual point sources.

4.2. Excitation of Shear Type Modes

The first shear type mode to be examined is the shear-horizontal type SH0* mode. This mode
has a dominant shear displacement, and the shear displacement is strongest near the centre of the
plate. Figure 7 shows the modal shape of this mode at 50 kHz. Cegla [44] showed that a continuous
excitation profile is able to generate this mode at 2 MHz. In Cegla’s experiment, a single transducer
was used to cover most area of the transverse plane of the plate, and the experimental excitation profile
approaches the theoretical continuous excitation profile. However, the plate and wavelength studied
here is much larger than those studied in [44], and it is more appropriate to represent each transducer
as an individual point source. To generate this mode, it was found that the excitation displacement
needs to be pointed in the shear (x) direction only. This mode is thus much easier to excite than the
Rayleigh mode S0*.
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Figure 7. Normalised displacement distribution of the shear-horizontal type mode (SH0*): (a) shear
displacement (x direction); (b) vertical displacement (y direction); (c) extensional displacement
(z direction).

Figure 8a shows the shear displacement excitation profile from SAFE. This profile is discretised and
point sources are used to generated SH0* in Abaqus in the loading stage. The shear displacement falls
smoothly from the centre of the plate towards the edge, and the number of point sources used to capture
this mode is relatively small compared to S0*. Figure 8b shows the generated shear-displacement
distribution profile from 19 point sources, and a single pure SH0* mode has been generated which
propagates at the centre of the plate. Figure 8c compares the received time domain displacements
excited by different numbers of point sources. Now, 9 point sources are enough to generate a pure
SH0* mode with negligible noise. The noise level increases slightly when only 7 point sources are used.

Figure 9 shows the excitation of another shear type mode, A1*. The dispersion curves for this
mode are given in Figure 2. It can be seen that this mode has relatively flat velocity curves near 50 kHz.
The two-dimensional shape of this mode is not presented here for the sake of space, however its shear
displacement is shown in Figure 9a, and the generated displacement distribution profile is shown in
Figure 9b. This mode has positive and negative peaks in the width (x) direction. Figure 9c shows that
9 point sources are enough to excite the mode with negligible noise. The noise starts to appear when
7 or fewer point sources are used.
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Figure 8. Excitation of shear-type mode SH0*: (a) shear displacement loading; (b) generated shear
displacement distribution (top view); (c) time domain displacement at receiver position. ,
19 point sources; , 15 point sources; , 9 point sources; , 7 point sources.
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Figure 9. Excitation of shear-type mode A1*: (a) shear displacement loading; (b) generated
shear displacement distribution (top view); (c) time domain displacement at receiver position.

, 19 point sources; , 15 point sources; , 9 point sources; ,
7 point sources.

4.3. Excitation of Extensional Type Modes

Figure 10 shows the mode shape of an extensional type mode E1* at 30 kHz. This mode is
generally dispersive; however, in a narrow region near 30 kHz, it has relatively flat velocity curves
(see Figure 2). Along the width direction of the plate there is a dominant extensional displacement
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with four peak regions. The trough displacement, however, is not zero with a minimal extensional
displacement of around 42% of the maximum. This means that this mode can be used to cover the
entire plate without any blind regions, which is an attractive property.

Figure 10. Normalised displacement distribution of the E1* mode: (a) shear displacement (x direction);
(b) vertical displacement (y direction); (c) extensional displacement (z direction).

Figure 11a shows the extensional displacement distribution along the centre line of the plate,
which is discretised and then used at the loading stage in the Abaqus model. Figure 11b,c show the
displacement distribution generated in Abaqus. A single mode wave pattern can be seen clearly in
Figure 11b with 19 evenly distributed point sources. The number of point sources can be further
reduced, and the noise level is still low when only 7 sources are used. The noise level increases
significantly when 3 point sources are used. Note that a number of other extensional modes have
relatively flat dispersion curves but are not reported here for the sake of space.
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Figure 11. Excitation of extensional type mode E1*: (a) extensional displacement loading; (b) generated
extensional displacement distribution (top view); (c) time domain displacement at receiver position.

, 19 point sources; , 15 point sources; , 7 point sources; ,
3 point sources.
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4.4. Excitation of Flexural Type Modes

In this section, a flexural type mode, F2* is examined that has a dominant vertical (y direction)
displacement. The dispersion curves are shown in Figure 2. It can be seen that F2* is generally
dispersive, especially in the low frequency range. The mode shape of F2* at 50 kHz is shown in
Figure 12. This frequency is chosen because the dispersion curves are relatively flat here. The shear
displacement is negligible, and the extensional displacement is relatively strong only near the surface
of the plate.

Figure 12. Normalised displacement distribution of the F2* mode: (a) shear displacement (x direction);
(b) vertical displacement (y direction); (c) extensional displacement (z direction).

The vertical displacement (flexural type displacement that vibrates up and down in the thickness
direction) along the centre of the plate is discretised to excite this mode in Figure 13. It has four
antinodal positions along the width of the plate. It can be seen that a single F2* mode can be excited
by 15 or more evenly distributed point sources. The noise level increases significantly when 9 point
sources are used. Note that other flexural type modes have been excited here but are not described.
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Figure 13. Excitation of flexural-type mode F2*: (a) vertical displacement loading; (b) generated
vertical displacement distribution (top view); (c) time domain displacement at receiver position.

, 39 point sources; , 19 point sources; , 15 point sources; ,
9 point sources.
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5. Conclusions

In this paper, a two-dimensional, semi-analytical finite element method is used to study the
dispersion curves and mode shapes of wave modes in a rectangular plate. These waves are different
to Lamb waves in that guided waves are bounded by four surfaces and propagate in only a single
direction. All the wave modes have displacements in three directions of the plate; however, each has a
dominant displacement in a single direction. According to the dominant displacement, wave modes
can be classified into four categories: Rayleigh surface waves, shear waves, extensional waves and
flexural waves. This paper studies the excitation of a single wave mode by a set of evenly distributed
point sources. The four types of wave modes are all discussed in this paper, and their excitation is
visualised in Abaqus.

For simple and systematic presentation, all the point sources are distributed evenly along the
horizontal centre line of the plate. It was found that a single wave mode can be generated by a
finite number of point sources. The number of point sources required to generate a single mode is
related to the wave shape of the mode. The surface wave S0* has a displacement that decays almost
exponentially along the width direction of the plate, and a large number of point sources are required
to excite this mode accurately. Furthermore, this mode has comparable displacements in both the
shear and extensional directions, and it was found that the quality of the signal could be improved
by applying shear and extensional displacement loading at each point source. This two-directional
excitation method may be difficult to implement in reality, and practical implementation of this method
requires further investigation. However, all the other three types of wave modes require excitation
displacement to be applied in only one direction.

The modes studied in this paper were chosen by the relative flatness of their dispersion curves, so
that they can propagate far. They have dominant displacements in different directions, which could be
used in different applications. For instance, Palacios et al. used ultrasonic actuators to instantaneously
delaminate the ice layer from a steel substrate [47]. This required the shear stress between the
two layers to exceed a certain value, and this was achieved at resonance frequencies where the
ultrasonic actuators provided maximum current outputs for a given driving voltage. Localized
stress-concentration areas could be observed when one or two actuators were used. The research
carried out here could potentially benefit these applications by improving stress-concentration areas.
A number of modes studied here have not previously been investigated. For example, the extensional
type E1* mode has extensional displacement along the entire width of the plate without nodal positions.
Its minimal extensional displacement is above 40% of the maximum and could thus be used to cover
the whole plate. The practical application of this and other modes reported in this paper will be under
further investigation.
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