
A Session Type Provider
Compile-Time API Generation of Distributed Protocols with Refinements in F#

Rumyana Neykova
Imperial College London

United Kingdom

Raymond Hu
Imperial College London

United Kingdom

Nobuko Yoshida
Imperial College London

United Kingdom

Fahd Abdeljallal
Imperial College London

United Kingdom

Abstract
We present a library for the specification and implementa-
tion of distributed protocols in native F# (and other .NET
languages) based on multiparty session types (MPST). There
are two main contributions. Our library is the first practi-
cal development of MPST to support what we refer to as
interaction refinements: a collection of features related to the
refinement of protocols, such as message-type refinements
(value constraints) and message-value dependent control
flow. A well-typed endpoint program using our library is
guaranteed to perform only compliant session I/O actions
w.r.t. to the refined protocol, up to premature termination.

Second, our library is developed as a session type provider,
that performs on-demand compile-time protocol validation
and generation of protocol-specific .NET types for users writ-
ing the distributed endpoint programs. It is implemented by
extending and integrating Scribble (a toolchain for MPST)
with an SMT solver into the type providers framework. The
safety guarantees are achieved by a combination of static
type checking of the generated types for messages and I/O
operations, correctness by construction from code genera-
tion, and automated inlining of assertions.

CCSConcepts • Software and its engineering→ Source
code generation; • Computing methodologies → Dis-
tributed programming languages; • Networks → Peer-
to-peer protocols;

Keywords Multiparty Session Types, Distributed Program-
ming, F#, Type Providers, Code Generation

ACM Reference Format:
Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Ab-
deljallal. 2018. A Session Type Provider: Compile-Time API Genera-
tion of Distributed Protocols with Refinements in F#. In Proceedings
of 27th International Conference on Compiler Construction (CC’18).
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3178372.
3179495

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CC’18, February 24–25, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5644-2/18/02.
https://doi.org/10.1145/3178372.3179495

1 Introduction
Type providers [20, 27] are a .NET feature for a form of
compile-time meta programming, designed to bridge be-
tween programming in statically typed languages such as
F# and C#, and working with so-called information spaces—
structured data sources such as SQL databases or XML data.

A type provider works as a compiler plugin that performs
on-demand generation of types: it takes a schema for an
external information space, and generates types that allow
the data to be manipulated via a strongly-typed interface,
with benefits such as static error detection and IDE auto-
completion. For example, an instantiation of the in-built
type provider for WSDL Web services [6] may look like
// Assume URL gives WSDL description for operation MyOp: int → bool

type svc = Microsoft.FSharp.Data.TypeProvider.WsdlService<"http:...">

where the URL points to the WSDL XML document, and
svc will house the types generated for the client-side service
interface as nested types. A client program could then be:
let client = svc.GetMyServiceSoap()

let req = new svc.ServiceTypes.myhost.com.Request(myInt = 123)

let res = client.MyOp(req)

printfn "%b" (res.myBool)

The various generated types and operations ensure, e.g.,
that the payload of Request is an int, that MyOp is correctly
invoked with a Request, and res.myBool is a bool.

Type providers have proved a popular and valuable tool in
the F# community within their primary use case of working
with structured data—the main type providers library (F#
Data [10]) is one of the most downloaded F# libraries [20].
However, type providers have untapped potential in typed
code generation and compiler support for important appli-
cations beyond data protocols—distributed programming in
particular. TheWSDL type provider is forWeb services, but is
limited to handling the client-side data of the hardcoded call-
return pattern. A generalisation to distributed protocols re-
quires a notion of schema for structured interactions between
multiple participants, and an understanding of how to ex-
tract the localised behaviour for any one of them—precisely
the key concepts of multiparty session types (MPST).

Session types is a types-based approach to specifying and
verifying protocols for concurrent, message passing pro-
cesses [12]. We can outline the key concepts using the simple
protocol from above. The protocol may be specified along
the lines of:

128

https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3178372.3179495

CC’18, February 24–25, 2018, Vienna, Austria Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal

(int) from C to S; (bool) from S to C;

This is a type that says: role (i.e., endpoint) C sends an int

message to S, followed by S sending back a bool message.
We are using the syntax of Scribble [24], a toolchain based
on multiparty session types (MPST) [5, 13]. Then, the above
type may be used to statically type check an implementation
of the communication session, comprised of the concurrent
processes playing each endpoint. For example, we could write
a function runS for the S endpoint:

runS s = let (x, s') = receive s in send true s'

Here we are using the theoretical functional language re-
ferred to as GV [11] informally for this initial illustration.
Assuming s is a freshly initialised channel for S to commu-
nicate with C, runS may be considered well-typed according
to the above type: s is first used to receive the int from C

(bound to x), with the continuation of the protocol to be
performed on the channel bound to s'—on which we send
true. Protocol violations such as attempting to use send on
s, or to send 123 on s', would be caught as type errors.

The main safety properties of session types are that a well-
typed system of endpoint processes is guaranteed free of
critical communication errors such as reception errors (un-
expected messages), deadlocks (wait-for cycles between pro-
cesses due to mutual input dependencies) and orphan mes-
sages (leftover messages). These properties are sometimes
referred to as communication safety [13]. The theoretical de-
velopments have lead to active research on implementations
of languages and tools based on session types; see [1, 3] for
a broad overview.
So far, the state of the art has primarily focused on im-

plementing the features of the core theory. One of the most
promising directions for improving the applicability of ses-
sion types is the incorporation of concepts from refinement
types [9, 17]. In a nutshell, the basic notion of refinement
type is a data type elaborated with a logical constraint; e.g.,
in the function type sqrt: T → int, the parameter T could
be the refinement type {x : int | x >= 0}. In the distributed
programming setting of session types, there are many ways
in which it would be useful to refine a protocol; e.g., refine-
ments on the communicated message-types, message-value
dependent control flow, and assertions on session state. We
shall collectively refer to such features as interaction refine-
ments, aspects of which have been studied across a range
of separate theoretical systems, e.g. [2, 4, 29]. To date, there
has been no work on formulating or implementing session
types with such refinements in practice.

Contributions. This paper presents a practical library for
MPST-based distributed programming in F# using type
providers. The main contributions are as follows.
• We leverage the type provider mechanism for on-demand
generation of types to support MPST-based programming
in native F#. From MPST, our session type provider (STP)
promotes static prevention of protocol violations via the

type checking of programs using the generated types.
From type providers, we obtain benefits [27] such as avoid-
ing workflow bloat (no additional preprocessing steps or
external tool stages) and robustness (automated mainte-
nance of generated code against user programs).

• The STP is the first implementation of session types that
supports interaction refinements. We develop a practical
validation method for our enriched protocol specifications
by integrating an extension of Scribble and an SMT solver
(Z3 [30]) into the type provider framework.

• We build on a hybrid code generation approach [14], fur-
ther exploiting type-driven code generation to safely en-
force certain value-dependent communication patterns in
user programs by construction.

As a taster, the STP allows the specification of communi-
cation patterns (written in our extended Scribble) like:
(i) (x:int)from A to B; @x>0 (x) from B to C;

The first interaction (left) uses a message-type refinement
to specify that A must send an int greater than zero. The
following interaction expresses a message-value dependency,
specifying that B must send exactly the received value to C.
As an example of protocol validation, the STP will deter-

mine that the above is a valid protocol; unlike, e.g.,
(x:int)from A to B; @x>0 (y:int)from B to C; @(y>x and y<5)

which would unsafely allow A to send an x value (e.g., 5) that
makes it impossible for B to produce a valid y.
Given a valid protocol, the STP can enforce it in the user

program in various ways. For example, a minimal F# frag-
ment for the B endpoint in (i) above would be

s.Receive(A, x).Send(C)

where s is B’s initial session channel and x is a buffer for
receiving the int. Firstly, the type provider generates the
type of s to permit only the Receive from A, whose generated
return type is the protocol continuation permitting only the
Send to C. Secondly, the Send has no int parameter, because
the type provider generates it to implicitly send the previ-
ously received value, satisfying the refinement by construc-
tion. In other situations, the type provider may automatically
inline a refinement expression as a run-time assertion into
the underlying code, as a default enforcement mechanism.

The type providers benefit of avoiding user workflow bloat
is important. While it is a challenge to develop advanced
programming tools, it is also often a challenge for end users
to incorporate them into their regular development environ-
ments and actually use them. Our approach exercises the
type providers framework as a platform for tools integration—
Scribble, Z3 and .NET code generation—making session types
(with interaction refinements) practically accessible to .NET
programmers unfamiliar with these techniques.
Outline. We start with an overview of our framework in
§ 2, and then explain the key stages in § 3–5. Compile-time
and run-time performance is evaluated in § 6. The source

129

A Session Type Provider CC’18, February 24–25, 2018, Vienna, Austria

Global protocol with
interaction refinements

Scribble toolchain
with model checker
and SMT solver

Validated
Endpoint FSMs

(§ 3, § 4.1)

Session
Type Provider

Generated APIs:
.NET types and

CLI code (§ 4.2, § 5)

Distributed endpoint
programs

written by user(s) integrated tooling tool outputs

Figure 1. Session type provider toolchain: compile-time API generation from MPSTs with interaction refinements.

code of the STP, example applications and omitted details
are available from [26].

2 Overview
This section gives an overview of using the session type
provider (STP) for protocol-driven distributed programming
in F# (cf., schema-driven data type providers), with support
for interaction refinements. Fig. 1 shows the user inputs and
main components of our toolchain and their dependencies,
which we illustrate by the following running example.

The Sutherland-Hodgman algorithm (henceforth, SH)
is for polygon clipping. It takes a plane, and the vertices of
a polygon as a series of points; and produces vertices for
the polygon restricted to one side of the plane. We describe
a variant of a distributed pipeline implementation [21, 25].
There are three main components: the Producer of the in-
put polygon data, the Calculator for geometric calculations,
and the Consumer of the clipped output polygon data. The
pipeline can be formed by linking Producers and Consumers,
one stage for each clipping plane.
The Producer iterates over adjacent vertices of the poly-

gon. It uses Calculator to determinewhether or not the points
in each edge pair are above the clipping plane; and forwards
either zero, one or two points to the Consumer. If both points
are above, the second is forwarded; if both are below, neither
are forwarded. If only one is above, then the intersection of
their edge with the plane (using Calculator) is forwarded;
and if the second point is above, it is also forwarded.

2.1 The Session Type Provider Toolchain
Global protocol specification in Scribble. Starting from
the left of Fig. 1, we use SH to demonstrate the specifica-
tion of communication patterns with refinements in our
extension of Scribble. Fig. 2 gives a global protocol for SH,
which describes all the required and permitted participant
interactions from a global perspective. The root protocol
SH declares the three participant roles: the Producer P, the
Calculator R and the Consumer C. It starts with P sending
a Plane(...) message to R: Plane is a message label (e.g., an
identifier in a header field), and the tuple of Point types is the
message payload (for simplicity, hardcoded to four points).
The do-statement then enters the Loop subprotocol.

In Loop, choice at P is a branch point in the protocol where
P decides which of the or-separated cases to follow. In each
case, the protocol specifies the communication of the deci-
sion result by explicit messages to the other roles (leaving

1 global protocol SH(role P, role R, role C) {

2 Plane(Point, Point, Point, Point) from P to R;

3 do Loop(P, R, C);

4 }

5 global protocol Loop(role P, role R, role C) {

6 choice at P {

7 IsAbove(v1:Point) from P to R; Res(b1:bool) from R to P;

8 IsAbove(v2:Point) from P to R; Res(b2:bool) from R to P;

9 choice at P {

10 BothIn(v2) from P to C; @ (b1 and b2)

11 BothIn() from P to R;

12 } or {

13 BothOut() from P to C; @ not(b1 or b2)

14 BothOut() from P to R;

15 } or {

16 Intrsct(v1, v2) from P to R; @ (b1 xor b2)

17 Res(i:Point) from R to P;

18 choice at P {

19 SecOut(i) from P to C; @ not(b2)
20 } or {

21 SecIn(i, v2) from P to C; @ b2

22 } }

23 do Loop(P, R, C); // Recursion

24 } or {

25 Close() from P to R; Close() from P to C; // End

26 } }

Figure 2. A distributed Sutherland-Hodgman algorithm.

the concrete decision procedure abstract). In the second case
(line 24), P sends R and C a Close message (with no payload
values), and the protocol ends.

The first case iterates the algorithm one step. P uses the
isAbove function of R on the first of the current points in this
iteration, and R returns the boolean result; similarly for the
second point. The payload variables (e.g., v1, b1) allow the
communicated values to be referred to below. Next, P has
a choice between three cases that depends on the boolean
values received from R. The BothIn case is given by the re-
finement expression (after the @) asserting b1 and b2. In this
case, the v2 payload specifies P to forward the second point
to C—note: this value dependency is equivalent to specifying
a fresh payload variable x : Point with @(x=v2 and b1 and b2).
The BothOut case informs C that neither point is above.

In the Intrsct case, P uses R to get the intersection of the
current edgewith the plane. b1 xor b2means only one point is
above; and the payload values of Intrsct are the same points
from earlier. The two subcases (line 18) determine whether
or not the second point is forwarded with the intersection.
Finally, the recursive do Loop (line 23) that follows all of the
non-Close cases proceeds to the next iteration.

130

CC’18, February 24–25, 2018, Vienna, Austria Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal

1 type SH_P = SessionTypeProvider<"SH.scr", "SH", "P", "config.yaml">

2 // Generates protocol- (SH) and role- (P) specific types

3 let P = new SH_P()

4 let main argv =

5 let s = P.Init() in // Start of P endpoint implementation

6 s

Figure 3. Instantiating the STP in F# for the P role in SH.

Session type providers: bridging MPST and F#. On the
right of Fig. 1 are user programs. The flow of Fig. 1 is de-
picted in terms of inputs and outputs of the tool stages, but
the actual workflow of the STP is driven on-demand in the
reverse direction as the programmer uses the STP.
Fig. 3 gives a typical preamble when using the STP to

implement a protocol endpoint. Line 1 instantiates the STP by
supplying the Scribble module, the name of the root protocol
and the target role as static parameters. This is the trigger
for the F# compiler to engage the compile-time functionality
of the STP, which we outline below with reference to the
relevant sections with more detailed explanations.
(§ 3) First, the STP validates the specified protocol, accord-
ing to the core MPST properties (such as reception errors
and deadlock-freedom) and our extensions related to refine-
ments. An invalid protocol causes a compile-time error to
be raised here.
(§ 4) The STP performs the compile-time generation of the
protocol- and role- specific types of an API for implement-
ing this endpoint. The API presents a call-chaining interface:
the target values represent the state-specific communica-
tion channels (state channels, for short), with methods for
chaining I/O actions through states. More specifically:
• Each protocol state is generated as a distinct .NET class
type, whose methods give exactly the I/O actions permit-
ted at that state.

• The return type of each I/O method corresponds to the
successor state of that action.

(§ 5) The compiler uses the STP for on-demand generation
of the underlying API code, upon subsequent uses of the
generated types in the user program. Besides the actual
network I/O, the STP leverages the code generation to treat
interaction refinements by a combination of correctness by
construction and automated inlining of assertions.
As we shall illustrate below, the code generation depends
on the kind of communication pattern induced by an inter-
action refinement, and the potential to enforce it statically.
The STP instantiation returns the frontend type of the API,

named SH_P in Fig. 3. The instantiation on Line 3 represents
creating a new session endpoint for this protocol and role,
and line 5 starts its implementation. The Init method han-
dles the connection actions for session initiation according
to a local configuration file (config.yaml), and returns the
initial state channel, bound to s.

1 let rec loop poly s =

2 match poly with

3 | v1::v2::tail →

4 let b1 = new Buf<bool>()

5 let b2 = new Buf<bool>()

6 let s' = s.Send(R, IsAbove, v1).Receive(R, Res, b1)

7 .Send(R, IsAbove, v2).Receive(R, Res, b2)

8 let s'' = // s'' has the same type as s

9 if b1.val then

10 if b2.val then s'.Send(C, BothIn).Send(R, BothIn) else isct s'

11 else

12 if b2.val then isct s' else s'.Send(C, BothOut).Send(R, BothOut)

13 loop (v2::tail) s'' // Recursion

14 | _ → s.Send(R, Close).Send(C, Close) // End

15
16 let isct p =

17 let s' = s.Send(R, Intrsct).Receive(R, Res, new Buf<Point>())

18 if b2.val then s'.Send(C, SecIn) else s'.Send(C, SecOut)

Figure 4. The main loop for P using the STP-generated API.

Distributed programming in F# using the STP. Start-
ing from the initial state channel, an STP-generated API
should be used according to one simple condition: invoke
one I/O method on the current state channel to obtain the next,
continuing up to the end of the protocol (if any).

The API generation includes utility constants for the vari-
ous names in the protocol specification (e.g., roles and labels)
following a singleton type pattern; we shall assume conve-
nience let-bindings, e.g., let R = SH_P.Role.R.val, where
SH_P.Role.R is the generated type for role R and val is the sin-
gle value of this type. We can continue the implementation
of P by changing line 6 in Fig. 3 to

loop poly (s.Send(R, Plane, p1, p2, p3, p4))

assuming p1–p4 of type Point and poly of type Point list.
The loop function, given in Fig. 4, corresponds to the rec Loop
in the Scribble protocol. We summarise the key features of
the STP-generated API, as demonstrated in the code of loop.
Static type checking Fig. 3 illustrates a standard IDE fea-
ture (here, Visual Studio IntelliSense) for listing the valid
members of a type, as applied to the initial state channel s.
As per the protocol, the only I/O action permitted there for
P is to send R the Plane message. Similarly, the successor
state channel offers

Send: R → IsAbove → Point → SH_P.State2

as used on line 6 in Fig. 4. Typing will thus statically detect
protocol violations such as sending to the wrong role (i.e., C),
sending an unexpected message (e.g., Intrsct) or payload
(e.g., true), or attempting to Receive instead of Send.
Correctness by construction The protocol specifies
BothIn(v2) from P to C, but line 10 in Fig. 4 shows the
generated method is just s'.Send(C, BothIn)—i.e., no
v2 argument. Since P must forward to C exactly the v2

value given earlier (in IsAbove), the STP generates the
API at P to internally cache this value and implicitly
send it in the Intrsct message, ensuring correctness by
construction. More general refinement expressions (i.e.,

131

A Session Type Provider CC’18, February 24–25, 2018, Vienna, Austria

beyond simple forwarding) can be treated in the same
manner, as explained in § 4.1.
Safe optimisations The interaction Intrsct(v1, v2) from

P to R corresponds to p.Send(R, Intrsct) on line 17 in
Fig. 4. Similarly to the above, this refinement states P must
send Intrsct with the same v1 and v2 values given earlier.
In this instance, however, R also already knows these values
from the earlier interactions. The STP supports cross-role
interaction optimisations, by generating, e.g., the API at R
to internally cache and reuse those values—and the API at
P to omit them from the Intrsct message.
Automated assertion inlining Combining types and
code generation allows useful and common refinement
patterns, like those above, to be statically realised in basic
F#. As the default base case, a refinement expression (or
possibly just some part of it) may be treated by directly
inlining it into the generated code as a run-time assertion.
For instance, there is no static assurance that the code for
the BothIn/Out/Intrsct choice on lines 8–12 adheres to the
specified refinements. Instead, the STP embeds, e.g., the
assertion b1 && b2 into the Send(C, BothIn) method body.

2.2 Safety Guarantees of STP-generated APIs
As stated earlier, the programming interface presented by
the STP is based on a linear (exactly once) usage discipline
on state channels. The STP enforces linearity by embedding
run-time checks into the generated I/O methods: a simple
boolean guard on whether the channel has already been
“used” [14, 19]. This is similar to the base case assertion
inlining—for both linearity checks and refinement assertions,
the generated code handles a violation by raising an excep-
tion without performing the actual I/O action.
The STP thus offers the following safety guarantee for

endpoint programs:
A statically well-typed STP endpoint program will never
perform a non-compliant I/O action w.r.t. the source protocol.
This is because the only way a well-typed program can at-
tempt a non-compliant I/O action is by violating linearity or
an inlined assertion. If an endpoint program is well-typed
but not fully correct, execution will at worst result in an
unfinished protocol, which is always a caveat in practice due
to program errors outside the protocol code or failures.

3 Specification and Validation of MPST
with Interaction Refinements

We present our extensions to the Scribble protocol descrip-
tion language for specifying communication patterns with
interaction refinements, and our implementation of protocol
validation.

Syntax. Below is the syntax of global protocols P in our
extended Scribble. We use the following base notations: p
stands for protocol names; r stands for role names (concrete
role names are A, B, etc.); l for message labels; S for data types

(sorts, e.g., int, bool); x for variables; f for function names;
and n for integers.

P ::= global protocol p (role r1, ..., role rn) {G}

G ::= l(T) from r1 to r2; @E | do p(r1, ..., rn);
| choice at r {G1} or ... or {Gn } | G G

T ::= x1 : S1, ...,xn : Sn
E ::= x | n | true | false | E ⊕ E | ⊖ E | f (E1, ...,En)
⊕ ::= and | or | = | < | > | + | ∗ ⊖ ::= not | −

An interaction (from plain Scribble), l(T) from r1 to r2, speci-
fies that role r1 sends asynchronously (i.e., without blocking)
an l message with a payload T (a tuple of sorts S) to r2, who
blocks until the message is received. Our extensions allow
(1) payload elements to be annotated by a variable x ; and
(2) the interaction to be refined by a boolean refinement ex-
pression @E, which specifies that the roles may perform
their respective I/O actions only if E holds. E includes logi-
cal connectives, comparisons on arithmetic expressions and
functions, on payload variables and constants. An interac-
tion from plain Scribble is the same as a refined interaction
with @true.

The other constructs are as in plain Scribble. choice at r
specifies a branch point in the protocol where the choice sub-
ject, role r , decides which one of the or-separated cases the
protocol should follow. The decision is made as an internal
choice by (the implementation of) r , but must be explicitly
communicated as an external choice to the other roles in-
volved in each case. The do statement allows protocols to be
composed from subprotocols and recursive protocol defini-
tions (e.g., Fig. 2). Constructs are sequenced by G G. We shall
omit the details of basic syntactic consistency checks that are
as the reader would expect: e.g., to rule out occurrences of r
(resp. x) not bound by role r (resp. payload element x : S),
unreachable code after a recursive do, and badly-formed ex-
pressions such as 3 < true.

Protocol validation. The validation method of Scribble is
based on a combination of (a) syntactic constraints, derived
from the characteristics of formal MPSTs, with (b) explicit
checking of MPST errors (e.g., reception errors and dead-
locks) on an asynchronous model of the protocol [15]. The
main idea is that (a) delimits a class of protocols for which
it is sound to perform (b) on a finite model of the proto-
col with bounded-capacity channels: if the bounded model
is error-free, then the protocol is error-free in general. In
particular, Scribble builds on theoretical studies of MPST as
communicating automata [7] where safety properties can be
established from 1-bounded channels. Here, we omit the de-
tails of the syntactic constraints and base properties checked
by Scribble, and focus on properties directly related to refine-
ments. An overview of the omitted properties can be found
at [26].

132

CC’18, February 24–25, 2018, Vienna, Austria Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal

1 2 3 4 5

6

7

8

910

11

12

α1 α2 α3 α4

α5α6
α7

α8

α9

α10
α11

α12α13

α14

α15

α1 = R!Plane(p,p,p,p)
α2 = R!IsAbove(v1:p)
α3 = R?Res(b1:b)
α4 = R!IsAbove(v2:p)
α5 = R?Res(b2:b)
α6 = C!BothIn(x1);

x1 7→ v2; b1∧b2
α7 = R!BothIn()

α8 = C!BothOut(); ¬(b1∧b2)
α9 = R!BothOut()
α10 = R!Intrsct(); b1⊕b2
α11 = R?Res(i:P)
α12 = C!SecOut(x2); x2 7→ i
α13 = C!SecIn(x3,x4); x4 7→ i, x4 7→ v2
α14 = R!Close()
α15 = C!Close()

Figure 5. CFSM representation of role P from protocol SH in Fig. 2 (→ denotes an output,d is an input)

Properties checked on refinements. To sum up the core
notion of model employed in Scribble: states record the cur-
rent position of each role in the protocol and the contents of
its input queues from each peer, and transitions are the asyn-
chronous send and receive actions by roles. We extend model
states with two elements,K and F , to treat refinement expres-
sions. K is a map from roles r to sets of variables {xi }i ∈I that
records the local knowledge of payload variables at each role:
sending or receiving an annotated payload element adds that
variable to the K of the subject role. F is a map from roles r
to expressions E that records the conjunction of refinement
expressions passed by each role in its interactions so far.
Our implementation checks the following based on this

extended model, supported by the Z3 SMT solver. Let S be
any model state, with associated K and F , and let r be any
role at an output point in the protocol in S .

Variable knowledge For all actions of r , r must know ev-
ery variable occurring in the E of the corresponding inter-
action, i.e., ∀x ∈ vars(E).x ∈ K(r).

1(x : int) from A to C; 2(y : int) from
✿
B to C; @y >

✿
x

The above is invalid as B does not know x (the wavy-
underlined red font indicates the error in the Scribble
code).
Refinement satisfiability For all actions of r , the E must
be satisfiable for some interpretation of F (r).

1(x : int) from A to B; @x > 3
choice at B { 2() from B to A; @true }

or { 3(y : int) from B to A; @
✿✿✿✿✿✿✿✿✿✿✿✿
y>x+1 and y<4 }

The 2 case is always eligible, but the 3 case is never eligible.
Such errors correspond to unreachable protocol flows (or
protocol deadcode). Written in the SMT 2 language of Z3,
our implementation catches this by asserting for B:

(and (> y (+ x 1))(< y 4)(> x 3))

Refinement progress r must have an action for which the
E is satisfiable for all interpretations of F (r).
1(x : int) from A to B; @x > 3 2(y : int) from C to B;
choice at B { 3() from B to A; @

✿✿✿
x<y }

or { 4() from B to A; @
✿✿✿
x>y }

Above, B (and consequently A) would be stuck at the choice
in the situation that x = y; this is caught by asserting for B:
(forall ((x Int)(y Int))(=> (> x 3)(or (< x y)(> x y))))

A fix would be to add the equality case to the choice. Adding
@y<=3 to the 2 interaction would fix refinement progress but
violate satisfiability. At the endpoint programming level,
refinement progress ensures at any output point in the
protocol implementation that there will always be some
action for which E necessarily holds.

4 From Session Types to F# Types
After validating the source protocol (§ 3), the STP generates
F# types (more precisely, .NET types) to capture the structure
of the protocol from the perspective of the target role. This
section explains the type generation, which is based on a
representation of the localised protocol as a communicat-
ing finite state machine (FSM) with extensions for treating
interaction refinements in the later code generation (§ 5).

4.1 From Scribble to CFSMs
Continuing our running example, Fig. 5 illustrates the I/O
structure for the P role in the SH protocol (Fig. 2). We have
shortened the types Point to p and bool to b. The initial state
is 1. The notation, e.g., R!Plane(p,..,p) denotes the local send
action by p to R of the specified message; ? denotes a local
receive action. The outermost choice at P in Fig. 2 (line 6)
corresponds to state 2, the first nested choice (line 9) to state
6, and the innermost choice (line 18) to state 10. The recursive
protocol definition manifests as the cyclic paths back to
state 2. Note that the CFSM follows the grammar in § 3 with
regards to de-sugaring ofmessage-value forwarding patterns:
e.g., the v2 payload of BothIn in Fig. 2 becomes a fresh variable
x1 in α6 (with an additional constraint, explained below).

Our extended CFSMs are defined as follows. An endpoint
FSM is a tuple (S,R, s0,L,T,δ), where S = {s, s1, s2, ..} is the
set of states, R is the set of role names, s0 is the initial state,
L is the set of message labels, and T is the set of payload
types. δ : S × A → S is the transition function, where A =
{α1,α2, ..} is the set of local actions. Each α has the form
r †l(xi :Ti)i ∈I ;σ ;Awith r ∈ R, † ∈ {!, ?}, l ∈ L, and S ∈ T for
each S inT . We annotate an α by its kind, i.e., α ! and α ?, and
similarly σ ! and σ ?; and define δ (s) = {α | ∃s ′.δ (s,α) = s ′}.

The σ and A elements are the main extensions: σ ! and σ ?

are both maps from variables x to expressions E (but with
different purposes), and A is an expression E. (In the above
example, we omitted empty σ from actions; similarly whenA

133

A Session Type Provider CC’18, February 24–25, 2018, Vienna, Austria

is true.) We now explain these elements using the example.
We have highlighted in Fig. 5 and Fig. 4 where σ ! (orange)
and σ ? (blue) manifest in the CFSM and user program.

Constructive variables σ ! records expressions for payload
variables to be sent where the expression can be statically
determined from equality clauses in the refinement. These
expressions are used to enforce the refinement by construc-
tion via the later code generation. E.g., in α6, σ = {x1 7→ v2}

is determined from the message-value forwarding pattern
BothIn(v2) from P. Our implementation determines these
expressions by checking the satisfiability of the implication
from the current constraints (i.e., F) to the syntactically
extracted candidate expressions (e.g., x1 = v2, for which
this check trivially holds since x1 is fresh).
Interaction optimisations σ ? records expressions for pay-
load variables that do not need to be sent because the
receiver already has the values needed to compute the
expression locally. Our implementation determines these
directly from variables occurrences in the protocol syn-
tax. Such variables are then elided from T at the sender-
side. E.g, in α10, both v1 and v2 have been elided from the
Intrsct message; in the corresponding receive action at R,
σ = {x1 7→ v1,x2 7→ v2} where x1,2 are fresh variables
from de-sugaring the source Scribble.
Assertion A is derived from the source refinement expres-
sion, taking into account the constructive variables. In α6,
A = b1 ∧ b2—this is the result of pruning the x1 clause from
the underlying expression x1 = v2 ∧ b1 ∧ b2 given by de-
sugaring the source syntax. Refinements that are statically
determined to be true are simply pruned (useful for E as
design-level assertions).
Value forwarding patterns (like α6) are a special case of

constructive variables. The principle applies to any expres-
sions that can be statically determined in the above manner.

4.2 From CFSMs to F# Types
The STP uses the CFSM to generate protocol- and role- spe-
cific types for the endpoint API. All of the generated types
are housed as nested types in the frontend type returned
by instantiating the STP (e.g., SH_P in Fig. 3). First, the STP
generates utility constants for each member of R and L by a
singleton type pattern: e.g., for role P, the STP generates a
nested class SH_P.P and a constant SH_P.P.val that is the sole
value of this type. These are used to direct the I/O operations
described below. The frontend class has a method Init() that
uses the config.yaml supplied to the STP to perform the local
connection operations for initiating a new session.
Second, the STP generates a family of class types that

captures the I/O structure of the FSM for this endpoint. This
relies on the following properties of FSMs derived from a
valid source protocol [14]: (1) all actions at each state are of
the same kind, i.e., a state cannot have both ! and ? actions;
and (2) ?-actions at any given state specify the same r . The

generation uses a map ⟦s⟧ from states s to distinct .NET class
names. The user may provide meaningful names for states,
or else the STP generates default names by enumerating the
states. Each state s is generated as a class type as described
by the following cases:

Output δ (s) = {α !i }1..n ,n > 0: the STP generates
type ⟦s⟧ = m1 . . .mn

where for each αi = ri !li (Ti);σi ;Ai ,
mi = member Send: ri→li→ϕ!(Ti ,σi)→⟦δ (s,αi)⟧

Single-input δ (s) = {r?l(T);σ ;A}: the STP generates
type ⟦s⟧ = member Receive:r→l→ϕ?(T)→⟦δ (s,α)⟧

Branch-input δ (s) = {α?i }i ∈I , |I | > 1: the STP generates
type ⟦s⟧ = member Branch: r→I⟦s⟧
interface I⟦s⟧

and for each αi = r?li (Ti);σi ;Ai , a nested type within ⟦s⟧:
type Cli = interface I⟦s⟧ with

member Receive:ϕ?(Ti)→⟦δ (s,αi)⟧
In the above, ϕ!((xi : Si)1..n ,σ) = [Sj][j | j ∈1..n∧x j<σ] and
ϕ?((xi : Si)1..n) = [Buf⟨Si ⟩]1..n , where the notation [Si]1..n
stands for S1 → ...→ Sn .

For example, the STP generates for state 10 in the FSM of
P (assuming default state naming):
type S10 = member send: C→ SecOut→ S2 member send: C→ SecIn→ S2

Both actions take no payload arguments due to their con-
structive variables, and lead to the same successor state.
For branch-inputs, the branch method will return a case-

specific class type Cli that implements the intermediate in-
terface type I⟦s⟧ for this branch. Each case type has only
the receive for that case, that takes a Buf for each pay-
load value and returns the successor state. The appropri-
ate case should be safely determined by a standard F# type
test pattern. For example, the outermost choice for R in
Fig. 2 corresponds to a branch-input state s2 where δ (s2) =
{P?isAbove(v1:P), P?Close()} and ⟦s2⟧ = S2. This branch may
be implemented using the STP-generated API by
match s.branch(P) with // By the type generation, only two cases

| :? SH_R.S2.IsAbove as s1 →

let p1 = new Buf<Point>()

let p2 = new Buf<Point>()

f (s1.Receive(p1).Send(P, Res, (isAbove (p1.val)))

.Receive(P, p2).Send(P, Res, (isAbove (p2.val)))) p1 p2

| :? SH_R.S2.Close as s2 → s2.Receive(P) // Protocol end

where s is of type S2, SH_R is the frontend type given by
instantiating the STP for SH and R, isAbove is a local auxiliary
function, and f is a function that finishes the IsAbove case.

5 STP Code Generation
We outline the implementation of the STP, and explain the
code generation related to static and dynamic enforcement
of refinement expressions. F# has several integrated features
for meta programming that we use to support on-demand
generation of types and code from Scribble protocols: (1) quo-
tations for programmatically creating and representing code

134

CC’18, February 24–25, 2018, Vienna, Austria Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal

F# Compiler (VisualStudio, Mono, etc.)

Session Type Provider

Extended Scribble + Z3

User F# code Generated
CIL codetype SH_P = STP<"SH.scr", "SH", "P">

...

s.send(R, Plane, p1, p2, p3, p4)(1) Supply STP
parameters
(Fig. 3)

(2) Instantiate STP

(3) Validate
protocol (§ 3) (4) Generate CFSM (§ 4)

(5) Generate
types (§ 4)

(6) Load types (7) Use types (Fig. 4)

(8) Invoke code
generator

(9) Generate
AST (§ 5)

(10) Compile
+ emit

Endpoint program

Figure 6. STP Workflow of types and code generation.

as values; (2) AST splicing for composing code fragments
(expression trees and literals); and (3) the type provider frame-
work itself, as a means for plug-in compiler extension.

5.1 Session Type Provider Implementation
Our session type provider is implemented as a generative type
provider—this kind of type provider produces types that are
added as concrete definitions in the final compiled program.
The alternative are erasing type providers, for which the
produced types are erased at run-time (e.g., the types of
object values are erased to obj). Our current approach relies
on generated types for statically safe branch handling via
type test patterns (§ 4.2).

Compile-time operation of the STP. Fig. 6 depicts the
workflow of the STP, driven on-demand during the compile-
time of the user program. As explained through the preceding
sections, the flow starts with the instantiation of the STP by
the user in (1) in Fig. 6, leading to the loading of generated
types by the compiler in (6).

Below is a snippet from the STP implementation for gen-
erating a send method from an α = r !l(T);σ ;A in the CFSM.
let getBody ps = // ps are the method parameters

let astVals = makeVA T, V, A, ps // makeVA explained in § 5.2

<@ let payloadVals = %astVals ...

Transport.send this.sessid %ps.[0] %ps.[1] payloadVals

@> // getBody returns an AST given as a quotation

outputC.addMethod("send", r, l, T, getBody) // r, l, T from CFSM α

outputC is a value that represents an output-state class under
construction via the type providers API. The call to addMethod
is performed in (5) according to the generation of class types
and members for CFSM output states in § 4.2. The arguments
to addMethod, except the last, specify the signature (name and
parameter types) of the method being constructed—r , l and
T correspond to the elements of α .

Subsequent uses of the generated types, e.g., the send invo-
cation in step (7), triggers the generation of the actual code
for the target operation. The last argument to addMethod, the

function getBody, is called by the type provider framework in
(8) to construct an abstract syntax tree (AST) for the method
body. The AST is specified by the quotation (<@..@>), which
is a template for an expression with parameters (prefixed
by %) to be filled by the compiler. The compiler passes the
parameter names of the method being constructed as a list
of expression values as ps, and evaluates getBody to an AST
by splicing the relevant expressions into the quotation at
the %-positions. Finally, the AST for the generated code is
compiled into the .NET Common Intermediate Language
(CIL) and emitted to the endpoint program.

Networking code. The code inside the quotation shown
above includes a call to the send operation of the network-
ing library accompanying the STP. This operation takes as
arguments (via the spliced in parameters) the values for the
session ID, target role, the message label, and the payload
values to be communicated.

We briefly outline the implementation of the networking
library. The generated Initmethod of the API frontend type
(§ 4.2) obtains from the local config.yaml the transport kind
(by default, TCP), and a remote network address or local
port to connect/accept on for each session peer. The Init

method returns when a connection has been established to
each peer (or throws an exception on any error). The net-
working library at each endpoint maintains a mapping from
session instances and peer roles to the concrete network con-
nections internally, and dispatches messages on connections
according to the channel instance and role argument (e.g., s
and R) supplied by the user to the generated code.

5.2 Static and Dynamic Treatment of Refinements
Code generation for constructive variables. So far, we
have explained the STP code generation related to the core
I/O structure of an endpoint FSM, i.e., the protocol states
s and the role r , label l and payload T elements of actions
α . The aspects of code generation related to enforcing the
specified refinements stem from the statically analysed σ
and A elements of α (§ 4.1). Below is a pseudocode outline
of the generated code (TAST) returned by the makeVA func-
tion used in the earlier snippet, which treats σ and A at the
sender-side.

makeVA(T ,σ ,A, ps) = // where T = (xi : Si)1..n ; let j := 2
<@ for i in 1..n

if xi ∈ dom(σ)then
(σ (xi),C) ⇓ vi ; C[xi 7→ vi] (1a) Evaluate var expr

else
C[xi 7→ %ps.[j]]; j++ (1b) Take next ps

if(A,C) ⇓ false then exception (2) Check assertion
return C(x1), ...,C(xn) @> (3) Return payloads

Let cache C be a map from variables x to values v . We
write C[x 7→ v] to stand for the operation of updating the
value of x in C to v (leaving other variables unchanged);

135

A Session Type Provider CC’18, February 24–25, 2018, Vienna, Austria

and (E,C) ⇓ v for the evaluation of an expression E under
the context of C to v . ps is the list of parameter expressions
described in § 5.1; the index j starts at 2 for the payload
parameters (i.e., skipping the role and label).
For each element of T , the generated code will update

cache C either (1a) by evaluating the expression E given by
σ in the case of constructive variables, or (1b) directly from
the user-supplied ps. It then (2) checks the assertion, using
the latest values of any constructive variables; and (3) and
returns the concrete payload values to be sent, in order.

The code generation allocates a cache per instance of the
STP frontend type (i.e., per endpoint—e.g., new SH_P in Fig. 3).
Protocol validation (§ 3) guarantees (a) the latest value of a
variable is present in C when used in any Ei or A; and (b)
in conjunction with run-time checks on linear channel us-
age (explained below) precludes race conditions on variable
access. For simplicity, we have portrayed C as recording all
refinement expression variables; our implementation caches
only those that may be needed to compute a constructive
variable or check an A, determined straightforwardly by
Scribble from the syntax of the source protocol.

Assertion inlining. For the (E,C) ⇓ operations, the code
generation wraps E in a lambda expression with the free vari-
ables of E (ordered lexicographically) as parameters. This
lambda expression is applied to the run-time values of each
variable in C, i.e., (fun x1 ... xn → E) C(x1) ... C(xn) where
x1...xn are the free variables of E. Thus, for interaction refine-
ments that are not fully statically covered by the previous
code generation steps, the (remaining) assertion A is dynam-
ically enforced by evaluating it as a boolean predicate. Our
implementation allows the user to disable assertion inlining
for Receive methods. This is a safe optimisation if the user
trusts in the correctness of the other session endpoints: if
all endpoints are STP-implementations (or are otherwise
correct), then sender-only assertion inlining is sufficient to
guarantee the STP safety properties.
As explained in § 2.2, every generated I/O method also

has an inlined run-time check for linear channel usage. Each
channel instance simply has a boolean “used” flag that the
generated code will check on method entry: an exception
is thrown if the channel has already been used (without
performing the offending I/O action), or else the flag is set.

6 Evaluation
This section evaluates compile-time and run-time perfor-
mance. Although we have not as yet considered performance
as a primary consideration in our current implementation,
these preliminary results demonstrate the applicability of
our approach.
Setup.We use Visual Studio 2015, .NET Framework 4.5.2 and
F# runtime 4.4.0.0. Our machine configurations are Windows
7 Enterprise 64-bit; Intel Core i7-3770@ 3.40GHz; 16Gb RAM.
We repeated each benchmark 30 times and report the average.

Table 1. Time taken by STP types generation.

Example (role) #LoC #States #Types Gen (ms)

2-Buyer (B1) [13] 16 7 7 280
3-Buyer (B1) [5] 16 7 7 310
Fibonacci (S) [14] 17 5 7 300
Travel Agency (A) [24] 26 6 10 278
SMTP (C) [14] 165 18 29 902
HTTP (S) [3] 140 6 21 750
SAP-Negotiation (C) [18] 40 5 9 347
Supplier Info (Q) [24] 86 5 25 1582
SH (P) 30 12 15 440

For run-time performance, we ran each process on a separate
machine with latency measured to be 0.24 ms (ping 64 bytes).

Compile-time performance of the STP. We use examples
from three categories: (1) classical examples from session
types literature, to confirm the STP supports core session
types features; (2) real-world use cases, including subsets of
SMTP and HTTP that demonstrate interoperability between
STP-implemented programs and existing client/servers (e.g.,
Microsoft Exchange, Firefox and Apache); and (3) micro-
benchmarks to stress test scalability. We measure the time
taken by the STP to generate all types and AST values from
the CFSM (from the start of step 5 to the end of 9 in Fig. 6).
Table 1 reports the results for (1) and (2). LoC refers to

Scribble protocol; states to the local CFSM for the target
role. We extended some of the original session types with
expected uses of refinements: e.g., in Fibonacci, to express
the addition as a value constraint; in 2-Buyer, to express that
the same quote value is sent to both buyers, and the split in
cost between them. In HTTP, the size of a message body is
determined by the value of the Content-Length header field,
CONTLEN(n:int)from C to S; ... BODY(b:string)from C to S; @size(b)=n

where size is a built-in function of our extended Scribble.
Travel Agency is from a W3C Choreographies use case; SAP-
Negotiation is for Service Agreement Proposals; and Supplier
Info is based on a microservices use case.
For (3), we use protocols of increasing size (number of

states and generated types), formed by repeated composition
of the following pattern, where i ranges over 1..n:
pingi(int) from A to B; @E pongi(int) from B to A

(The specific protocol structure is less important here as the
STP conducts a single linear pass over the state set; § 4.2.)
Fig. 7 (a) reports the results for n from 10 to 50, where P1
has an empty E, and P2 has E =xi >xi−1. The Scr part of the
result is the time from STP instantiation to CFSM generation,
and Gen the time from there to finish types/AST generation.
Overall results. The generation time is less than two sec-
onds in all cases of (1) and (2): it had negligible effect on the
programming experience (note for stable protocols, genera-
tion is a one-time compilation cost). (3) confirms the linear
cost of generation in the number of local endpoint states.

136

CC’18, February 24–25, 2018, Vienna, Austria Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal

Figure 7. From left to right: (a) compile-time performance for P1 and P2; and run-time performance for (b) SH, Calculator
and 2-Buyer; (c) Ping-Pong; and (d) P2.

Run-time performance of STP-implemented programs.
We conducted several benchmarks to evaluate how the de-
sign of the STP impacts the run-time for applications using
TCP sockets. Any overheads introduced by the STP stem
from: (i) type instantiation and use—e.g., state channel cre-
ation and branch typecases; (ii) linearity checks—checking
and setting the boolean flag on state channel use; and (iii)
inlined assertions—run-time enforcement of refinements. For
each application, we compare three versions: an STP imple-
mentation with interaction refinements (WithIR); an STP im-
plementation without refinements (NoIR); and an “untyped”
implementation that directly uses the standard .NET TCP li-
brary (System.Net.Sockets) and enums for pattern matching
messages in branches (bareTCP). We measure the time after
session initiation to end.
Fig. 7 (b–d) report the results for the following applica-

tions, all implemented in F#. We explain each and its interac-
tion refinement(s) (IR for short), and summarise the results.
We say TCP-overhead for NoIR against bareTCP; and IR-
overhead for WithIR against NoIR.
SH is our running example on a polygon of 100 points. TCP-
overhead is 5%, while the IR-overhead is only 1%—as a more
realistic application, most of the time was taken by the cal-
culations at R.
Calculator is a distributed service for arithmetic operations
(+, −, × and ÷). The recursive protocol allows a client to
repeatedly send an operation request with two numbers x
and y, and receive back the result. IR are accordingly spec-
ified for each operation; the case of division also specifies
y , 0. The results are for a client requesting 100 operations.
TCP-overhead is 9%. For IR-overhead, we the constructive
variables to check all refinements dynamically as an artificial
worst case, resulting in 11% overhead.
2-Buyer is a negotiation between two buyers B1 and B2, and
a seller S . B1 names items for purchase to S, who sends a
quote to both B1 and B2; B1 tells B2 how much she will con-
tribute, and B2 notifies S whether or not she accepts. An
IR at S specifies the same quote is sent to both buyers, and
an IR at B2 specifies to accept if the contribution offered by
B1 is more than half. The results are for 1000 interactions.
TCP-overhead is 4.8%, and IR-overhead is 13%.

Ping-Pong is a micro-benchmark given by wrapping the
ping-pong pattern from earlier in a recursion, with E =x> 0
and the second payload changed to x (value dependency),
that is repeated the specified number of times. (Unlike P1
and P2, this protocol is a fixed small size.) Similarly to above,
TCP-overhead stays below 5%, while IR-overhead is 12%.
P2 is as defined earlier with n=100, which is then repeated
in a recursion 100–500 times. In contrast to Ping-Pong, this
protocol generates a large number of types and different
assertion objects. However, IR-overhead remains similar (be-
low 11%), indicating that the number of assertion objects does
not significantly affect performance; while TCP-overhead is
slightly higher at 5-7%, due to the increased type loading.

Summary. Our evaluation shows that the compile-time cost
of the STP scales w.r.t. the protocol size, with low run-time
overhead compared to the directly implementing the TCP
base cases from scratch, i.e., without any assistance from
specification-derived types or code generation. The primary
motivation of our work is for such programmatic and safety
benefits. We found using the STP also reduces bugs and code
size by simplifying several error prone aspects, such as socket
creation and message serialization; and that the types are
valuable for exploratory programming and documentation,
particularly so compared to large prose-based specifications
such as the HTTP and SMTP RFCs. The automated treatment
of refinements by the STP also allows the programmer to
add/remove checks without modifying the endpoint code.
Our run-time results are from a low latency environment; in
practice, network latency will further offset any overheads.

7 Related Work
We summarise the most closely related works on extensions
of session types, and code generation for protocol APIs. See
[26] for further discussions.

Theoretical works on session types with refinements.
The earliest work [4] (and closest to our extended Scribble)
extends the core MPST theory (session π -calculus and type
system [13]) to a Design-by-Contract methodology based
on projecting global assertions. The variable knowledge
and refinement progress properties (§ 3) that we check

137

A Session Type Provider CC’18, February 24–25, 2018, Vienna, Austria

are similar to their syntactic well-formedness of global
assertions, but developed for our practical setting via
model checking and SMT solving—which permits more
expressive interaction structures than the core MPST theory
(e.g., [4] restricts any third party in a choice to the same
behaviour in all cases), and will facilitate integration with
other practical MPST extensions (e.g., [15]). [2] presents a
binary (two-party) session π -calculus where assumptions
and assertions are modelled as explicit linear resources:
assertion predicate terms are cut (i.e., consumed) against
(syntactically) matching assumption context terms; [8]
is a direct implementation as an executable π -calculus
with syntactic predicate matching. [29] extends an MPST
framework with value-dependent types from [28]. [29] is
based on explicitly exchanging proof objects, whose validity
is checked at run-time, to confirm the consistency of data
constraints at the two ends. In contrast to these works,
the focus of this paper is a practical development of MPST
with interaction refinements for a real-world language (F#,
and .NET), through a combination of static typing, code
generation and tools integration.

Session programming in mainstream languages. Sev-
eral recent works have studied applications of session types
in statically-typed mainstream languages. This paper builds
on the “hybrid” approach of [14] (Java)—code generation for
static typing backed up by automated inlining of run-time
linearity checks—to support and enforce communication
patterns involving interaction refinements in native F#.
Other works that use run-time linearity checking are [23]
(Scala) and [19] (OCaml), based on a continuation-passing
style for binary sessions; and [22], which implements Scala
API generation for a subset of Scribble corresponding to
a core syntactic formulation of MPST theory. Another
approach for binary sessions is via monadic embeddings into
the target type system, as in [21] (Haskell) and [16] (OCaml),
which rely on relatively advanced typing facilities; error
messages may be indirect or obfuscated by the embedding.
None of these works support multiparty sessions with
interaction refinements (all are for binary sessions or the
core MPST only).

To the best of our knowledge, this paper is the first to ap-
ply session types using type providers, exploiting language-
integrated compile-time generation of typed APIs to make
session types practically accessible to programmers.

Acknowledgments
We thank the referees for their comments. This work
is partially supported by EPSRC projects EP/K034413/1,
EP/K011715/1, EP/L00058X/1,EP/N027833/1 and EP/N028201/1.
The first author is supported by an EPSRC Doctoral Prize
Fellowship.

References
[1] D. Ancona et al. Behavioral types in programming languages. Foun-

dations and Trends in Programming Languages, 3(2-3):95–230, 2016.
[2] P. Baltazar, D. Mostrous, and V. T. Vasconcelos. Linearly refined session

types. In LINEARITY, volume 101 of EPTCS, pages 38–49, 2012.
[3] Behavioural Types: from Theory to Tools. River Publishers, 2017.
[4] L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-

contract for distributed multiparty interactions. In CONCUR, volume
6269 of LNCS, pages 162–176. Springer, 2010.

[5] M. Coppo, M. Dezani-Ciancaglini, N. Yoshida, and L. Padovani. Global
progress for dynamically interleaved multiparty sessions. MSCS,
26(2):238–302, 2016.

[6] D. Delimarsky. WsdlService Type Provider (F#).
https://msdn.microsoft.com/visualfsharpdocs/conceptual/
wsdlservice-type-provider-%5bfsharp%5d.

[7] P.-M. Deniélou and N. Yoshida. Multiparty compatibility in commu-
nicating automata: Characterisation and synthesis of global session
types. In ICALP, volume 7966 of LNCS, pages 174–186. Springer, 2013.

[8] J. Franco and V. T. Vasconcelos. A concurrent programming language
with refined session types. In BEAT, volume 8368 of LNCS, pages
33–42, 2013.

[9] T. S. Freeman and F. Pfenning. Refinement types for ML. In PLDI,
pages 268–277, 1991.

[10] F# data: Library for data access. http://fsharp.github.io/FSharp.Data/.
[11] S. Gay and V. T. Vasconcelos. Linear type theory for asynchronous

session types. JFP, Cambridge University Press, December 2009.
[12] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and

type disciplines for structured communication-based programming.
In ESOP’98, volume 1381 of LNCS, pages 22–138. Springer, 1998.

[13] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous
session types. J. ACM, 63(1):9:1–9:67, 2016.

[14] R. Hu and N. Yoshida. Hybrid session verification through end-
point API generation. In FASE, volume 9633 of LNCS, pages 401–418.
Springer, 2016.

[15] R. Hu and N. Yoshida. Explicit connection actions in multiparty session
types. In FASE, volume 10202 of LNCS, pages 116–133, 2017.

[16] K. Imai, N. Yoshida, and S. Yuen. Session-ocaml: A session-based
library with polarities and lenses. In COORDINATION, volume 10319
of LNCS, pages 99–118. Springer, 2017.

[17] B. Nordström and K. Petersson. Types and specifications. In IFIP
Congress, pages 915–920, 1983.

[18] Ocean Observatories Initiative. http://www.oceanobservatories.org/.
[19] L. Padovani. A simple library implementation of binary sessions. J.

Funct. Program., 27:e4, 2017.
[20] T. Petricek, G. Guerra, and D. Syme. Types from data: making struc-

tured data first-class citizens in F#. In PIDL, pages 477–490, 2016.
[21] R. Pucella and J. A. Tov. Haskell session types with (almost) no class.

In Haskell’08, pages 25–36, New York, NY, USA, 2008. ACM.
[22] A. Scalas, O. Dardha, R. Hu, and N. Yoshida. A linear decomposition

of multiparty sessions for safe distributed programming. In ECOOP,
volume 74 of LIPIcs, pages 24:1–24:31, 2017.

[23] A. Scalas and N. Yoshida. Lightweight session programming in scala.
In ECOOP, volume 56 of LIPIcs, pages 21:1–21:28, 2016.

[24] Scribble home page. http://www.scribble.org.
[25] O. Shivers and M. Might. Continuations and transducer composition.

In PLDI, pages 295–307. ACM, 2006.
[26] Project page. https://session-type-provider.github.io/.
[27] D. Syme et al. F#3.0: Strongly-typed language support for internet-

scale information sources.
[28] B. Toninho, L. Caires, and F. Pfenning. Dependent session types via

intuitionistic linear type theory. In PPDP, pages 161–172. ACM, 2011.
[29] B. Toninho and N. Yoshida. Certifying data in multiparty session types.

J. Log. Algebr. Meth. Program., 90:61–83, 2017.
[30] Z3 SMT solver. http://z3.codeplex.com/.

138

https://msdn.microsoft.com/visualfsharpdocs/conceptual/wsdlservice-type-provider-%5bfsharp%5d
https://msdn.microsoft.com/visualfsharpdocs/conceptual/wsdlservice-type-provider-%5bfsharp%5d
http://fsharp.github.io/FSharp.Data/
http://www.oceanobservatories.org/
http://www.scribble.org
https://session-type-provider.github.io/
http://z3.codeplex.com/

	Abstract
	1 Introduction
	2 Overview
	2.1 The Session Type Provider Toolchain
	2.2 Safety Guarantees of STP-generated APIs

	3 Specification and Validation of MPST with Interaction Refinements
	4 From Session Types to F# Types
	4.1 From Scribble to CFSMs
	4.2 From CFSMs to F# Types

	5 STP Code Generation
	5.1 Session Type Provider Implementation
	5.2 Static and Dynamic Treatment of Refinements

	6 Evaluation
	7 Related Work
	Acknowledgments
	References

