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Abstract

Fault-tolerant communication systems rely on recovery strategies
which are often error-prone (e.g. a programmer manually specifies
recovery strategies) or inefficient (e.g. the whole system is restarted
from the beginning). This paper proposes a static analysis based on
multiparty session types that can efficiently compute a safe global
state from which a system of interacting processes should be recov-
ered. We statically analyse the communication flow of a program,
given as a multiparty protocol, to extract the causal dependencies
between processes and to localise failures. We formalise our re-
covery algorithm and prove its safety. A recovered communication
system is free from deadlocks, orphan messages and reception er-
rors. Our recovery algorithm incurs less communication cost (only
affected processes are notified) and overall execution time (only
required states are repeated). On top of our analysis, we design
and implement a runtime framework in Erlang where failed pro-
cesses and their dependencies are soundly restarted from a com-
puted safe state. We evaluate our recovery framework on message-
passing benchmarks and a use case for crawling webpages. The
experimental results indicate our framework outperforms a built-in
static recovery strategy in Erlang when a part of the protocol can
be safely recovered.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Distributed Programming;
D.2.4 [Software Engineering]: Software/Program Verification;
D.3.1 [Programming Languages]: Formal Definitions and Theory;
F.3.2 [Semantics of Programming Languages]: Program analysis

Keywords Multiparty Session Types, Recovery, Distributed Pro-
gramming, Erlang, Fault-tolerance

1. Introduction
1.1 Motivation

Let it Crash recovery model Despite the importance of fast and
correct recovery in distributed systems, it is still difficult and error-
prone to implement fault-tolerant components. A well-established
fault-tolerance model is the Let it crash model, adopted by the pro-
gramming language Erlang. In Erlang, rather than trying to handle
and recover from all possible exceptional and failure states, one can
instead let processes crash and let the runtime automatically recy-
cle them back to their initial state. Failures and errors propagation
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are managed by organising the running processes in a hierarchi-
cal structure, called a supervision tree, where each process and its
dependencies are monitored by a parent process, called supervisor.

While the Let it crash model has gained popularity and has
recently been adopted in other commercial languages and frame-
works (Go, Akka and Scala), it still faces two major technical prob-
lems. First, the correctness of recovery strategies relies on the as-
sumption that a global process structure (i.e. a supervision struc-
ture) of the system is correctly written by a programmer. A recent
study reveals a misconfiguration of the supervision tree is a com-
mon source of errors for recovery [30]. Second, supervision strate-
gies have a fixed structure, hence they often recover too little or
too many processes, and are unable to capture the dynamic nature
of the communication dependencies between processes. This of-
ten leads to a redundant and/or a unsound recovery mechanism (as
shown in Table 1 and explained in §1.2). Here a question is: Can
we soundly generate recovery strategies, minimising the recovery
overhead? This paper answers the question affirmatively using a
theory of multiparty session types [19].

Multiparty Session Types (MPSTs) [19] is a typing frame-
work for verifying protocol conformance of a system of distributed
processes. When the global interaction pattern is specified as a mul-
tiparty session protocol (called global type), it is projected to a lo-
calised view of the protocol (called local type), which is then used
to type-check each process implementation. The framework (1) has
been applied to several mainstream languages (e.g, Java [20, 23],
Python [11, 26], MPI/C [29], Go [28]) as to ensure safety prop-
erties such as deadlock freedom and type-safety; and (2) has been
extended with exception handling constructs (e.g, [5, 7, 11]), offer-
ing viable solutions for verifying and modelling expected failures.
However, none of the above works is applicable to the Let it crash
model, which targets recovery when a process fails unexpectedly.
The class of unexpected software faults includes, for example, fail-
ures caused by corrupted data, a request timeout, buffer overflow,
out of memory exceptions.

Our approach In this paper, we apply MPSTs in a new direc-
tion: a MPST protocol is used to automatically ensure soundness
of recovered processes. The key idea is to extract a flow of com-
munications from multiparty session types which is in turn used to
calculate all affected parties and recover the system from a glob-
ally consistent state. Our recovery framework relies on two design
ideas: (1) messages that should be re-sent are identified based on
the dependencies in the type structure of a process and (2) only af-
fected participants are notified and recovered. To realise these ideas
we propose a novel algorithm, which localises the scope of the re-
covery, analysing the communication flow, given as a multiparty
protocol. The algorithm works by traversing a dependency graph,
automatically inferred from a given global protocol. We calculate
all dependencies in the graph, affected by a given state. On failure,
the processes from the calculated paths are notified and recovered.
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Ay — Ag; B1 — Bo;
G 1Ay — Ag; By — Bs;
A, —C Bn, —D

2C—sE ; D—E;

accept.E — D : reject.t’end,
E—=C: . P reject."end
reject. E — D : accept.end

Figure 1: Trading Negotiation Global Protocol

1.2 Trading Negotiation Use Case

We start by illustrating the difficulty of a sound and efficient re-
covery on independent (localised) chained interactions which are
a common topology found in Erlang applications. Fig. 1 shows
the protocol written as a global multiparty session type (Erlang
code can be found in Fig. 8). We write A — B : m to denote a
message exchange from participant A to participant B of a mes-
sage m, we sometimes omit the message from the notation. A se-
quence of messages is denoted by a semicolon ’;’. The notation
A — B: {m1.Gy, m2.G,} represents a choice at a participant A to
send to B either a message mj, or a message my; then depending on
the chosen action the protocol continues as G or Gy, respectively.
Message actions (send and receive) are ordered on the sender and
receiver side. For example, C — E;D — E describes messages to be
processed by E in the specified order.

The trading negotiation process is split into three phases: In the
first phase, two groups of participants, the team of Alice (4;) and
the team of Bob (B;) forward messages to their group leaders, C and
D respectively, with their suggested trading quote. The communica-
tion between the groups is independent (represented by two blocks
of composed global protocols). In the second phase, the leaders
of the groups notify the trader E regarding their proposals (repre-
sented by C — E;D — E). Finally, E chooses the best quote and sends
accept or reject to each group leader (represented by a choice).

In the above protocol the dependencies between the processes
are dynamic and change with the execution of the protocol. We
consider, as examples, three possible failures and give the set of af-
fected participants in each case using our MPST-induced approach.
Table 1 summarises the result and compares it with two Erlang re-
covery strategies. In Fig. 1 we use the notation 'A — B to denote
that B fails after receiving a message from A, and 1'A — B to de-
note that A fails after sending a message to B, ' corresponds to the
scenario number as given below.

Scenario 1': A fails before sending the message to A4. As
affects only its predecessors. Thus, if A3 fails, only A, A and
A3 are restarted. More generally, if A; fails before sending to
A1, then Ay,...,A; are restarted.

Scenario 12: E fails after receiving a message from C. All partic-
ipants are restarted. Note that since the network is asynchronous
C might have already sent the message to E, although E might
not have selected the message from the queue. When E fails,
the queue will be erased and the messages will be lost. Thus,
inevitably C must be informed about E’s failure.

Scenario 13: E fails after its last protocol interaction. Since E is
not involved in the protocol any more, no other roles should be
notified or recovered.

Erlang recovery strategies In Erlang, there are three types of
supervisions. In one-for-one supervision, if a process fails, only this
process is restarted by the supervisor; in all-for-one supervision, if
any process dies, all the processes are restarted; and in rest-for-one
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Scenario \ Fig. 2 (a) Fig. 2 (b) Our approach
T A1.. As Ap...As A1... As
2 | all only E (unsound) all
3 | all (inefficient) only E (unsound)  nothing

Table 1: Comparison between Erlang and MPST-based recovery

supervision, if a process terminates, only the rest of the processes
(the ones on the left of the terminated process in the supervision
tree) are terminated.

In Fig. 2 we present two representative supervision hierarchies
with combined strategies and compare them with our approach in
Table 1. The rest-for-one supervision is suitable for disjoint groups
of chained interactions. Hence we connect Alice’s group A; by a
rest-for-one supervisor and Bob’s group B; by another supervisor of
the same type. Then a worker E is grouped with the rest by an all-
for-one supervisor (Fig. 2(a)) or one-for-one supervisor (Fig. 2(b)).
The recovery driven by (a) or (b) is, as explained below, either
inefficient or unsound.

Suppose E dies as assumed in Scenario 2. If we chose the
supervision in Fig. 2(b), only E is restarted from the beginning.
However, since C has already sent the message to E, the message by
others will be lost and E will be stuck (deadlock). Consider that we
chose Fig. 2(a). Then all processes are restarted from the beginning,
which works in Scenario 2. However, in Scenario 3, the participants
have already completed the negotiation. Thus it is redundant to
recover any interactions.

To summarise, the advantages of our approach are two-fold.
First, executions ensured by our recovery strategy is safe by con-
struction. While supervision trees are manually built and recovery
strategies are sometimes implemented in an ad-hoc manner, our
proposed recovery algorithm realises sound supervision structures
and guarantees no lost messages and safety of recovered processes.
Second, our strategy reduces the communication cost by notifying
only the related participants. As shown in Table 1 part of the error
propagation can be avoided when our restart strategy is employed.

We provide a prototype implementation in Erlang on top of Er-
lang’s built-in fault-tolerance semantics. Though we assume some
conditions from Erlang such as asynchronous message passing and
ordered queues, our algorithm can be flexibly tuned to various
assumptions on queues and messaging semantics (such as syn-
chronous and asynchronous message passing without queues).

Contributions of this paper are given as follows:

1. We propose a recovery framework based on MPSTs and show
how session type-based analysis is used to provide the correct-
ness of fault-tolerant recovery (§ 2).

2. We formalise a recovery strategy (§ 3) and prove its safety
properties. The recovered communication system is free from
deadlock, orphan messages and reception error (§ 4).

3. We provide a design and implementation of our recovery strat-
egy on top of runtime monitoring in Erlang (§ 5).

4. We implement several use cases and show that our recovery
strategy is more efficient for common message-passing proto-
cols comparing to the Erlang all-for-one supervision (§ 6).

The paper discusses the related work (§ 7) and concludes (§ 8).
Onmitted definitions and proofs can be found in [27], the implemen-
tation and additional examples are availabble from [1].

2. Overview of Protocol-Induced Recovery

Our framework involves two stages: processing a given global
protocol (type) and runtime supervision. The global type analysis
from the first stage is used for runtime monitoring and recovering
during the second stage.
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Figure 2: Erlang supervision: (a) all-for-one and (b) one-for-one

2.1 Global Protocol Processing

The global type processing involves (1) creating a global recovery
table (GRT) from a given global protocol (type) and (2) projecting
the global protocol into local types and creating a finite state ma-
chine per each local type. The GRT prescribes which part(s) of the
global protocol to be recovered on failure, and the set of processes
to be notified, while the finite state machines are used to track the
current state of each process during the session execution.

To generate a GRT, first we create a dependency graph. A de-
pendency graph is a directed graph that models the causal depen-
dencies between the actions in a protocol. The dependency graph
is built by syntactic traversal of the global type. The nodes of the
graph model the states of the global protocol, and the edges model
the causal dependencies between the states. The recovery analysis
is performed on the dependency graph.

Our analysis is built on two key points.

All input-output dependencies before the failed point should
be recovered. We model stateless processes, hence a forwarded
message should be re-sent by its initial sender, not by intermedi-
ate ones. Consider the following protocol (the failed point is under-
lined):

A—B; B—C; 2.1)

If C fails to receive the message from B, then A should also resend
the message to B. This is because B’s mail box is emptied and B’s
output data to C may be depended on the message from A.

All messages in the queue of the failed process should be
re-sent. When a process fails, its queue is emptied. At compile
time (when the graph processing is done), the state of the queue
is unknown. Consider the following two examples:

A—B;C—B;, and A—B;C—B; 2.2)

If B fails after receiving the message from A (as shown in the left
example), the message from C might be already in B’s queue. That
is why our analysis will list both A and C as potential participants
which should recover. Hence we notify A and C by sending a request
for recovery. Since A already sent the message to B, A and B should
be recovered. However C has two choices: if C has still not sent
the message to B, it can ignore the request for recovery message;
otherwise C should be recovered since its message in B’s queue was
lost. Similarly if A fails (as shown in the right example), then both
B and C should be notified.

Now consider the following protocol which has additional in-
termediate communications to (2.2):

A—B;B—D;D—C;C—B; 2.3)
There is an input-output chain from the failed node at B (under-
lined) to C. The output from C (C — B) depends on an output from

B (B — D), which had not occurred due to the failure, hence C and
D are not notified.

2.2 Global Recovery Table

Fig. 3 (a) shows the dependency graph for our example and Fig. 3
(b) shows the global recovery table, generated by our algorithm.
The algorithm explores all paths of the session graph connected to
the failed node. Since the syntax of global types is finite, the length
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n| r | recovery points

04 {A]ZO}

0fA, {AzZO,A|ZO}

1| A [{A2:0,4,:0}

1| Cc [{C:1,A,:0,A,:0}

3B, {B223,B1:2}

3| D {DZ3.B222,B112}

4| c [{C:1,A,:0,4,:0}

4| E [{C:1,A;:0,A,:0,D:3,B,:2,By:2,E:4}
5| D |{D:3,B,:2,By:2}

5| E [{C:1,A;:0,A:0,D:3,B,:2,B;:2,E:4}]
6|CE|{C:1,A;:0,A,:0,D:3,B,:2,B;:2,E:4}]
7 |D,E|{C:1,A;:0,A:0,D:3,B,:2,B;:2,E:4}]
8 |[ED[{C:1,A;:0,4,:0,D:3,B,:2,B;:2,E:4}
9 |any (&

10|any |&

Figure 3: Dependency graph (a) and Global Recovery Table (b) for
the Trading Negotiation example

of such paths is limited so that the algorithm terminates. For each
path, the algorithm works recursively on the edges, and maintains
a dictionary that records the recovery points for each participant.
The GRT records the failed node (corresponding to the node of the
global graph), which role has failed, and a reset (recovery) point for
all roles, which depend on the failed role.

2.3 Runtime Supervision

Our supervision is setup at runtime when a session is started and
two types of entities are created: local process supervisors and
processes. The local process supervisors (also called monitors)
track the state of the process they supervise. Each local supervisor
has a finite state machine created from the local type (during the
global graph processing stage). Whenever the process performs a
communication action, the monitor inspects the current state.

In Fig. 4, we list four possible actions that the local supervisors
(LS) can take after a failure. Once a process fails, its LS is notified.
The LS performs a lookup in the Global Recovery Table (GRT) and
notifies the LSs of the affected processes by sending them a request
for recovery, containing the failed state. When the local supervisors
receive request for recovery they query the GRT to retrieve their
new state. If this state has not been reached yet, they “ignore” the
request for recovery; otherwise they “restart” the process. The other
processes remain unaffected (the second left-most in Fig. 4).

As an example, consider the case in (2.2). The initial failure
message for B’s failure is sent to B’s LS; Then B’s LS sends the
recovery messages to A’s LS and C’s LS. Then A is restarted; and
if C has not sent the message to B yet, then C remains unaffected,
otherwise it is recovered.

3. Recovery Algorithm

This section defines a recovery algorithm that given a global type
and a failed local type, returns a set of new local types which should
be recovered. The recovery algorithm is formalised by defining the
causal relation of global types and labelled transition relations.

3.1 Global and Local Types

Syntax For the syntax of types, we follow [13] which is the
most widely used syntax in the literature. A global type, writ-
ten G,G’,.., describes the whole conversation scenario of a mul-
tiparty session as a type signature, and a local type, written
by T,T’,.., which abstracts session communication structures
from each end-point’s view. A (a,b,c,...) denotes a finite alpha-
bet and & is a set of participants fixed throughout the paper:
P C{A,B,C,...,a,b,c,...,p,q,... }. The syntax of types is given
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a; € A corresponds to the usual message labels in session type the-
ory. We omit the carried types from the syntax in this paper, as we
are not directly concerned with typing processes. Global branch-
ing type p — p’: {a;.G;} jes states that participant p can send a
message with one of the g; labels to participant p’ and that interac-
tion described in G| follows. We require p # p’ to prevent self-sent
messages and a; # a;, for all i # k € J. Recursive types ut.G are
for recursive protocols, assuming that type variables (t,t’,...) are
guarded in the standard way, i.e. they only occur under branchings.
Type end represents session termination (often omitted). The func-
tion roles(G) gives the participants of G. Concerning local types,
the branching type p?{a;.T; }ics specifies the reception of a message
from p with a label among the a;. The selection type p!{a;.T; }icr
is its dual. The remaining type constructors are as for global types.
When branching is a singleton, we write p — p’ : a; G’ for global,
and pla.T or p?a.T for local.

Projection The relation between global and local types is
formalised by projection [13, 19]. For projection of branchings,
we use a merge operator [13], written 7 LI T’, ensuring that if the
observable behaviour of the local type is dependent on the chosen
branch then it is identifiable via a unique choice/branching label.

Definition 1 (Projection). The projection of G onto p (written G [ p)
is defined as:

P’{a;.Gjla}jes a=p

p—p':{a;.Gjljes Ta={pNa;Gjlaljes a=p
UjesGjlTq otherwise
utGlp Glp#t
t.G = t =t d!p= end
(utG) I'p {end otherwise P end [p = en

where fv(G) denotes a set of free type variables in G. The merging
operation L is defined as a partial commutative operator over two
types such that:

* TUT =T for all types;

* pHax-Tihkex Upaj T} } jes

= p?({ar-(Te UT)) brekry Udar-Titrer\y YL@ T} jenk)
and homomorphic for other types (ie. €[] U % [T] = €[T1 U
1] where % is a context for local types). The merging operation
between 7T} and 75 is defined only if 77 U 73 is defined. We say that
G is well-formed if for all p € &, G | p is defined.
Consider the global type given below.
ut.A—B:{a.B—C:b.t, dB— C:e.end}

Then the projections on A, B and C are given as follows:
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G =B—=CA—=C| G =B—=CA—=C |Gy = A—B;
B—A; C—A; B— A; A—D; C—B:l;
A—D;D—C; D—C; C—B:ly;

A: C!. B?.C?.D!.end A: C!.B?.D!.end

. B!

B: C!. Alend B: Cl.Al.end A: Blend

C: B2.A2.A. D2%.end | C:B?.A7. D?.end B: A2.CY;.C7.end

D: A?.C!l.end D: A?.Cl.end C:B!l. Bll.end

‘We omit the labels from local and global types except branching.

Figure 5: Recovery errors: (1) deadlock, (2) orphan message error
and (3) reception error

* A’s local type: ut.B!{a.t, d.end}.
* B’s local type is: ut.A?{a.C!b.t, d.Cle.end}.
* C’s local type is: ut.B?{b.t, e.end}.

The projection for role C uses the merge operator. Merge is also
used to project role D from our running example from Fig. 1.

3.2 Errors Prevented by Protocol-Induced Recovery

The theory of MPST guarantees that a system of communicating
processes, where each process conforms to a local type (projected
from the same global type), is safe, i.e., it is free from deadlocks, re-
ception errors and orphan messages. In this subsection we demon-
strate that existing recovery approaches do not preserve safety,
hence they can introduce all of the above mentioned errors. We
look at two popular approaches of recovery [31] which can be used
in addition (or instead of) supervision trees: (1) recovery by resend-
ing the undelivered messages and (2) restarting processes from their
initial state. For each approach we demonstrate a potential error(s).

Fig. 5 shows global and local types for three protocols. We
underline the failed role, e.g A, in the global type and mark with
a box the state of the local types after recovery.

Recovery by resending a message (a deadlock) The process A
fails before receiving the message from B. A naive recovery strategy
might be to resend the unsuccessfully delivered message from B
to A, not taking into account the existence of other parties (C and
D). When A recovers, all contents of A’s queue are deleted. Since
messaging is asynchronous, it is possible that C has already sent the
message to A. This message will be lost when the queue is deleted. C
is at a state of receiving a message from D, while A is stuck waiting
for the message from C. The processes end up in a deadlock.

Recovery by restarting processes from their initial state (or-
phan message error) In G, we assume the same failure as in Gy,
but a different recovery strategy. Instead of resending the failed
message we recover both affected processes by restarting them
from the beginning. No messages are lost and no deadlock occurs:
however, both A and B will repeat their interactions (B — C and
A — C). Since C has already received these messages, the orphan
messages will stay in the queue of C and will not be consumed.

Partial recovery of processes (reception error) Assume the
protocol G3 and B fails at A — B. Suppose C has already sent the
message /1 when B failed but only A and B are recovered. Then the
recovered B, which should receive /| from C, will receive the wrong
message [, from C since B’s queue is erased by the recovery.

3.3 A Dependency Analysis on Global Types

As shownin § 2.1, the recovery algorithm needs a dependency anal-
ysis of global types. We define the two key dependency relations
(<10 and <) used in the algorithm.

Session graphs Global types can be seen isomorphically as
session graphs, that we define in the following way. First, we
annotate in G each syntactic occurrence of subterms of the form



p—p': {a;j.Gj} jes with a node name (denoted by n,n’,ny,ny,...)
Then, we inductively define a function nodeg that gives a set of
nodes (or the special node end) for each of the syntactic subterm of
G as follows:

* nodeg(Ut.G') = nodeg(G'); and nodeg(end) = end

* nodeg(n:p—p': {k;.Gj}jes) =n

* node;(t) =nnodeg(ut.G') if ut.G' € Gand t € fv(G)
We define G as a session graph in the following way: for each
subterm of G of the form n:p — p': {a;.G;} jes, we have edges
from n to each of the nodeg(G;) for j € J. We also define the

functions pfx(n) and roles(n) that respectively give the prefix
(p — p : @) and participants (p,p’) respectively.

Example 2 (Session graph). To illustrate session graphs on recur-
sive global types, we augment the main body of our running exam-
ple with a recursion in the first case of the choice, as shown below:

accept.E — D : reject.t,

ut.C—ED—-EE—=C: .
reject.E — D : accept.end

Then its graph representation with the initial node nj is given as:

I accept accept

reject T ESD

The edges of a given session graph G define a successor relation
between nodes, written n < n’ (omitting G). Paths in this session
graph are referred to by the sequence of nodes they pass through.
The empty path is €. The transitive and reflex closure of < is <.

Causality and causality chains We define causality relations
in a given G by the relations <1 and <1o. The dependency relation
< represents the order between two nodes which has a common
participant; and the IO-relation <1, asserts the order between a

reception of a message and a send action. Formally,
ny<iny if nj<<n; and roles(ny) Nroles(ny) # 0

if n < ny and pfx(n;)=p1—p:a;
and pfx(ny)=p—p2:as

np <mon2

An input-output dependency (I0-dependency) from ny to ny,
(denoted by n; <10 ny) is a chain ny <o --- <o n, (n > 1). In
Example 2, we have ny <10 n3, np <10 n3 and nj < ny, but (ny,ny)
are not related by the I0-dependency.

3.4 Recovery Algorithm

Affected nodes We define the algorithm to decide the set of the
affected nodes ./ when a participant p in a global type G fails.
The algorithm is shown in Figure 6, where n; is the failed node,
it corresponds to the state of p at the time of failure. Below we
explain each step of the algorithm. We write n = p — q means
pfx(n) =p — q: a for some a.

Step 1: Initialisation (Lines 1-2) We initialise a set of affected
nodes ./ to include the failed node n; and successors of the failed
node (n; <1 n) having p as a receiver in their prefix (n =r — p). The
latter ensures that the output dependencies of p are added to ./ as
to recover messages that are lost as a result of deleting p’s queue.
This scenario is shown in example (2.2) in § 2.1.

A set of unaffected nodes .7 is initialised as nodes n’ that are
I0-dependent from the failed node or the nodes where p is the
sender (n = p — r). As explained in example (2.3), even if n; fails,
they do not have to be recovered.

Step 2.1: Traversing input-output dependencies, Backward
traversal of <10 (Line 4) A set of backward affected nodes
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Algorithm Calculating affected nodes
Input: n; (a failed node), p (a failed role)
Output: ./ (a set of affected nodes)

l. #=H4"= {n|n <1n/\nfr%p}u{n,}

2. ={n|({(ni<n’An =p—r)vn' =n)An <Kon}\{n;}
3. repeat

4. JV(_ {n|n=<on v(nQnAnGY)Ane/Vﬁ}
5. ={n|n"<nAn eSS\ (SUY)

6 JV:JVUJV‘_ L =S \ANT

7. wntil A/ =47 =g

8. return./

Figure 6: Calculating affected nodes

AN consists of nodes gathered by traversing 1O-dependencies.
As explained in example (2.1) in § 2.1, to recover a given state,
we need to track the IO-chains preceding that state. We also add
unaffected nodes if they are dependent from affected nodes.

Step 2.2: Forward Traversal of <-dependencies (Line 5) A
set of forward affected nodes /< consist of all direct dependent
nodes from backward affected nodes. This prevents unspecified
reception error. We extract both affected and non-affected nodes
since they do not have to be traversed in the next iteration.

Step 3: Termination condition (Line 5-7) We stop if there are
no new affected nodes. Otherwise we repeat Step 2.

After we obtain the set of affected nodes, following the algo-
rithm in Fig. 6, we calculate the recovery point for each participant
in the protocol. Intuitively, a recovery point is a local type that is
assigned to a participant as a result of a recovery.

Below we write G/nq to denote a subterm (subgraph) of G
whose occurrence is nq. For example, if we take the session graph
in Example 2 G/ny =E — D : accept.end and G/ns =E — D :
reject.G, where we write the outputs using the syntax of global
types.

We write T D T’ to denote T is a subterm of T. For example,
A%a.B!b.end D B!b.end. We define max({7;};c;) =T if foralli e I,
Tj DT,

Definition 3 (Recovery point). Assume that.#"is the set of affected
nodes when n; in global type G failed and the participant p €
roles(n;) failed. Assume G/n; [ p = T,. We then define, for each
q€ 2, (1) f6(Tp,q) =max({G/n [ q | n€.4,q€ roles(n)}); or
(2) fo(Tp,q) = 0 if q ¢ roles(n) for all n € 4. We call the nodes
corresponding to the recovery points, recovery nodes.

By the finiteness of the session graph, we have:

Proposition 1. The recovery algorithm in Figure 6 terminates.

3.5 Examples of Protocol Recovery

We explain the necessity of the conditions given in Fig. 6 via
examples, presented in Fig. 7. We underline and colour the failed
role and node and list the recovery nodes for G456 7.

(G1) We assume the failed role (p) is A and the failed node (ny)
is ny. nj and ny are added to the initial affected nodes set .4 since
n; =n; < ny =r — p. (Gp) At the initialisation, .4 = {ny,n3}
since n; = n; << n3 =r — p. Then ny is added in Step 2.1 since
it is backward 10-dependent from n3. (G3) This demonstrates a
need for the non-affected set .. We have . = {ny,n3} since
ny < np =p —r, i.e. ny is an output from the failed role; and
ny <10 n3 (Line 2). These nodes do not have to recover.

(G4) We demonstrate a need of condition n <t n’ An €. (Line
4 in Fig. 6). Initially, we set.¥ = {ny} and A4 = {n,n3}. Assume
that we do not consider n <1 n’ An €.%. Then after four iterations,
we (wrongly) obtain A yong = {n1,n3,n4} as the final affected set,



Gi= n:A—=B;| Gy= niA—B;| G3= ni:A—B;
ny.C — A; nyD —C; nyB—C;
n3.C — A; n3.C — A;
N ={ny,n2} A ={ng,nz,n3}| A={ni}
=g = <y:{n27n3}
G4 = ni:A—B;n).B—C; Gs = n;:A—B;n.B—C;
n3.D — B;nyg.D = C; n3.A — E;ng.D = E;
ns.D — B;ng.D — C;
JV() :JV(?—{n17n3} JVo—,/V(?:{nl,n5}
o ={m} o ={m}
AT = {ni,n2,n3} AT = {ni,n2,ns}
A7 ={n4} A7 = {ne}
S = =0
A1 ={n1,n2,n3} A1 = {n1,n,ns}
Ay = {na) N5 = {no)
Ny = {n4} ;= {ne}
N5 = {n1,n2,n3,n4} N = {n1,nz,n5,n6}
A5 ={ny} 5 = {ne}
Ny =N =0 Ny =N =0
fe, = {Amn1,B:in;,Ciny,Din3}  fg, = {A:ny,Biny,Cing,Dins}
Gg = ni:A—B; G7 = ni.C—= A;np.C—E;
TQ;CHA; n3.A —Bing.C— A
n3.A — D; ns:A —D;
ng.D — E;n7.B — E;
N = {nl:nZ} /V:{n3,n4}
7 = {n3} & ={ns,ng,n7}
fée = {Ain1,Biny,Cina} | fs ={A:nj,Bin,Ciny, D, E:}

Figure 7: Examples for Recovery Algorithm and Recovery Points

i.e. ny is missing. Assume .4#,one. Then the role C will recover
from node n4.D — C, while B will recover from node n;. After
this recovery, B will proceed by sending a message to C, although
C will expect a message from D. Our algorithm checks at every
iteration step, which nodes in the non-affected set . should be
added taking forward dependencies in Line 4 into account. Since
we have ny <1 n3 and n3 € 47, ny €., and the final affected set
should be.# = {ny, ny,n3,n4}, hence no such error exists. (Gs) We
add nodes n3 and ng4 to G4, but the affected nodes stay unchanged
(by replacing n3 by ns5 and ng4 by ng).

(Gg) At Step 2.2, 4/ = {n3} since n; < ny < n3. Because
n3 €. and by Steps 2.3 and 2.4, n3 is not added to the affected
nodes set. Hence we have 4 = {ny,ny} and ¥ = {n3}. (G7) we
have the same set of affected nodes with Gg. The added nodes are
either in . or are preceding from the failed node so they are not
affected. See [27] for more examples.

4. Semantics and Properties of Multiparty
Induced Recovery
This section first presents the recovery semantics using the recovery

point function. Then we prove that our recovery algorithm satisfies
the safety properties of recovered processes.

4.1 Recovery Semantics

The labelled transition system (LTS) for a local type We
start from a labelled transition relation between local (endpoint)
types defined in § 3.1. We first define observables, called actions
(¢,¢,...). An action £ denotes the sending or the reception of a
message of label a from p to p’ and the recovery message 7.

¢ = pp'la|ppla|t
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We then define the LTS over local types starting from an individual

local type. The relation T i> T', for the local type of participant p,
is defined as:

pala;

%
out] - aarTier 5T N qar Tl F5 T
L T: =71/
[MU] w [REC} %
H.t.T — T/ Tp N T;;

The first three rules are standard. The rule [REC] represents the case
participant p fails at the point of T and recovers as T’. It is defined
by the function f(Tp,p) =T’ which means, given global type G,
the participant p recovers to 7" if it fails at T.

The main function fg(7y,p) returns the new local type for a
participant p when g fails at a state 7. In [REC], since participant p
fails at T;,, we calculate f(7p,p).

LTS over a configuration We define the LTS for a configura-
tion which consists of a collection of local types and FIFO queues.
The item (1) below defines the standard asynchronous communica-
tion rules, adapted from communicating finite state machines [3].
The participant p enqueues a value to FIFO queue wpq of a channel
p4g, and participant q dequeues a value from wpq. In addition, we
define the two cases when participant p fails at 7, (item 2 below).
The item (a) is the case when participant q needs to recover as local
type Té. In this case, we clean up its input queues. The item (b) is
the case participant q does not need to recover. In this case, we do
not have to change the configuration for q. Note by the case (2-a),
failed participant p always cleans up its input queues.

Definition 4 (A configuration and its LTS). A configuration s =
(T;w) of a system of local types {Tp}pe is a pair with T =
(Tp)pezr and W = (wpq)pqesr With wpq € A*. The initial con-
figuration of G is s = (T;W) with wpq = € and T, = G | p. A fi-
nal configuration is s = (T;€) with T; = end. We then define the
transition system for configurations starting from the initial con-
figuration of G. For a configuration s = (T;W), the transitions of

shy = (T";W') are defined as:
!
L. Tp LN T and wyq = wpq - a and T};, =Ty forall p’ # p; or

pq’a
Tq —— Ty and wpq = a- wpq and T};, =Ty forallp’ #q

with wlo = wpg for all p'q’ # pg; or

2. Ty 5 T, then
(@) if f6(Tp,q) = T then Ty = T and wiq = € for all r # q;
and
(b) if f(Tp,q) = 0 then Ty = Ty and wyq = wrq and wg, = wgr
forallr #q

Ly---ly L L,
We denote s — 5" (or s —=* ') for s = 51+ 8_1 —> . A
configuration s is reachable if sy —* s.

Example 5 (Trading Negotiation). We recall Fig. 3.

(1) Participant B; fails at node 3. By Definition 3, f5(Ts,,B2) =
Tz,; fg(TBZ,Bl) =Tg, where Tz, =G [ By and Tz, =G [ By. Also

for all p € {By,B>}, fG(Ts,,p) = 0. By Definition 4(2), Tg, iR Ts,.
We also set the input queues of B; and B, to be empty. Hence
Wh,B, = Wp,p, = €. By (2-a), we set Ty = Tg,. Except By and By,
the queues and local types are unchanged. Note that if p # By, wps,
is empty before B, fails (since f;(Ts,,p) = 0). The cases when A,
fails at node 1 and C fails at node 4 can be calculated similarly.

(2) Participant E fails at node 4. By the algorithm, nodes 0 and 1
are added to .4 since there is a backward IO-dependency ng <1
n| <<10 N4; also node 5 is added to .4 since n4 <1 ns. From node
5, there is a backward I0-dependency ny <10 N3 <10 ns, hence



nodes 2 and 3 are also added to ./". Hence for all p, fG(7s,,p) =
G | p. By Definition 4(2-a), all participants will restart from the
beginning of the protocol.

4.2 Main Results: Transparency and Safety

Our recovery algorithm guarantees the transparency of the recov-
ery procedures and the safety of configurations in the presence of
failures. Transparency means that once a configuration recovers to
some state after a failure, there are always transitions which can
reach another state unaffected by failures. Hence we can recover
the configuration as if there were no failure. The safety includes the
three properties, reception error freedom, orphan message freedom
and deadlock-freedom, which were originally introduced in com-
municating finite state machines [3, 6] as desired properties. These
are ensured by the multiparty session type theory without failures
[12, 13, 24].

Theorem 1 (Transparency). Suppose sq is the initial configuration
of G. IstA*sLs/, then there exists s' 13" where sol—2>*s” and (

does not contain 7.

Proof. We first prove a set of local types defined by f for a given
failed type T, and G, i.e. {fG(Ty,q) }qez forms a projection of a
subgraph of G. We then show if f(7;,q) is empty, then its queue
was empty before recovery. This means that when we restart a set of
processes after a failure of some process, all processes will always
recover from some point of a subprotocol of the original G. O

The following definitions of configuration properties follow [6,
Definition 12]. We recall that the examples from Fig. 5 could easily
introduce these errors if an incorrect recovery strategy is deployed.

1. Configuration s is a deadlock configuration if s is not final, and
w =€ and each T, is a branching type, i.e. all types are blocked,
waiting for messages.

2. Configuration s is an orphan message configuration if all T, € T
are end but w # &, i.e., there is at least an orphan message in a
buffer.

3. Configuration s is an unspecified reception configuration if
there exists q € & such that T is a branching, and Tq-P—q‘?i>Té
implies that [wpq| > 0 and wpq € aA*, i.e., Ty is prevented from
receiving any message from buffer pq, meaning type error.

Theorem 2 (Safety). Any reachable configuration from sy which
is an initial configuration of well-formed G is free from deadlock,
an orphan massage and a reception error.

Proof. By Theorem 1 and [24, Theorem 3.1]. O

5. Implementation of Multiparty Induced

Recovery

We implement the recovery semantics and algorithm (as explained
in § 4.1) in a new Erlang library. We use the language Scribble [32]
to describe multiparty session protocols.

Our system consists of the following three layers:

(1) Scribble module: a module for processing global Scribble pro-
tocols. The module takes a Scribble protocol as an input and gener-
ates (1) local types (following Definition 1) and (2) global recovery
tables (following the recovery algorithm from § 4.1).

(2) Monitoring runtime: a component that implements the run-
time semantics for protocol verification and recovery (following
Definition 4). The runtime creates a monitor process per Erlang
process. A monitor checks, at runtime, that messages sent and re-
ceived by a process correspond to its local type. In the case of fail-
ure, monitors restart their respective processes.
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(3) An interface for local processes (gen_protocol behaviour):
this module provides the basic functionality for a process to be eli-
gible for verification and recovery.

For developers to use the system there are two requirements.
First, define the process interactions into a Scribble protocol. Sec-
ond, implement a gen_protocol process for each role in a protocol.
The role and the protocol must be specified as a part of the process
initialisation. The process is also required to implement message
handlers for all interactions in the protocol. Hence, developers are
implementing processes using a handler-based API, as customary
in Erlang/OTP, while a monitor attached to each process ensures
that the behaviour of the system follows the semantics in § 4.

We explain how to program with gen_protocol in § 5.1.

5.1 Erlang Programming with Multiparty Session Protocols

Monitor A monitor intercepts all incoming/outgoing messages
associated to its linked process. Monitors correspond to the local
supervisors shown in Fig. 4 in § 2. When a monitor is spawned, it
is parameterised with a local protocol. Every time a process sends
a message, its monitor checks the message is correct w.r.t the local
type, if so the message is sent to the destination monitor, and from
there dispatched to the corresponding process.

Endpoint processes Endpoint (gen_protocol) processes im-
plement the business logic for a role in a protocol. The endpoint
processes define message handlers and react upon received mes-
sages. The order of messages is not specified since the verification
process (the monitor associated to the endpoint process) ensures
the messages follow the order in the protocol.

For an endpoint process to be part of a protocol, it should imple-
ment a custom behaviour gen_protocol. Behaviours in Erlang are
similar to abstract classes. They encapsulate a common pattern (be-
haviour) and expose a set of required methods to be implemented.
For example, our gen_protocol behaviour checks at compile-time
that all message handlers implemented in a process module have
a matching label in the local type of the process. For example, if
a partial protocol is: A — B : quote, the process implementing B is
verified to have, as part of its interface, a function named quote.

We implement the gen_protocol behaviour as a modification of
gen_server, which is an implementation of a generic server, part
of the standard Erlang/OTP libraries. It receives messages from
the process mailbox and dispatches them to the message handlers
defined in the process. For example, if a message of the form {(
123), sum, 1, 2} is received in the mailbox of the process with
process id that equals (123) the gen_server dispatches the message
by invoking the function sum(1, 2).

Communication between endpoints Endpoint processes com-
municate via the API function: role:send(Id, Role, Method,
Args). The first parameter Id is the id of the monitor linked to
the process, Role is the name of the destination role as given in
the protocol. For example, Line 14 in Fig. 8 specifies sending a
message to role E, the notation ? in Erlang is used to annotate local
constants, e.g ?E. The parameter method is a label for the message
being sent. For example, if a protocol specifies quote (int) then
method 1S quote. The parameter, Args, stands for payloads.

Message handlers as callbacks An endpoint process imple-
mentation consists of defining message handlers for protocol mes-
sages. A part of Erlang code for the Trading Negotiation is given
in Fig. 8. The code snippet displays the callbacks required for the
modules implementing the endpoint processes for roles A, C, D and
E. Note that A and B do not have any interactions after sending an
initial quote message and no handlers are needed. Hence, A sends a
message to Al in the body of the initialisation function init, Line 3
in Fig. 8. The C process and the D process implement the function
quote, accept and reject. In quote both C and D simply resend
the received message to the process E. The internal choice on E is



% Initialisation of A
i

1

2 init (val) —

3 role:send(State#state.role, ?Al, quote, Val).
4

5 % Handlers for C and D

6 quote({msg,Val},State) —

7 role:send(State#state.role, ?E, quote, Val).
8

9 accept({msg,_},State) — {ok,State}.

10 reject({msg,_},State) — {ok,State}.

11

12 ¢ Handlers for E

13 quote ({msg, Val},State) when State.prev==undef —

14 {noreply,State#state{prev=val}};;

15

16 quote ({msg, Val},State) when State#state.prev>VvVal —
17 role:send(State#state.role, ?C, reject, empty),
18 role:send(State#state.role, ?D, accept, empty),
19 {noreply,State};

20

21 quote({msg, Val},State) when State#state.prev<val —
22 role:send(State#state.role, ?C, accept, empty),
23 role:send(State#state.role, ?D, reject, empty),
24 {noreply,State}.

Figure 8: Message handlers for endpoint processes

implemented as a guard on the message handler quote. The guard
compares the values received from C and D and sends accept to
whoever sends the highest quote. As customary in Erlang, all han-
dlers have a parameter State, which is used to thread the state of
the process between message handlers. For example, Line 14 saves,
in the variable prev, the received value val. Then on Line 21 prev is
used as a guard to determine which message handler to be invoked.
Starting a protocol The last requirement is implementing a
supervisor for the endpoint processes. A supervisor should specify
a supervisor type and a list of processes to be started. A simpli-
fied supervisor definition for a one-for-all supervisor has the form
{{one_for_all}, Processes}, where Processes is a list of pro-
cesses definitions. We have implemented a custom supervisor type
protocol_supervisor that follows our recovery strategy. Hence, if
a developer wants to use our recovery strategy they have to replace
{one_for_one} strategy with protocol_supervisor as a type of the
supervisor. Finally, the protocol can be started by invoking the start
function of the supervisor, as customary in Erlang applications.

5.2 Supervision

We build our recovery strategy on top of the runtime protocol
verification, provided by role and gen_process. Decoupling of a
protocol checker (role) and an endpoint process (gen_process)
is essential for the recovery. In this way, processes do not send
messages directly to the other endpoints and as a result when a
process fails only its role is notified about the new process id.
Therefore the failure is transparent to the other endpoint processes.

The implementation of our recovery mechanism draws on the
Erlang feature of links, a mechanism for creating a bidirectional
link between processes. It ensures that terminating processes emit
exit signals to all linked processes. We use link to connect a
running process to its role.

A running system with three participants is shown on Fig. 9. The
figure displays a supervision structure and links (denoted as dotted
red arrows) created by our runtime. The processes are grouped
by a protocol supervisor, implemented as an extension of the
Erlang’s one-to-one supervisor. If a process dies, only this process
is restarted by the supervisor. When a role is created during a
process initialisation, the role receives the process id and links to
it, which ensures the role will be notified if the process fails.
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Supervisor Supervisor
one-for-one simple-one-for-one
role role role
Process| |Process| |Process|«» Q( -
A

Figure 9: Supervision hierarchy

Failure handling The recovery mechanism after a process fails
consists of three key parts:

(1) Notification of failure. A role receives the system message
EXIT when a process fails.Then the role broadcasts a message FATL,
that contains the failed state, to the other affected roles. The set of
affected roles is retrieved from the GRT. Only the state number is
broadcasted since it uniquely identifies the state. The projection
ensures a correspondence between local states and states in the
global dependency graph.

(2) Obtain reset points. When a role receives a message FAIL oOr
EXIT it queries the GRT, and retrieves the reset state for the new
process. A state represents a node in the local finite state machine
(FSM). The role updates the current FSM state.

(3) Restart a process When a role receives a message FAIL it sends
a kill message to its linked process. When a process dies, either
because of a failure, or as a result of a kill message, it is restarted by
the protocol_supervisor. During process initialisation, the process
receives the id of its role and sends the role its new id so the role
can establish the link.

6. Use Cases and Evaluations

The aim of the evaluation in this section is to demonstrate the
applicability of our recovery strategy (called hereafter protocol-
recovery) to several typical concurrency patterns from open source
projects and the literature [18, 21]. The overhead of protocol-
recovery comes from (1) the overhead of propagating the error and
(2) the lookups performed on the global recovery table.

We compare protocol-recovery against the Erlang all-for-one
supervision strategy. We have organised the benchmarks into three
categories: we evaluate (1) a real world use case, a protocol for
crawling web pages, by inserting failures at random states as to
measure the average performance gain by protocol-recovery; (2)
a set of three typical message-passing protocols, by inserting a
failure at a specific state in the protocol as to measure the maximum
performance gain by protocol-recovery; and (3) the execution times
for the three scenarios of our running example, confirming that in
two out of the three scenarios from § 1, all-for-one is less efficient
than protocol-recovery.

In summary, the use of protocol-recovery results in faster pro-
tocol execution times (up to 52%) than all-for-one in cases where
fewer processes are recovered. In cases where protocol-recovery re-
covers all processes, the overhead is small (up to 7%). We compare
with all-for-one only since other static recovery strategies result in
an inconsistent (unsound) monitor state (see Table 1).

We implemented all programs using the Erlang API, presented
in § 5. For each example, we give the global type adopting the
notation from [26, § 3.2] and [14] as to express parametrised pro-
cesses. For example, P[i : 1..n] denotes a range of processes of type
P where i is between 1 and n and i binds the rest of the free oc-
currences of i in the rest of the global type. The examples are sum-
marised in Table 2 and Fig. 10. Table 2(a) shows the number of
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Figure 10: Execution time for (a) Web Crawler, (b) Ring, MapReduce and Calculator and (c) Trading Negotiation; the colours of the bars

on the graph correspond to (

[ Example [#roles #states  GRT (sec) affected roles |
[ Web Crawler [21]  [2*n+2 4*n 0.45 — |
MapReduce [21] n+l n+2 0.11 W([1l] Wn]
Ring [21] n 2*n 0.16 W[1] Wn]

Calculator [18] n+l 4*n 0.75 A[1]
[ Trading Negotiation [2*n+1 2*n+d  0.17 in Table 1 |

Table 2: GRT generation time (n = 100)

roles (participants) for each protocol (#roles), the number of states
in the dependency graph (#states) and the time (in seconds) for cal-
culating the global recovery table (GRT). Each example is parame-
terised on an integer n, which determines the number of roles, and
thus the number of states in a protocol (as shown in Fig. 2) and the
results displayed in Fig. 10 are for n=100. We also show the roles
that are recovered (affected roles) for the protocols where we re-
port on a specific failure. For the web crawler use case this column
is not applicable since we insert failures randomly.

Setup We use the version Erlang 17.0. All processes run on
the same Erlang node with Mnesia running on a separate node. The
configuration for the machine is Ubuntu 13.04 64bits GNU/Linux;
8 Cores: Intel(R) Core 17-4770 CPU @ 3.40GHz 16Gb of RAM.

6.1 Web Crawler Use Case

We start with an open source project, a web crawler example.! A
web crawler protocol specifies the coordination between multiple
processes. The task is splitted into the four stages: (1) connecting
to a webpage; (2) downloading its content; (3) parsing the content;
and (4) indexing the contents of a set of web pages. Multiple
instances of Downloader and Paser processes can run in parallel.
In addition, the task of indexing a parsed content is normally
delegated to a third-party database with capabilities for storing
large volumes of data. The protocol is given below:

Downloader|[i : 1..n] — Parser[i] : parse;
Parser[i] — Indexer : index;Indexer — Master :url;

The protocol consists of four processes: a Downloader process
downloads the source of a page given the page url address; a
Parser process parses the source of the page; an Indexer process
delegates the parsed result to an external service for indexing; and
a Master process carries the information of visited pages. Note
that after the Indexer is done processing a webpage, it notifies the
Master which url has been processed.

Failure injection A robust implementation of this use case is
challenging since an implemented program relies on several ex-
ternal services, notably the pages that are being crawled and con-

! The example is implemented in several github projects such as https:
//github.com/Foat/articles/tree/master/akka-web-crawler

no failure M protocol-recovery
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all-for-one)

nected to an external database for storing indexed results. There-
fore, numerous failures are possible, for instance, requests can time
out, the parser can choke on the input, an error in the indexing ser-
vice can occur due to a large number of requests. To test all the dif-
ferent scenarios, we have implemented a randomised failure injec-
tion. At the beginning of a protocol execution we chose randomly
a failing state and when this state is reached it has a 20% chance
to fail by performing division by zero. We execute this scenario
100 times and on the graphs on Fig. 10 (a) the results are ordered
based on the number of failures affecting each execution. For ex-
ample, the last bar shows the execution time when a protocol has to
recover five times before reaching a failure-free execution. On av-
erage our protocol-recovery gives a better performance, especially
in the case of multiple failures.

During the experimental evaluation, we tried different failure
strategies, such as assigning a probabilistic failure value to each
process. This approach resulted in many processes failing simul-
taneously. Our recovery managed to complete the tasks, while all-
for-one could not since it quickly reached the maximum number
of allowed restarts. Although it is anecdotal, this experiment shows
that supervision strategies are a source of errors, and highlights the
importance of a sound recovery.

6.2 Micro Benchmarks

For each example, we give the global type and discuss the result of
protocol-recovery in terms of (1) number of affected participants
(Table 2) and (2) overhead (Fig. 10 (b)). For the latter, we compare
the execution times for completing the protocol without a failure,
and with one failure followed by a subsequent recovery.

(1) MapReduce Below we show a typical parallel protocol,
where a Master process splits a task between several Wrorkers.
Each worker performs its sub task and notify the Master by send-
ing a reduce message.

Master — Worker[i: 1..n]: map;
Worker[i] — Master : reduce;

Failure: The Master fails after sending map to everyone.

Result: The execution time with recovery depends on the com-
putation intensity of the task performed by each worker. In our
benchmark each Worker|[i] sorts a list of 10000 elements. MapRe-
duce in Fig. 10 (b) shows that after a failure, protocol-recovery out-
performs the all-for-one recovery taking only 20% of the time to
complete the protocol (the time before the recovery starts).

(2) Ring We consider a common pattern of chained interactions
between the number of n processes where each process (A[1]) sends
a ping message to its neighbour (A[i+ 1]). When process A[n]
receives ping, it starts a chain of pong messages. Its protocol is:



ping ping

of J §o

Failure: A process A[k] fails before sending a pong message.

Result: The total of n-k+1 processes are restarted (these are
processes n, n-1, ... k). Fig. 10 (b) shows the execution time when
k = n-1 which requires restart of only two processes and thus the
significant performance gain (protocol-recovery outperforms the
all-for-one recovery by 52%).

(3) Distributed Calculator This protocol is a modification
of the ring protocol. Processes cooperate to solve an equation.
Each process (A[i]) calculates an expression (by sending expr to
a calculator C) and resend the continuation cont (the rest of the
equation) to its neighbour. Then the process A[i] waits for result
from C and for the result of their neighbour A[i+ 1]. When both
are received it sends the total to A[i — 1]. Its global type is given as:

Ali:1.n—1] — Ali+1]:ping;
Ali:n..2] — A[i—1]: pong;

Ali:1.n—1] — C: expr;

A[i] — A[i+1]: cont;

C— A[i]: result;

A[n] — C: expr;

C — A[n]: result;

Ali:n..2] — A[i—1]: result;

resull

expr
expr
¥ result

expr e
_ =~ result
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‘_—
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Failure: C fails after processing a message form A[i].

Result: All processes are recovered since they are all connected
by the I0-dependencies and each output depends on a previous
input, hence this benchmark does not incur performance gain.

6.3 Trading Negotiation

We demonstrate the result of recovery on the failure scenarios ex-
plained in § 1.2 (displayed in Fig. 10(c) as Scl, Sc2 and Sc3).
We have spawn 100 processes for Alice’s and Bob’s group. The
results of an execution without recovery of the protocol is given
in Fig. 10(a) (denoted as Sc0). In case of recovering fewer pro-
cesses, as in Scl and Sc3, the protocol completes faster if we apply
protocol-recovery than if we restart all interactions by the all-for-
one supervision. In case of Sc2, we need to restart all processes. In
this case, protocol-recovery induces only a small overhead 7% in
comparison to all-for-one supervision.

6.4 Summary

Our protocol-recovery strategy outperforms Erlang all-for-one
strategy when there are more intensive local computations; and
protocols are more parallelised (i.e. they are more disconnected,
hence there are less IO-dependencies from the failing node). It in-
curs a little overhead comparing to the case with no failure. The
motivation of our work is not performance gain, but an automatic
error prevention both at the process level (we ensure processes are
safe and conform to a protocol); and at the level of the supervision
trees and dynamic process linking (we create supervision trees and
link processes dynamically based on a protocol structure). Spe-
cific performance optimisations (such as using persistent storage
to cache the intermediate messages) and recovery actions (such as
changing the database connection if this was the reason for the ini-
tial failure) are orthogonal/complementary concerns to our work.

7. Related and Future Work

We summarise closely related works on recovery in Erlang and/or
based on session types. See [27] for a wider overview on recovery
techniques such as checkpoint-based approaches.
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7.1 Implementations of Recovery in Erlang

A few practical works have proposed to improve the recovery
mechanisms of Erlang supervision trees. Currently, to obtain the
process structure of an application, one must manually inspect the
source code or rely on external documentation. To resolve this is-
sue, the work [30, 31] presents a static analysis that extracts sets
of possible process structures from source code, and automatically
checks the effects of a process failure in each process structure.
More precisely, it checks if best practices are followed when creat-
ing a supervision tree. The authors do not prove any formal guar-
antees and the tool does not ensure soundness of the recovered pro-
cesses. In our work, we define a protocol first for checking contracts
between processes, and implement an automatic recovery strategy
based on that protocol. Hence, for a given session typed program,
we calculate recovery points statically.

The work [8] proposes runtime monitoring for Erlang to detect
messages which do not conform to a specification. The main aim is
porting their former synchronous monitoring Larva [25] for object-
oriented languages to asynchronous monitoring for Erlang. They do
not aim to study efficiency of recovery or ensure safety properties
such as deadlock-freedom as studied in this paper.

Recently the work [11] formalised non-blocking interrupts
based on multiparty session types and integrated this construct into
Scribble framework and runtime monitoring in Python. Unlike our
work, a programmer needs to write an explicit syntax for interrupts
which follows specific exception handling procedure, see § 7.2.

The work [16] presents a design and an implementation of a run-
time verification for Erlang where interactions are checked against
Scribble specifications. The framework allows a session to continue
when a failed role is not involved in the remainder of the session.
This class of failures is subsumed by one of our recovery cases,
Scenario 3 in § 1. The work [16] assumes only unrecoverable fail-
ures and does not reason about consistency guarantees when pro-
cesses are restarted. They combine the error handling and subses-
sions [10] in order to localise failures. Their work is implementa-
tion only; neither formalisation nor its correctness was given.

7.2 Session Types on Adaptations and Exception Handling

We list some related works on session-type based adaptations or
exceptions. Their main focus is modelling application-level con-
structs for these facilities, not an error recovery (fail-fast) frame-
work studied in this paper. All of the following works are limited to
formal modelling and have not been implemented.

There are several works which use session types to reason about
dynamic reconfiguration of processes. The work [15] investigates
the integration of constructs for runtime adaptations in a session
type discipline and presents a session type framework for adaptable
processes. The processes can be suspended, restarted, upgraded
or discarded at runtime. They extend a session 7-calculus with
primitives for updates. The authors prove session consistency (the
update does not district session behaviour) and give in [17] an
encoding of two Erlang supervision strategies, one-for-one strategy
and one-for-all strategy. Our approach proposes a new method for
recovery with dynamic checking and repairing active sessions, and
does not aim to model existing supervision strategies.

The work [9] proposes a formal model based on multiparty ses-
sion types for data-driven reconfiguration for monitored processes,
where adaptations are parameterised by a set of killed roles. After
reconfiguration, new monitors are created by deleting all traces of
killed roles. They do not restore processes and the semantics is syn-
chronous, hence it is not directly applicable to the Erlang setting.

The work [2] investigates a use of session types for an analysis
of deadlock freedom and typable communication in the presence of
dynamically changing code. The session calculus is enriched with
annotations of a code block that can be updated. The arrival of an



update is treated as an event external to the program. They proved
processes are safe and live when processes with empty queues are
updated and typed by a set of local types projected from some
global type. Our approach uses static dependency analysis of global
types for performing recovery in Erlang without any assumptions
on queue conditions and our algorithm can recover processes from
the middle of an existing session.

Several works [4, 5, 7, 22] studied exception handling con-
structs for session types. The work [S] proposes interactional ex-
ceptions for binary sessions where the try-catch blocks are built
upon session-connections for a single session. This work was ex-
tended to [4] for multiparty session types. The work [22] introduces
a process for a failure of communications where the recovery pro-
cess is included as a part of the syntax of processes with explicit
locations. The work [7] proposes a calculus with explicit excep-
tion blocks with handlers. The user needs to explicitly write excep-
tion handling constructs in each message interaction in a protocol.
Their model requires synchronisation for each occurrence in an ex-
ception block, independently whether an error has been raised or
not. In the case of a recursion, synchronisation is required at every
unfolding. All of the above works [4,5,7,22] and [11] in § 7.1 con-
strain specific exception handling procedures, hence a programmer
needs to write an explicit syntax for handling errors. Our work of-
fers fail-fast (error recovery) programming framework, opposed to
defensive (error prevention) provided by exception handling.

8. Conclusion

In this work, we propose an algorithm to analyse and extract causal
dependencies from a given multiparty session protocol, and use it to
ensure that communicating processes are recovered from consistent
states in the presence of a failure. A recovered system is proved
to be free from deadlocks, orphan messages and reception errors.
The messages to be re-sent and the set of processes to be notified
are computed statically based on the dependencies in the process
structures. To our best knowledge, this is the first work to apply
session types for defining a sound recovery strategy. Our approach
can automatically generate sound supervision structures in Erlang
from types, and we implement the recovery strategy on top of
runtime monitoring. We apply our recovery strategy to common
concurrency patterns and a real world use case to guarantee safe
executions and to reduce the recovery overhead.

Erlang philosophy is “Fail fast and recover quickly”. We be-
lieve that our work would offer an important step towards a new
philosophy: “Fail fast, recover quickly and safely”.
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