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Abstract. Wepropose a dynamic verification framework for protocols in real-time distributed systems. The frame-
work is based on Scribble, a tool-chain for design and verification of choreographies based on multiparty session
types, which we have developed with our industrial partners. Drawing from recent work on multiparty session
types for real-time interactions, we extend Scribble with clocks, resets, and clock predicates in order to constrain
the times in which interactions occur.We present a timedAPI for Python to program distributed implementations
of Scribble specifications. A dynamic verification framework ensures the safe execution of applications written
with our timed API: we have implemented dedicated runtime monitors that check that each interaction occurs at
a correct timing with respect to the corresponding Scribble specification. To demonstrate the practicality of the
proposed framework, we express and verify four categories of widely used temporal patterns from use cases in
literature. We analyse the performance of our implementation via benchmarking and show negligible overhead.
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1. Introduction

1.1. Backgrounds

Recent work [BYY14a] extends Multiparty Session Types (MPSTs) with time, to enable the verification of real-
time distributed systems. This extension with time allows specifications (i.e., timed-MPSTs) to express properties
on the causalities of interactions, on the carried data types, and on the times in which interactions occur. The
work in [BYY14a] enablesmodular static type checking of distributed implementations (i.e., processes in a session
π -calculus) against timed-MPSTs.

As observed in [BCD+13] the direct application of static verification techniques based onMPSTpresents a few
obstacles. First, the existing type systems, including the one in [BYY14a], are targeted at implementations written
in calculi with first class communication primitives and communication-oriented control flow. Most mainstream
languageswould need to be extended in this sense to be suitable for static checking. This is particularly problematic
when considering that some have quite liberal sets of primitives (e.g., C) and that implementations may be the
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composition of distributed processes written in different languages. Second, in some scenarios, such as Web
programming, it is common to use dynamically typed or untyped languages. Third, static verification guarantees
safe communications in the overall distributed system assuming that all its parts have been independently and
locally type-checked. This requires a degree of trust that cannot always be assumed between the principals that
provide the parts of the system. These issues are tackled in [BCD+13,DHH+15] by extending the theory ofMPSTs
to combine static and dynamic techniques in the verification of different parts of a system. Namely, MPSTs can
be used in two ways within the same scenario: for static verification (e.g., of trusted processes written in statically
typed languages) and for dynamic enforcement via trusted monitors (e.g., for processes that may not have been
or cannot be statically checked); global safety still holds in such mixed networks [BCD+13].

In the present work, we apply the theories in [BYY14a, BCD+13] to implement a toolchain for the design of
timed specification and for the dynamic verification of real-time distributed applications. This work is motivated
by our collaboration with the Ocean Observatories Initiative (OOI) [OOI], directed at developing a large-scale
cyber-infrastructure for ocean observation. We focus on runtime enforcement which is most relevant in the OOI
infrastructure.The typeofprotocol used in the governanceof theOOI infrastructure (e.g., users remotely accessing
instruments via service agents) can be suitably expressed using MPSTs. In particular, OOI protocols can be
naturally represented as global types [CDCYP15, HYC08] as they are distributed, typically multiparty, and
centered on asynchronous communications via FIFO channels. An untimed monitoring framework based on
MPSTs [DHH+15] is now integrated into OOI. In this work we extend the framework in [DHH+15] for the
verification of timed interactions. Time is necessary in many OOI use-cases, for instance to associate timeouts to
requests when resources can be used for fixed amounts of time, or to schedule the execution of services at certain
time intervals to reduce the busy wait and minimise energy consumption.

1.2. A motivating example

To give an idea of the type of timed-protocols used in the OOI infrastructure, we illustrate a simple distributed
computation of a word count over a set of logs. The timed global protocol, depicted in Fig. 1 using a message
sequence chart (MSC)-like notation, involves three roles: a master M, a worker W and an aggregator A. Each
participant has a clock, xM, xW, and xA, respectively, initially set to 0.1

1. At the beginning of the session M sends W a message of type TASK together with a variable of type log (i.e.,
the list of log names to crawl) and a variable of type string (i.e., the word to search). The message must be
sent by M within one second (xM < 1) and received by W at time xW � 1. Both M and W reset their clocks upon
sending/receiving the message.

2. The protocol then enters a loop. At each iteration, W replies to M in exactly 20 seconds with a message of type
RESULT along with a variable of type log (i.e., the logs that have been crawled in the given amount of time)
and a variable of type data (i.e., the result of the word search). This message is received by M at any time
satisfying 21.5 < xM < 22.

3. A choice is then made locally to M at time 22: depending on whether the results are satisfactory or not, the
worker chooses to either terminate the session (message of type END), or to continue the crawling (messages of
typeMORE). If W choosesMORE all clocks are reset. In both cases the results of the last iteration are forwarded
to A.

4. This timed protocol allows M to wake up at regular intervals (e.g., every 20 seconds) to evaluate the results and
decide when to continue or terminate the loop. Otherwise M can remain idle (e.g., sleep).

1.3. A timed monitor framework

Building on the theory in [BYY14a] we have extended the toolchain and framework for verification of chore-
ographic sessions in Python [HNY+13] with time. The framework centers on a specification language called
Scribble [SCR, HMB+11, YHNN13, HHN+14, HY16]. As it will be illustrated in Sect. 2, our timed extension
of Scribble allows a natural representation of global protocols as the one in Fig. 1. Our toolchain supports the
top-down development methodology illustrated in Fig. 2 and explained below.

1 As customary in MPSTs, protocols start synchronously for all roles, hence all clocks start counting at the same time.
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Fig. 1. Global protocol for log crawling in scribble

• In step 1, a global communication is specified as a Scribble timed global protocol. A timed global protocol
defines: (a) the causality among interactions in a session involving two or more roles, (b) the datatypes carried
by the messages, and (c) the timing constraints of each interaction. We extend Scribble with the notion of
time from [KY06a, BYY14a]: each participant owns a clock on which timing constraints can be defined. The
clock can be reset many times in a session, and we assume that time flows at the same pace for all clocks and
parts of the system.

• In step 2, the Scribble toolchain performs a sanity, or consistency check on the timed global protocol produced
in step 1. The timed global protocol is checked against two consistency conditions called feasibility and wait-
freedom. These conditions rule out protocols with unsatisfiable constraints which would intrinsically force
well-intentionedprincipals to either stopperforming actions or continuebyviolating theprotocol’s constraints
for the role they implement.

• In step 3, the Scribble toolchain is used to algorithmically project the timed global protocol to timed local
protocols. Each timed local protocol specifies the actions in a session (and their timing) from the perspective
of a single role.

• In step 4, principals over a network implement one ormore, possibly interleaved, timed local protocols.Wewill
call these implementations timed endpoint programs. In our prototype implementation, timed local protocols
are written in native Python using our in-house developed conversation API. Our Python conversation API
is a message passing library that supports the core primitives for communication programming of MPSTs.

• Finally, in step 5, the timed endpoint programs are executed. Each endpoint is associated to a dedicated and
trusted monitor. A monitor checks that the interactions of the monitored timed endpoint program conform
to the implemented timed local protocols. In case of violation, the monitor either throws a time error (error
detection mode), or triggers recovery actions to amend the conversation (error prevention/recovery mode).

Note that there is a substantial difference between step 2 and step 5: whereas step 2 checks that the protocol is
satisfiable, step 5 checks that the protocol is actually satisfied by a specific implementation.

1.4. Contributions and outline

The main contribution of the present work is a toolchain for timed interactions, allowing to

• define timed protocols with Scribble—step 1 in Fig. 2;
• automatically verify the consistency of these timed protocols (w.r.t. the consistency principle envisaged
in [BYY14a])—step 2 in Fig. 2;

• automatically project timed protocols onto local timed protocols—step 3 in Fig. 2; and
• automatically derive runtime monitors from each local timed protocol to check the incoming/outgoing inter-
actions of the corresponding timed endpoint program—step 4 in Fig. 2.
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Fig. 2. Scribble toolchain framework

This article is based on the theory given in [BYY14a, BYY14b]. Its contribution with respect to [BYY14a,
BYY14b] consists of embedding algorithms and theoretical results into the Scribble toolchain, applying them
to run-time monitoring and assessing the practicality of the overall approach for timed protocol design and
verification.

Concretely, our contributions are: (i) embedding the primitives for timed protocol specifications from [BYY14a]
into the Scribble toolchain, which include encoding the protocol syntax from [BYY14a] into the Scribble’s syn-
tax (given in Appendix A) and giving a concrete implementation into the Scribble toolchain of the algorithms
from [BYY14a] for consistency checking and projection; (ii) embedding the calculus for timed protocol implemen-
tations into a PythonAPI; (iii) exploiting the encoding from timed-MPST into Communicating TimedAutomata
given in [BYY14a] (and detailed in the corresponding technical report [BYY14b]) to produce run-time monitors
for programs implemented using theAPI from (ii).We present several monitoringmodes, with different degrees of
‘intervention’ of the monitor on the ongoing interactions: from just observing interactions to attempts to fix time
mismatches. Moreover, we have assessed the practicality of our implementation in two ways. First, to assess the
usability of timed Scribble in more general scenarios than those we developed in OOI, we have gathered a wider
(albeit not exhaustive) portfolio of properties of timed distributed protocols from literature, and provided a num-
ber of timed patterns which demonstrate how these properties can be expressed in Scribble. The implementability
of the time-properties expressed by timed Scribble in Python is then demonstrated via running examples.

Second, we investigated the concrete effect of time in our monitoring framework via benchmarking. We
focused on a property, transparency, which is custom in untimedmonitoring frameworks. Transparency (roughly,
‘monitors should not effect interactions that are correct’) is particularly delicate in timedmonitoring frameworks
becausemonitors may introduce time overhead, hence violations of time constraints attached to the specification,
in otherwise correct implementations. We introduced a weaker property called timed transparency (roughly,
‘monitors should have negligible effect interactions that are correct’) and provide some experimental observation,
which interestingly involve the form of the specific protocols being monitored, to estimate whether the monitor
overhead will be negligible or not.

In the following sections we will discuss in detail each of the steps of the methodology illustrated in Fig. 2.
In Sect. 2 (steps 1 and 2) we present Scribble timed global and local protocols, which are a practical and more
human-readable incarnation of timed global and local types in [BYY14a]. The projection of Scribble timed
global protocols onto local protocols has been implemented following [BYY14a, BYY14b]. In Sect. 3 we give
a walk-trough of the implementation of an algorithm (from [BYY14b]) for checking consistency over timed
Scribble protocols, namely the feasibility and wait-freedom properties. In Sect. 4 we present our timed API (step
3) based on the calculus with delays in [BYY14a] (a simple timed extension of the π -calculus used to implement
timed local types). In Sect. 5 we discuss runtime enforcement of timed properties (step 4). Timed local protocols
are automatically encoded into timed automata (using the encoding from timed local types to timed automata
presented in [BYY14a, BYY14b]), which are in turn used by our runtimemonitors for error detection. Additional
mechanisms for error prevention and recovery are implemented and explained.Benchmark results are presented in
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Sect. 6. In Sect. 7, to assess the practicality of our approach, and in particular of our timed extension of Scribble,
we present a number of temporal patterns drawn from literature together with their Scribble representation.
Related work is discussed in Sect. 8. Our prototype implementation is available at [pyt].

2. Specifying timed protocols with scribble

2.1. Timed global protocols

In Scribble, the interactions between pairs of roles are asynchronous, and can be thought as being broken down
into two actions: the sending action, which adds a message to an unbounded FIFO queue, and the receiving
action, which collects a message from the queue. We fix a finite setR ⊂ N of roles ranged over by A, B, . . . which
exchange messages in a protocol. Each interaction in a protocol transmits a label (we assume the set of labels is
finite and is ranged over by a, b, c) and a payload of some sort (e.g., integer, boolean, etc.). We assume that each
pair of roles, say A and B, can communicate along two dedicated channel: one for messages from A to B and one for
messages from B and A. To model time constraints we fix a set X of real valued clocks (ranged over by x, x′, . . .)
and let each role in a protocol own a finite number of clocks inX , assuming that the sets of clocks owned by each
role inR is a partition ofX . We let each sending (resp. receiving) action to be annotated with a time-constraint δ
(or simply constraint) and a reset λ ⊆ X . An action can be executed only if the associated constraint is satisfied,
and the clocks in λmust be reset upon execution of that action. Each role can only reset clocks he/she owns. Note
that clocks may have different values at some point in time, since the roles can reset their clocks at different times.
However, we assume that time flows at the same pace for all of them (this is a standard assumption e.g. [KY06a]).
If the time does not flow at the same pace, no global guarantees can be given.

The syntax of timed Scribble global protocols, or global protocols for short, is given by the grammar below.
In the definition of δ, c denotes a constant value in Q

≥0. Messages are of the form a(T) with a being a label and
T being the constant type of the message exchanged (such as real, bool and nat). Protocol names are ranged
over by pro, pro′, etc.

δ ::� true | x < c | x � c | ¬δ | δ1 ∧ δ2 constraint
S ::� global protocol pro (role A1, . . . , role An){G} specification
G ::� [@A : δ, reset(λ)][@B : δ′, reset(λ′)] a(T) from A to B; G interaction

| choice at A {G1} or . . . or {Gn} choice
| rec pro G recursion
| continue pro call
| end idle

A (global) specification S declares a protocol with name pro, involving a list (A1, . . . An) of roles, and prescribing
the behaviour in G.

• An interaction [@A : δ, reset(λ)][@B : δ′, reset(λ′)] a(T) from A to B; G specifies that a message a(T) should
be sent from role A to role B and that the protocol should then continue as prescribed by the continuation G.

• Interactions and annotated with constraints and resets, enclosed by square brackets, and explicitly bound to a
role.Moreprecisely, the interactionabovehas two timeannotations, [@A : δ, reset(λ)] and [@B : δ′, reset(λ′)],
one for the sender A and one for the receiver B. By [@A : δ, reset(λ)] the message must be sent at a time satis-
fying the constraint δ. Furthermore, all clocks in λ are reset upon sending the message. We assume that only
clocks owned by A occur in δ and λ, and tacitly omit reset(λ) when λ � ∅. Similarly, [@B : δ′, reset(λ′)]
requires that role B retrieves the message from the queue at any time satisfying δ′, and that resets all clocks in
λ

′. We assume that δ′ and λ are defined only on the clocks owned by B.
• A choice choice at A {G1} or . . . or {Gn} specifies a branching where role A chooses to engage in the
interactions prescribed by one of the options Gi with i ∈ {1, . . . ,n} and n > 1.

• Recursion rec pro G defines a scope with protocol name prot and body G. Any call continue pro occurring
insideG executes another recursion instance (if continue prot is not in an appropriate scopes than it remains
idle).

• end models the idle process. We will omit trailing occurrences of end.

Figure 3 (left) shows the global protocol of the example ‘WordCount’ illustrated in Fig. 1 where M is the
master, A is the aggregator and W is the worker.
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Fig. 3. Scribble timed global protocol for ‘WordCount’ (left) and Projection onto M (right)

choice at A
[@A : . . .][@B : . . .] a(T) from A to B; end

or
[@B : . . .][@A : . . .] a(T) from B to A; end

Fig. 4. Global protocol yielding inconsistent local views (not projectable)

The grammar given above provides an overview, albeit slightly simplified, of the constructs supported by
Scribble. For readability, the actual code uses different tabs and newlines (e.g., the interactions are shown in two
lines, with the annotations above), and constraints may use formulae (e.g, 21.5 < xm < 22, and 23 <� xa) which
can be easily derived from the ones given in the grammar for δ.

Not all syntactically correct global protocols can be realised as the parallel composition of distributed pro-
cesses. Itmaybepossible, in fact, towrite global protocols yielding toparticipants’ local states that are inconsistent
with the global protocol. Figure 4 gives an example of this: A and B may both decide to send a message (each
taking a different choice-path) yielding to an inconsistent view of state in the global protocol. We will give later
a property, called projectability (Definition 2.3), that rules out scenarios as the one we have observed in Fig. 4.
Projectability comes with an algorithmic checking procedure that yields local protocols (projections) out of a
global protocol.

2.2. Formal semantics of Scribble timed global protocols

The formal semantics of global protocols characterises the desired/correct behaviour of the roles in a multiparty
protocol. The semantics is based on the Labelled Transition System (LTS) given in [BYY14a] for timed MPSTs
and adapted here to the Scribble syntax. The LTS is defined over the following set of transition labels:

� ::� AB!a(T) | AB?a(T) | t

Label AB!a(T) is for a send action where role A sends to role B a message a(T). Label AB?a(T) is for a receive
action where B receives (i.e., collects from the queue associated to the appropriate channel) message a(T) that was
previously sent by A. Action t ∈ R

≥0 is a time action modelling the elapsing of t time units. We define the subject
of an action, modelling the role that has the responsibility of performing that action, as follows:

subj (AB!a(T)) � A subj (AB?a(T)) � B subj (t) � ∅
The LTS is defined over states of the form (ν,G) where ν : X 
→ R

≥0 is a clock assignment mapping clocks
to values in R

≥0. We write:

• ν + t for the assignment obtained replacing ν(x ) with ν(x ) + t in ν for all x ∈ X , namely shifting the time
forward of t time units.

• [λ 
→ 0]ν for the clock assignment obtained by setting the value of all x ∈ λ to 0, namely resetting all clocks
in λ.

• ν |� δ if the constraint obtained by substituting each clock x occurring in δ with ν(x ) is satisfied.
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As, due to asynchrony, send and receive are two distinct actions, the LTS shall also model the intermediary state
where a message has been send but it has not been yet received. To model these intermediary states we introduce
the following additional global Scribble interaction:

[@B : δ′, reset(λ′)] a(T) from A to B; G

to describe the state in which message a(T) has been sent by A but not yet received by B. We call runtime global
protocol a protocol obtained by extending the syntax of timed Scribble with these intermediary states.

The transition rules are given in Fig. 5. Rule �send models a sending action: given that the constraint δ
associated with the send action of A is satisfied by the current clock assignment ν (i.e., ν |� δ), �send produces a
label AB!a(T). The sending action yields a state in which: the clock assignment ν ′ is obtained from ν by resetting
all the clocks in λ, have been reset, and the global protocol is the intermediate state where a(T) has been sent but
not received by B. Rule �receive models the dual receive action, from the intermediate state to its continuation G.
Rule �choice continues the execution of the protocol as the continuation of one of the branches, given that the
action is not a time action (all time actions are all handled by one rule, �time, which will be discussed later). Due
to asynchrony and distribution, in a particular state of a Scribble global protocol it may be possible to trigger
more than one action. For instance, the protocol in (1) allows two possible actions: AB!a(T) or CD!a(T).

[@A : δA, reset(λA)][@B : δB, reset(λB)] a(T) from A to B;
[@C : δC, reset(λC)][@D : δD, reset(λD)] a(T) from C to D

(1)

This is due to the fact that the two send actions are not causally related as they have different subjects (which are
independent and distribute roles). We want the semantics of Scribble to allow, in the state with protocol (1), not
only the first action that occurs syntactically (e.g., AB!a(T)) but also any action that occurs later, syntactically,
but it is not causally related with previous actions in the protocol (e.g., CD!a(T)). Rule �async1 allows exactly this.
In fact, the LTS allows (1) to take one of these two actions: either AB!a(T) by rule �send or CD!a(T) is allowed by
�async1. Rule �async2 is similar to �async1 but caters for intermediate states, and is illustrated by the protocol in
(2), obtained from (1) via transition AB!a(T) by rule �send.

[@B : δB, reset(λB)] a(T) from A to B;
[@C : δC, reset(λC)][@D : δD, reset(λD)] a(T) from C to D

(2)

The protocol in (2) can either: execute AB?a(T) by rule �receive, or CD!a(T) by rule �async2. Rule �rec is standard
and unfolds recursive protocols.

Before explaining the semantics of time passing, modelled by �Time, it is necessary to recall a few notions
from [BYY14a] (see [BYY14a] for their formal definition): the ready actions of a protocol and the satisfiability
of ready actions. The ready actions of a runtime Scribble global protocol G are the actions that have no causal
relationship with other actions that occur earlier, syntactically in G, hence could be immediately executed. For
example, the ready actions of (1) are AB!a(T) and CD!a(T) and the ready interactions of (2) are AB?a(T) and CD!a(T).
We write rdy(G) for the ready constraints of G, namely the set of constraints associated to the ready actions
of G. For example, if G is the protocol in (1) then rdy(G) � {{δA}, {δC}}, and if G is the protocol in (2) then
rdy(G) � {{δB}, {δC}}. The ready constraint set is a set of sets of constraints, to cater for the choice construct. For
example, in the protocol in (3), rdy(G) � {{δ}, {δC1, δC2}}, meaning that there are two ready actions: one (i.e.,
the receive action of B) that can be executed given that δ is satisfied, and one (i.e., one of the two possible send
action from C) that can be executed given that either δC1 or δC2 is satisfied.

G � [@B : δ, reset(λ)] a(T) from A to B;
choice at C {[@C : δC1, reset(λC1)][@D : δD1, reset(λD1)] a1(T) from C to D} or

{[@C : δC2, reset(λC2)][@D : δD2, reset(λD2)] a2(T) from C to D};
(3)

The aim of the semantics of global protocols is to determine the desirable executions allowed by a protocol. To
this aim, we want its semantics of time passing to allow each participant to be able to execute one of the possible
next ready action of which this participant is subject/responsible. In other words, we want to prevent the elapsing
of time intervals that would invalidate the constraint of the action prescribed by a ready interaction. Consider
again the protocol in (1) and assume that δA � x ≤ 20, δC � y < 30 with ν(x ) � ν(y) � 0: we want to prevent
the LTS to perform time actions that invalidate any of the two ready actions. Therefore, we will only allow time
steps than do not let time elapse of more than min(20, 30) time units as they would ’not give time’ to A and B to
perform their ready action. In the case of the protocol in (3) we want that: (1) the only possible action of B (i.e.,
δ), and (2) at least one of the choice options of C (i.e., δC1 or δC2) remain satisfiable at present or some times in
the future. In Definition 2.1 we recall satisfiability of ready interactions, written ν |�∗ rdy(G), from [BYY14a].
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ν |= = [λ → 0]ν

(ν, [@A : δ, reset(λ)][@B : δ , reset(λ )] a(T) from A to B; G)
AB!a(T)− → (ν , [@B : δ , reset(λ )] a(T) from A to B; G)

SEND

ν |= δ ν = [λ → 0]ν

(ν, [@B : δ , reset(λ )] a(T) from A to B; G)
AB?a(T)− → (ν , G)

RECV

i ∈ {1, .., n} (ν,Gi) → (ν ,Gi) = t

(ν, choice at A {G1} or . . . or {Gn}) −→ (ν ,Gi)
CHOICE

(ν,G) → (ν ,G ) A, B ∈ subj( ) = t

(ν, [@A : δ, reset(λ)][@B : δ , reset(λ )] a(T) from A to B; G) → (ν , [@A : δ, reset(λ)][@B : δ , reset(λ )] a(T) from A to B;G )
ASYNC1

(ν,G) −→ (ν ,G ) B ∈ subj( ) = t

(ν, [@B : δ , reset(λ )] a(T) from A to B; G) → (ν , [@B : δ , reset(λ )] a(T) from A to B;G )
ASYNC2

(ν,G[rec L G/continue L]) −→ (ν ,G )

(ν, rec L G) → (ν ,G )
REC

ν = ν + t ν |=∗ rdy(G)

(ν,G) t−→ (ν ,G)
TIME

(4)

Fig. 5. Labelled transitions for global protocols

Definition 2.1 (Satisfiability of ready interactions)Wewrite ν |�∗ rdy(G) when the constraints of all ready actions
of G are satisfiable under ν or sometimes in the future. Formally, ν |�∗ rdy(G) iff ∀{δi}i∈I ∈ rdy(G) ∃ t ≥ 0, j ∈
I . ν + t |� δj .

By requiring the satisfiability of some j ∈ I (i.e., for some branches of a ready action) we allow each action
to be executed at any time allowed by its constraints δj , not necessarily at the earliest possible time.

Rule �time allows time to elapse of t time units yielding a new clock assignment ν ′ � ν + t (recall that ν + t
shifts all clocks in ν of t) as long as this does not invalidate any of the ready actions of G (i.e., ν ′ |�∗ rdy(G)).

Note that the idle process always allows time to elapse, namely (ν, end)
t−→ (ν + t, end) for any t by rule �time, as

end has no ready actions.

2.3. Timed properties of global protocols

The theoretical framework in [BYY14a] sets two consistency conditions on timed global types: feasibility and
wait-freedom. Feasibility (first introduced in [AFK87]) requires that for each partial execution allowed by a
specification there is a correct complete one, namely that the protocol will not get stuck due to some unsatisfiable
constraint. Wait-freedom requires that if senders respect their time constraints then receivers never have to wait
for their messages. These conditions rule out protocols which may intrinsically lead to undesirable scenarios, as
shown by the examples in Fig. 6.

The protocol pro1 in Fig. 6 (a) violates feasibility since it allows A to send msg at any time satisfying xa < 10,
for instance at time 8, for which then B has no means to satisfy constraint xb < 5 for the corresponding receive
action. The protocol pro2 in Fig. 6b violates wait-freedom as it allows A to send a message when B is already
waiting for it. Assume B to be implemented by a timed endpoint program that receives M1 at time 5, and then
engages in a time-consuming activity for 14 seconds before sending M2. The plan of B conforms to the timed
behaviour prescribed by pro2 for B. If, however, we compose the timed endpoint program described before with
an implementation of A that sends M1 at time 8, we have that B will not find the message in the queue at the
expected time 5, will ‘get late’ with respect to his planned timing, and may end up violating the contract at a later
action.
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(a) (b)

Fig. 6. Protocol which violates feasibility (a) and wait-freedom (b)

In [BYY14a] these conditionsyieldprogress for staticallyvalidated timedprograms,which ensures that thenext
available action will be executed in the specified time-range. In the case of dynamically verified programs against
MPSTs (e.g., in [BCD+13] and in our timed framework) progress is difficult to attain. In fact, monitors cannot
force timed endpoint programs to send the remainingmessages in a protocol when these programs are deliberately
refusing or are not able to do so (e.g., their machine is down). Ensuring that conversations are established on
feasible and wait-free protocols is, however, a good practice as it prevents violations of time-progress that are
induced by the protocol itself.

We implemented a syntactic checker for global protocols of feasibility andwait-freedom,whichwewill explain
in detail in Sect. 3.

2.4. Timed local protocols

Scribble timed local protocols, or simply local protocols, describe a session from the perspective of a single
participant and they are used to enable local verification of timed processes. The syntax of Scribble local protocols
is given below:

T ::� [@A : δ, reset(λ)] a(T) to B; T
| [@A : δ, reset(λ)] a(T) from B; T
| choice at A {T1} or . . . or {Tn}
| rec pro {T }
| continue pro
| end

Local protocol [@A : δ, reset(λ)] a(T) to B; T models a send action from A to B; the dual local protocol
is [@A : δ, reset(λ)] a(T) from B; T that models a receive action of A from B. The choice construct is used for
both external and internal choices. When choice at A {T1} or . . . or {Tn} appears in a local protocol for role A it
represents an internal choice, when it appears in a local protocol for role B �� A it represents an external choice
made by A. For instance, choice at B {m1(T1) from B; } or {m2(T2) from B; } in a local protocol for participant
A means that the two receptions, {m1(T1) from B} and {m2(T2) from B}, are conditioned by the decision taken by
participant B. The other constructs are similar to the corresponding global protocols.

For convenience we will, sometimes, abuse the notation and refer to the branches in a choice protocol as a
union of sets, e.g., writing {T } ∪ {T ′} instead of {T } or {T ′} and using the notation

choice at A {[@B : δi , reset(λi )] ai (Ti ) from A; Ti }i∈{1,...,n}
to denote Scribble local protocols of the form

choice at A {[@B : δ1, reset(λ1)] a1(T1) from A; T1} or . . . or{[@B : δn, reset(λn)] an(Tn) from A; Tn}
with n > 1.

We will also omit the choice construct in single-branched choices, e.g., writing T instead of choice at A {T }.
Decomposing global protocols into separate but consistent local protocols is called projection. The aim of

projection is two-folds: checking that aglobal protocol is distributedly realisable (projectability), andderiving local
protocols out of a global protocol. Projection preserves the interaction structures, message exchanges and clock
constraints of the global protocol, as it yields local protocols describingwhich part and responsibilities each target
role has in the global conversation. It is a keymechanism to enable distributed enforcement of global properties in
our framework. More precisely, projectability is a necessary condition to ensure deadlock freedom and progress
of the roles participating in the protocol. Progress of the local processes ensures that every message sent is
eventually received, and every process waiting for a message eventually receives one, hence the network cannot
end in a deadlock state (a network of processes is deadlocked if all processes are blocked, waiting for messages).
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The ability to prove relevant global properties, and in particular progress, by means of local checks requires
several restrictions on the shape of the global protocol, notably on the choice construct. These conditions are
chosen as to guarantee progress bymeans of purely local checks on the single peers that participate in the protocol,
despite the fact that theywill run independently once the sessionhasbeen established.For timedmultiparty session
types, projectability of the global protocol is a necessary condition to ensure progress.

Projection requires a role to be involved in all branches of the choice and the local types (obtained via
projection of the global type) for each choice branch to be mergeable. Mergeability is given in Definition 2.2.

Definition 2.2 [Merge and mergeability (adapted from [YDBH10, BYY14a])] The merge operator � is defined as
a partial commutative operator over two local protocols as follows:

1. T � T � T
2. {[@A : δi, reset(λi)] ai(Ti) from D; Ti }i∈I � {[@A : δ′

j, reset(λ
′
j)]a

′
j(T

′
j) from D; T ′

j }j∈J �
{[@A : δk, reset(λk)]ak(Tk) from D; Tk}k∈I \J ∪
{[@A : δ′

k, reset(λ
′
k)]a

′
k(T

′
k) from D; T ′

k }k∈J\I ∪
{[@A : δk, reset(λk)]ak(Tk) from D; Tk � T ′

k }k∈I∩J
where I , J �� ∅ and ∀ k ∈ I ∩ J , ak � a′

k, Tk � T′
k , δk � δ′

k , and λk � λ
′
k .

If the merge operation is defined, we say that the local protocols are mergeable, otherwise we say that the local
protocols are not mergeable. The merge operator is defined in two cases: (1) the local types to be merged are
identical, and (2) the next actions in the local types to be merged are receive actions, which specify the same
behaviour in case of common labels (in I ∩ J ). Intuitively, the mergeability condition requires that the two
local protocols are identical except for the case in which they are both external choices. In the latter case, any two
branches of the two local protocols to merge may be different – in their sorts, time annotations, and continuations
– only if they have different labels (the reasons for this will be explained later in this section via examples). The
condition I , J �� ∅ rules out protocols in which a role does not contribute to all branches of a choice.

Wegive a definition of projection that is an adaptationof the one fromglobal types to local types in [BYY14a].2

Definition 2.3 (Projection) Given G the projection of G on a A ∈ P(G), written G ↓A, is defined by induction on
G as follows:

([@B : δ, reset(λ)][@C : δ′, reset(λ′)] a(T) from B to C; G ′) ↓A�⎧
⎨

⎩

[@C : δ′, reset(λ′)] a(T) from B; (G ′ ↓A) if A � C

[@B : δ, reset(λ)] a(T) to C; (G ′ ↓A) if A � B

G ′ ↓A if A �� B, A �� C

(choice at B {[@B : δ, reset(λ)][@C : δ′, reset(λ′)] ai(Ti) from B to C; Gi }i∈I ) ↓A�⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

choice at B {[@C : δ′, reset(λ′)] ai(Ti) from B; (Gi ↓A)}i∈I if A � C

choice at B {[@B : δ, reset(λ)] ai(Ti) to C; (Gi ↓A)}i∈I if A � B

choice at D (�{(Gi ↓A)}i∈I ) if A �� B , A �� C, ∀ i ∈ I , Gi ↓A is of the form
[@D : δi, reset(λi)]ai(Ti) from D; (G ′

i ↓A)
choice at A (�{(Gi ↓A)}i∈I ) if A �� B , A �� C,∀ i ∈ I , Gi ↓A is not of the form

[@D : δi, reset(λi)]ai(Ti) from D; (G ′
i ↓A)

(rec t {G ′}) ↓A�
{
rec t {(G ′ ↓A)} if G ′ ↓ A �� continue t′

end otherwise

(continue t) ↓A� continue t
(end) ↓A� end

2 For readability, we give the definition for global protocols with guarded choices, that is the first interactions of each choice branch is a
message interaction or a choice (not a recursive process). A global protocol can be transformed to a global protocol with a guarded choice
after one unfolding of all recursions.
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If no side condition applies then G is not projectable on A. We say that G is projectable if it is projectable
for all the participants in G. The case for choice uses the merge operator � and the notion of mergeability
(Definition 2.2). Mergeability (i.e., the third and fourth cases can be applied only if the merge of Gi ↓A for all
i ∈ I is defined) ensures that either: (1) the locally projected behaviour is independent of the chosen branch (i.e
Gi � G j , for all i , j ∈ I ), or (2) the chosen branch is identifiable by the receiving participant A via a unique label.

Definition 2.3 is standard except that, as in [BYY14a], each [@A : δ, reset(λ)][@B : δ′, reset(λ′)] in a global
protocol interaction is projected onto the sender (resp. receiver) by keeping only the time annotations (constraints
and resets) associated to the send action [@A : δ, reset(λ)] (resp. the receive action [@B : δ′, reset(λ′)]). For
example, the projection onto M of interaction

[@M : xm < 1, reset(xm)][@W : xw � 1, reset(xw)] task(log, string) from M to W; G

yields

[@M : xm < 1, reset(xm)] task(log, string) to W; (G ↓M)

Another example of projection is given in Fig. 3: the figure presents, on the right-hand side, the local protocol
resulting from projecting on M the global protocol ‘WordCount’ on the left-hand side of the same figure.

Below, wewill provide an intuition of projectability, themerge operator, andmergeability, via a set of examples
illustrated in Fig. 7. For readability, in this example we will omit time annotations (recall that we also omit trailing
occurrences of End). First, the global protocol in Fig. 7a is not projectable on any of its participants, because it
is not of the form required by Definition 2.3 for protocols with choice. In fact, the second rule of Definition 2.3
requires global types to be of the form

choice at A {[@A : δ, reset(λ)][@C : δ′, reset(λ′)] ai(Ti) from A to C; Gi }i∈I
where each branch consists of an interaction from the same role A to the same role C. Since the global protocol
in Fig. 7 does not match any of the rules of Definition 2.3, it is not projectable on any of its participants. This
restriction on the form of the choice is customary in the literature of MPST. Note that also the (problematic)
protocol we have seen in Fig. 4 is not projectable for the same reason: none of the cases of Definition 2.3 matches
its syntax as branches in a choice must have the same senders and receivers. The global protocol in Fig. 7b can be
projected on A, B, and D, but not on C (hence it is not projectable). First, it is easy to observe that the projections
of the protocol on A and B are, respectively:

choice at A {l1() to B; } or {l3() to B; } (projection on A)
choice at A {l1() from A; } or {l3() from A; } (projection on B).

The projection on D is also easy to verify using the merge operator:

choice at C ({l2() from C; } � {l4() from C; })
� choice at C {l2() from C; } or {l4() from C; } (projection on D).

The problem of the global protocol in Fig. 7b lays in the role of C. Intuitively, C does not know which label has
been communicated by A in the first interaction, hence cannot guarantee the causalities between l1 and l2, and
between l3 and l4 (i.e., Cmay send l2 in executions where A had chosen l3). For this reason, the global protocol
in Fig. 7b is not projectable on C (hence it is not projectable). In the following, we will see how this is reflected
in the definition of projection and apply Definition 2.3 to project the global protocol in Fig. 7b on C. First, as
C does not participate in the first interaction, we apply the fourth case of choice case in Definition 2.3 which,
in turn, uses the merge operator. The merge operator is applied on the projections of the continuations of each
branch on C that are:

(l2() from C to D; ) ↓C� l2() to D;
(l4() from C to D; ) ↓C� l4() to D;

First, observe that the two projections result in two different local types (i.e., that send two different labels l2 and
l4, respectively), hence case (1) of Definition 2.2 (i.e., T � T � T ) cannot be applied to merge them. Second,
observe that the two projections result in two sending local types (i.e., participant C, on which we are projecting,
is sending a message to D), hence case (2) of Definition 2.2, requiring local types to perform receiving actions,
cannot be applied. As the two projection are not mergeable, then the global protocol in Fig. 7b is not projectable
on C. On the contrary, the example in Fig. 7c is projectable on C (and on all other roles) as C is sending the same
label l2 in both branches.
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choice at A {
l1() from A to C;
l2() from C to B;

} or {
l3() from A to D;
l4() from D to B;

}
(a)

choice at A {
l1() from A to B;
l2() from C to D;

} or {
l3() from A to B;
l4() from C to D;

}
(b)

choice at A {
l1() from A to B;
l2() from C to D;

} or {
l3() from A to B;
l2() from C to D;

}
(c)

choice at A {
l1() from A to B;
l2() from B to C;

} or {
l3() from A to B;
l4() from B to C;

}
(d)

Fig. 7. Examples of non-projectable (a, b) and projectable (c, d) global protocols

In the case of the global protocol in Fig. 7c the projection on C is

choice at C {(l2() to D; ) � (l2() to D; )} � choice at C {l2() to D; } � l2() to D;

since: (a) (l2() to D; ) � (l2() to D; ) � l2() to D; by idempotence, (b) we can apply the fourth case for the
choice construct (yielding choice at C {l2() to D; }), and (c) we omit choice at as the choice consists of only
one branch (yielding l2() to D; ).

The global protocol in Fig. 7d is also projectable. It is clearly projectable on A and B, as they are directly
involved in the first interaction/choice. For instance, consider the projection of this protocol on B: first, we apply
the case for choice ofDefinition 2.3 (where the participant onwhichwe are projecting is receiving the choice), and
then we apply the rule for projecting a message interaction on the continuation. The two steps of the projection
of the global protocol in Fig. 7d on B are shown below.

(choice at A{l1() from A; l2() from B to C; } or {l3() from A; l4() from B to C; }) ↓B

� choice at A{l1() from A; (l2() from B to C; ) ↓B} or {l3() from A; (l4() from B to C; ) ↓B}
� choice at A{l1() from A; l2() to C; } or {l3() from A; l4() to C; }

The protocol in Fig. 7d is also projectable on C as the projections of each branch on C are mergeable. In this
case, the projections of all branches are receive protocols from the same participant B, hence we can apply the
third case for choice of Definition 2.3. The projections on C of the two branches of the protocol are, respectively,
l2() from B; and l4() from B; . These two protocols can be merged by using case (2) of Definition 2.2:

(l2() from B; ) � (l4() from B; ) � {l2() from B; } or {l4() from B; }
Therefore, by the third case of choice case in Definition 2.3, the projection of the global protocol in Fig. 7d on
C is

choice at B{l2() from B; } or {l4() from B; }
Formal semantics of local protocols The LTS for local protocols is defined by the rules in Fig. 8, which use the
same labels of the global semantics in Fig. 5. The rules �send, �recv, �choice, �rec are similar to the respective
rules for global protocols. We do not need rules for modelling asynchrony as each participant is assumed to be
single threaded. For the time passing rule �time the constraints of the ready action of T must be still satisfiable
after t in ν except T has only one ready action.

Formal semantics of configurations The LTS in Fig. 8 describes the behaviour of each single role in isolation.
In the rest of this section we give the semantics of systems resulting from the composition of Scribble local
protocols and the communication channels.Given a set of roles {1, . . . ,n}wedefine configurations (T1, . . . , Tn, #»w )
where #»w ::� {wij }i ��j∈{1,...,n} are unidirectional, possibly empty (denoted by ε), unbounded FIFO queues with
elements of the form a(T). The LTS of (T1, . . . , Tn, #»w ) is defined as follows, with ν being the overriding union

(i.e., ⊕i∈{1,...,n}νi ) of the clock assignments νi of the roles: (ν, (T1, . . . , Tn, #»w ))
�−→ (ν ′, (T ′

1, . . . , T
′
n,

#»w ′)) iff:

(1) � � AB!a(T) ⇒ (νA, TB)
�−→ (ν ′

A, T
′
B) ∧ w ′

AB � wAB · a(T) ∧ (ij �� AB ⇒ wij � w ′
ij ∧ Ti � T ′

i )

(2) � � AB?la(T) ⇒ (νB, TB)
�−→ (ν ′

B, T
′
B) ∧ a(T) · w ′

AB � wAB ∧ (ij �� AB ⇒ wij � w ′
ij ∧ Tj � T ′

j )

(3) � � t ⇒ ∀ A �� B. (νA, T A)
t−→ (νA + t, T ′

A) ∧ wAB � w ′
AB ∧

( T A � choice at A {[@B : δi , reset(λi )] ai (Ti ) from A; T i }i∈{1,...,m}
∧ wAB � w ′′

AB · as(Ts) for some w ′′
AB and s ∈ {1, . . . ,m} )

⇒ ν + t |�∗ δs
with A, B, i , j ∈ {1, . . . ,n}.



Timed runtime monitoring for multiparty conversations 889

ν |= = [λ → 0]ν

(ν, [@A : δ, reset(λ)] a(T) to B;T )
AB!a(T)− → (ν ,T )

SEND

i ∈ {1, .., n} (ν,T i) → (ν ,T i) l = t

(ν, choice at A {T1} or . . . {Tn}) −→ (ν ,T i)
CHOICE

ν = ν + t ν |=∗ rdy(T )

(ν,T ) t−→ (ν ,T )
TIME

ν |= = [λ → 0]ν

(ν, [@A : δ, reset(λ)] a(T) from B;T )
AB?a(T)− → (ν ,T )

RECV

(ν,T [rec L T/continue L]) l→ (ν ,T )

(ν, rec L T ) l→ (ν ,T )
REC

Fig. 8. Labelled transitions for local protocols

In (1) the configuration makes a send action given that one of the participants can perform that send action.
(1) has the effect of adding the message sent to the corresponding queue. In (2) the configuration makes a receive
action given that one of its participant can perform such an action and that themessage being received is currently
stored in the corresponding queue. (2) has the effect of removing the message received from the queue. In (3) the
configuration canmake a time action t given that all participants can let time elapse for t time units (i.e., according
to their ready actions). The additional condition in (3) is needed to cater for scenarios where the protocol being
executed is a choice and the message has been sent but not yet received i.e., it is stored in a queue. In this case,
the sender has already decided the choice to be taken and it is necessary that time actions preserve the receiver’s
ability of receiving that specific message (i.e., the constraints of the choice selected by the sender must to be made
unsatisfiable by time actions). The condition in (3) is needed to guarantee this, as the receiver (and the definition
of receiver’s ready actions) do not take into account the state of the queues. Consider for example the protocol
below:

choice at B {
[@A : x < 10][@B : x < 10] a1(T1) from B to A
[@A : x < 20][@B : x < 20] a2(T2) from B to A}

If the message a1(T1) from B is already in the queue, namely the first branch has already been chosen. By default,
the �time rule dictates that the time can elapse as far as there are satisfiable ready actions (e.g., either receiving
a1(T1) or a2(T2)). However, if we allow time to elapse of t � 19 but the sender has already chosen the first branch,
the receiver will not be able to act as prescribed by the protocol (i.e., will not be able to receive the sent message
a1(T1) at the time prescribed by the corresponding constraint). In fact, we must not allow �time to let elapse
for more than 10 unit, otherwise the constraint of the first branch will become unsatisfiable. The constraints in
(3) ensures that if there is a message in the queue, the time constraints associated with this messages should be
satisfiable after ν + t .

2.5. Correspondence of global and local protocols

We write T R(G) for the set of visible traces obtained by reducing G under the initial assignment ν0. Similarly for
T R(T1, . . . , Tn, #»ε ) where #»ε is the vector of empty queues. We denote trace equivalence by ≈. Theorem 2.4 gives
the correspondence between the traces produced by a global protocol G and those produced by the configuration
that consists of the composition of the projections of G onto P(G).

Theorem 2.4 (Soundness and completeness of projection) Let G be a projectable Scribble timed global protocol
and

{T1, . . . , Tn} � {G ↓A}A∈P(G)

be the set of its projections, then G ≈ (T1, . . . , Tn, #»ε ).

Theorem 2.4 directly follows by: (i) the correspondence between (Scribble) global protocols and (timed-MPSTs)
global types given in Appendix A; (ii) trace equivalence between global types and configuration of projected
global types (Theorem 3.3 in [BYY14a]); (iii) the correspondence between configurations of (timed-MPSTs)
local types and configurations of (Scribble) local protocols given in Appendix A. Correspondence is important
as it ensures that the composition of processes, each implementing some local protocol, will behave as prescribed
by the original global specification.
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3. Checking feasibility and wait-freedom

Algorithm 1 Algorithm for checking feasibility and wait-freedom in global protocols
Require: G = build time dependency graph(AST) � Step 1
1: for node in G do
2: for (constraints, resets) in dfs(root, node) do � Step 2
3: constraints, resets = convert absolute(constraints, resets) � Step 3
4: formula = build z3 formula(constraints, resets) � Step 4
5: result = formula.is satisfiable()
6: if not result then
7: return False
8: return True

In this section we present a syntactic checker for two time properties on Scribble global protocols: feasibil-
ity and wait-freedom. These properties have been first introduced in [BYY14a] to guarantee time-progress for
statically validated programs. Time-progress ensures that a validated program is guaranteed to proceed until the
completion of all activities of the protocols it implements. A protocol is feasible if every partial execution can be
extended to a terminated session (i.e., the execution never gets stuck because of an unsatisfiable clock constraint).
A protocol is wait-free when, in all its distributed implementations, a receiver checking the queue never has to
wait for the message. We have discussed in Sect. 2.3 that in our framework, which differently from [BYY14a] is
based on dynamic verification, these properties do not guarantee time-progress. Feasibility and wait-freedom are
nevertheless important to rule out protocols that may intrinsically lead to violations. Feasibility provides a sanity
check on whether the constraints specified by a protocol are satisfiable by some implementation. Wait-freedom
rules out timed global protocols whose distributed implementation, built modularly and in conformance with
each projected timed local protocol, may actually ‘get late’ with respect to the timing prescribed by the original
timed global protocol. In addition, wait-freedom rules out busy waiting, which is critical in areas such as sensor
networks, where one of the main sources of energy inefficiency is listening on idle channels [YHE02].

Algorithm 1 presents the high level steps for checking the above mentioned properties on global Scribble
protocols. In short, the algorithm is based on the following steps:

• Step 1: Building a time dependency graph, a directed acyclic graph that models the actual causal dependencies
between the actions in a protocol. The time dependency graph is built by traversing the Abstract Syntax
Tree (AST) of a global Scribble protocol. The nodes of the graph model the actions of the timed protocol,
annotated with constraints and resets, and the edges model the causal dependencies between actions.

• Step 2: For each node n, do a depth-first-search traversal (dfs) of the graph and find the set of paths from the
initial node to n.

• Step 3: To model the range of ‘absolute’ times (i.e., virtual time) in which the state represented by n can be
reached, we convert (shift) each time constraint with respect to the clock resets of the preceding nodes, yielding
a virtual time constraint δn for each node n. Then the constraint for each node n is modified to account for the
restrictions imposed by the virtual time constraints of all preceding nodes (constructed in Step 2) of n.

• Step 4: To check the feasibility property we build a logic formula to check that the modified constraint of a
node n is satisfiable given the restrictions from previous nodes. For wait-freedom, we check that all solutions
for a receiving node occur at the same or at a later time with respect to any solutions allowed by constraints
of preceding nodes. We feed these formulas to an SMT solver to check if the formulas are satisfiable.

The algorithm terminates either when the maximum number of states are reached, that is all nodes are checked
(Line 8 of Algorithm 1), or when a node is found for which the feasibility/wait-freedom formulae is unsatisfiable
(Line 6-7 of Algorithm 1). The logic used for evaluating node satisfiability (Step 4) forms a subset of Presburger
arithmetic, which is decidable (see e.g., [BYY14b]) therefore the termination of the algorithm depends on the
termination of traversing all nodes. To ensure the graph traversing always terminates we impose a condition on
time constraints used in recursion bodies (see [BYY14b]). More precisely, we consider only protocols that are
infinitely satisfiable:

Definition 3.1 (Infinitely satisfiable) A global protocol is infinitely satisfiable if: (1) constraints in recursion bodies
have no resets, no equalities, no upper bounds or (2) all participants reset at each iteration.
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Fig. 9. An example of a recursion protocol (left) and its one-time unfolding (right)

n1!

!msg1(a,b)

n1?

?msg1(a,b)

n2!

!msg2(a,c)

n2?

?msg2(a,c)

n3!

!msg1(a,b)

n3?

?msg1(a,b)

n4!

!msg2(a,c)

n4?

?msg2(a,c)

Fig. 10. Dependency graph for the protocol in Fig. 9

The above condition ensures that checking the one-time unfolding of each recursion is sufficient to ensure
satisfiability of all successive unfoldings. This is the reason the graph traversing in Step 2 is done on acyclic
graph, that is built from a global protocol after one-time unfolding of all recursions and subsequently replacing
continue t with end in the body of the protocol. Therefore, the algorithm always terminate as it considers finite
paths for a finite number of nodes.

The complexity of the algorithm 1 is mostly affected by creating the dependency graph (linear on the size
of the protocol), on enumerating all paths from the root(s) to a node in the graph (polynomial on the size of
the graph) and on the satisfiability of Presburger formulae. In general, the asymptotic running-time complexity
of satisfiability of Presburger formulae is doubly exponential. SMT solvers use various techniques to reduce the
running time and space, thus the precise complexity is solver specific.

In the rest of this section we explain each step of Algorithm 1 in detail.

3.1. Step 1: Build the time dependency graph

As shown in Algorithm 1 to make dependencies between constraints explicit when checking feasibility and wait-
freedom, we create a representation of global timed protocols as time dependency graphs (hereafter dependency
graphs). A dependency graph of a global protocol G is a pair (N ,E ) where N denotes the set of nodes and E
denotes the set of edges.

To construct the time dependency graph we annotate in G each syntactic occurrence of subterms of the form

[@A : δ, reset(λ)][@B : δ′, reset(λ′)]a(T) from A to B; G ′

with a node name (denoted by n1, n2, . . .).
The nodes of the time graph have the form of (n, !, A, δ, λ) which represents a sending action from participant

A and (n, ?, B, δ′, λ′) which represents a receiving action at participant B.
The time dependency graph represents all causal dependencies in a protocol. These dependencies are not

explicitly captured as the syntactic order of interactions in a Scribble protocol does not necessarily imply a causal
dependency between actions. We illustrate message causalities on an example. Consider the protocol in Fig. 9
(left), where we have annotated the interaction nodes (for simplicity, we have omitted time constraints):

As customary in multiparty session types, the receive action of msg1 by B and of msg2 by C could happen in
any order due to asynchrony of communications, despite appearing in a specific syntactic order in pro. However,
some causal dependencies are indeed enforced by the syntax of protocol pro above:

1. (I/O dependencies) The receive action of msg1 by B causally depends from the send action of msg1 by A. Thus,
two nodes that are generated from the same interaction type should be connected by an edge, e.g ((n1, !, A),
(n1, ?, B)) ∈ E and ((n2, !, A), (n2, ?, C)) ∈ E ;
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2. (Single participant dependencies) The initial sending of msg1 must occur before the sending of msg2, by
A (namely the syntactic order of actions in a protocol corresponds to an actual causal dependency when
actions are performed by the same role). Thus, two consecutive interactions for the same participant should
be connected by an edge, e.g. ((n1, !, A), (n2, !, A)) ∈ E ;

3. (Recursion dependencies) Sending of msg2 by A happens both before and after sending of msg1 by A due to
recursion. Following [BYY14a, BYY14b], we consider the class of global protocol that are infinitely satisfiable
(Definition 3.1). Infinite satisfiability allows us to check for feasibility and wait-freedom by checking the one-
time unfolding (unfolding all recursions in the protocol only once), as it guarantees that the same properties
will then hold also in successive unfoldings. Figure 9 (right) shows the one-time unfolding for the protocol
in Fig. 9 (left). Recursion dependencies, as the ones between msg1 and msg2, are captured in the dependency
graph right away, by considering the one-time unfolding of the global protocol.

All the above dependencies are represented in the dependency graph. The dependency graph for the protocol
in Fig. 9 is shown in Fig. 10 and the dependency graph for our running example is shown in Fig. 11. The causal
dependencies between sending and their corresponding receive actions are represented by dotted edges, the ones
reflecting the syntactic order of actions performed by the same role by solid edges, and recursion dependencies
are directly captured (as single participant dependencies) by considering the one-time unfolding. As can be seen
in the figures, an interaction in Scribble is represented as two nodes in the time dependency graph: a sending node
(!(sender, receiver)) and a receiving node (?(sender, receiver)) connected by a directed edge from the sending to
the receiving node. For readability, we keep both sender and receiver roles in the node representation but we bold
the role that corresponds to subject(n), we also omit time constraints.

Formally, dependency graphs are defined inductively (Definition 3.2) using two functions, nodes(G) and
edges(G), which given G return the set of nodes and edges, respectively, of its dependency graph by checking
all the sub terms of G. The function edges(G) uses an auxiliary mappings D, initially empty. The mapping
D : P(G) → nodes(G) from participants to nodes is for constructing edges of type (2). We use the information
in D to return the node for the last action of each participant in P(G).

Definition 3.2 (Dependency graph) Let G0 be a global protocol and G be its one-time unfolding. The dependency
graph of G0 is a pair (N ,E ) where N � nodes(G) and E � edges(G). The functions nodes(G) and edges(G)
are defined as follows:

1. if G ′ is n : [@A : δ, reset(λ)][@B : δ′, reset(λ′)] a(T) from A to B; G ′′ then:

• nodes(G ′) � (n1) ∪ (n2) ∪ nodes(G ′′) where n1 � (n, !, A, B, δ, λ) and n2 � (n, ?, A, B, δ′, λ′)
• edges(G ′, D) � (n1, n2) ∪ (D(A), n1) ∪ (D(B), n2)∪ edges(G ′′, D[A 
→ n1, B 
→ n2])

2. if G ′ is choice at A G1 or . . . or Gn then

• nodes(G ′) � ⋃
i∈[1...n ] nodes(Gi )

• edges(G ′, D) � ⋃
i∈[1...n ] edges(Gi , D)

Every time a node n is added to N , the mapping is updated D[A 
→ n1, B 
→ n2] and an edge between n and
the D(subject(n)) is created, where subject(n) is the role element (the third or the forth element respectively)
in n. Note that the choice itself does not introduce any new edges or nodes. The causality between the actions is
preserved in the mapping D. All choice branches are traversed with the same mapping D.

3.2. Step 2: Collecting all paths to a node

After the time dependency graph is built, for each node n we collect all paths from the initial node to n. Each
path to n represents a possible execution to the protocol leading to state n, and captures time constraints and
resets that should be taken into account when building the formula to check if the constraint annotating n
satisfies feasibility and wait-freedom. Noticeably, the number of paths to n is finite since the dependency graph
is acyclic. For collecting all paths, we traverse the graph using a standard modification of depth-first-search with
backtracking [Ski08].
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Fig. 11. Time dependency graph for the WordCount protocol

3.3. Step 3: Virtual time constraints

The value of a clock variable in a Scribble constraint represents the time elapsed since the previous resets of that
clock variable. To reason on properties of a constraint, such as its satisfiability, we need to consider all possible
time scenarios (e.g., all possible ‘pasts’) that lead to the execution point inwhich that constraintmust be evaluated.
We will do this relying on the notion of virtual time (that is the time elapsed since the beginning of the session) as
opposed to relative time (time elapses since the previous clock reset) and, more precisely, of virtual time constraint
of a node. The virtual time constraint δn of a node n of a time dependency graphmodels the possible virtual times
in which the execution flow may reach a node n. The virtual time constraint is calculated by taking into account
constraints of past actions and by ‘shifting’ time to account for previous resets for the clock.

We illustrate Step 3 under the simplifying assumption that each role owns exactly one clock, hence each
constrain in a Scribble global protocol has exactly one free clock variable.As remarked in [BYY14b], the extension
to multiple clocks is considerably more verbose but does not pose qualitative challenges.

We denote by fc(δ) the free clock variable of δ, and by #»x a finite vector of clock variables. Assume p owns a
clock, we denote with xn the state of the clock owned by p in node n, where subject(n) � p. We call xn a clock
state. A clock state uniquely identifies (e.g., in a virtual time constraint) the value of the clock of p in a node n.
Below we give the extended definition of δ, which we will use to reason on clock states.

Definition 3.3 [Extended clock constraints (adapted from [BYY14b])] The set of extended clock constraints δ is:

δ ::� true | x > e | x � e | ¬δ | δ1 ∧ δ2
e ::� x | c | e + e

To calculate the virtual time in a node, we need to know howmany times the clock variable, say x, of that node, say
n, has been reset since the beginning of the session; to this aim, we define a function R (Definition 3.4) that takes
n and returns the sum of clock states in which x has been reset since the beginning of the session. On the basis
of Definition 3.4, we obtain time constraints as to represent constraints on virtual (absolute) time as opposed to
constraints on relative time. More precisely, we shift a time constraint for a node n with a clock xn by adding all
previous states of the clock x where x has been reset. The definition of a sum of a time constraint and a clock
variable is given in Definition 3.5. For example, consider the partial protocol given below.
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(a)

(b)

Fig. 12. An example of clock resets. a A Scribble protocol with resets. b Time graph with time constraints and dependency resets

[@A: xa >2; reset(xa)]
n1: msg1() from A to B;
[@A: xa <1]
n2: msg2() from A to C;

Assume n1! and n2! are the sending nodes for the first and the second interaction in the dependency graph for
the protocol. ThenR(n2!) � {xa1} and the clock xa2, in constraint xa2 < 1, represents a relative time for the clock
at A, e.g xa2 measures the elapsed time between the previous reset of clock xa, which happens at time xa1 and the
current time. If we modify the constraint xa2 < 1 to xa2 < 1 + R (e.g xa2 < 1 + xa1) then xa2 represents a value
on the absolute timeline of xa.

Next we give the definitions of a reset function R and of δ + x, adapted from [BYY14b].

Definition 3.4 [Reset function (adapted from [BYY14b])] Let n be a node in the time dependency graph N of G.
We denote by ≺G the transitive closure of <G .

The reset set R for a node n contains all clock states where the clock has been reset.

R(n) � {xn′ | n′ ∈ N ∧ n′ ≺G n ∧ subject(n) � subject(n′) ∧ resInfo(n′)}
where x′

n is the state of the clock at node n′ and resInfo(n′) is true if the clock has been reset at node n′.
The reset function of n is defined as a sum of all clock states in R.

R(n) � ∑
n′∈R(n) xn′

Definition 3.5 [Sum of a constraint with a clock (adapted from [BYY14b])] The sum of δ with a clock x, written
δ + x is defined as follows:

true + x � true

(x′ rop e) + x �
{
x′ rop (e + x) (f (x , x ′) � true)
x′ rop e (f (x , x ′) � false)

with (rop ∈ {>,�})
(¬δ) + x � ¬(δ + x)
(δ ∧ δ′) + x � (δ + x) ∧ (δ′ + x)

with f (xn, xn′) �
{
true (subject(n) � subject(n′))
false (otherwise)

The sum of δ with a vector of clocks is δ + #»x � (δ + x0) + #»x ′ with #»x � x0 + #»x ′.

Next we give the formal definition of a virtual time constraint of a node. We calculate the time scenario of a
node recursively as to account for all previously occurred constraints.
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Definition 3.6 [Virtual time constraint (adapted from [BYY14b])] Let n be a node in the time dependency graph
N of G with const(n) � δ, andM � {n′ | n′ ∈ N and n′ <G n} be the set of all nodes directly preceding n, The
virtual time constraint δn for a node n is

δn �
⎧
⎨

⎩

(δ[xn/x] + R(n))
∧

n′∈M
(δn′ ∧ xn′ ≤ xn) if fc(δ) � x

∧

n′∈M
δn′ if fc(δ) � ∅

Note that if a node does not have incoming edges
∧

n′∈M
δn′ and

∧

n′∈M
(δn′ ∧ xn′ ≤ xn) are trivially true.

In the above definitionwe assume that a node has an unique name n.We first rename the clock in the constraint
of n (e.g., δ[xn/x]) by using this unique node name, e.g. xn. In this way, xn uniquely identifies the state of the clock
in that node. We shift the constraint to represent a constraint on the virtual timeline, e.g δ[xn/x] +R(n). Then we
take into account all past constraints δn′ . We model the linear flow of time in causally related actions by requiring
that the virtual time in node n is after the virtual time in preceding nodes, e.g xn′ ≤ xn.

We illustrate Step 3 by using the example in Fig. 12a. Figure 12b illustrates both the reset function and the
virtual time constraints for nodes 1, 2 and 3. In the fragment of the time dependency graph for this example,
shown in Fig. 12b, the receive action of C causally depends from the send action of msg2 by A (node 2) which,
in turn, depends from the send action of msg1 from A (node 1). The constraints of node 1 and node 2 alone do
not give sufficient information about the virtual time in node 3. For instance, due to the reset of xa in the first
action, the action in node 3 will be ready to be executed at an absolute time which is shifted of 5-to-10 time units.
Namely, the virtual time for 3 is greater than 10 (i.e., the sum of the lower bounds of the constraints in node 1
and 2, that is 5+5) and smaller than 20 (i.e., the sum of the upper bounds of the constraints in node 1 and 2, that
is 10 + 10). Since xc is never reset it will have, in node 3, some value greater than 10 and smaller than 20. This
means that node 3 will be reached when the constraint xc < 10 cannot be satisfied. This example shows that it is
necessary to take resets into account when evaluating the satisfiability of a constraint in a node. In this specific
example, xa1 ≤ xa2 is redundant as it is implicitly expressed by the ‘shift’ in δ2. In general, however, as no resets
may have occurred, this inequality is needed.

3.4. Step 4: Construct and check feasibility and wait-freedom formula

Up to this step, wait-freedom and feasibility share the same approach for (a) collecting all nodes occurring before
a given node n (i.e., the nodes that are occurring before n in some one-unfolding path), and (b) modifying the
constraints with renaming and, and (c) calculating the virtual time constraint δn, a constraint giving a range of
possible absolute times in which the execution of the protocol could reach the state modelled by n. The difference
in checking the two properties lies in the formulas for the satisfiability property for that node. These formulas are
then solved by using an off-the-shelf SMT solver, Z3 [Z3C], which is a tool for checking satisfiability of logical
formulas over one or more theories.

In this subsectionwefirst remind the twoproperties, feasibility andwait-freedom, and give their representation
as logical formulas, as shown in [BYY14b]. Then we present the formulas in a Z3 input format.

Feasibility of a global protocol requires the satisfiability of each constraint in the protocol, in every possible
scenario that satisfies the previously occurred constraints. We define protocol feasibility in terms of node satisfia-
bility. i.e a protocol is feasible if all nodes in its time dependency graph are satisfiable. For a node to be satisfiable
its constraint must be satisfiable given all restrictions posed by constraints of preceding nodes. Next we give the
formal definition of a satisfiable node, adapted from [BYY14b].3

Definition 3.7 [Satisfiable node (adapted from [BYY14b])] Let n be a node of the (unfolding) time graph of a
global protocol G, const(n) � δ, fn(δ) � x, and M � {n′ | n′ ∈ N and n′ <G n}. Node n is satisfiable if

∧

n′∈M
δn′ ⊃ ∃xn.((δ[xn/x] + R(n))

∧

n′∈M
xn′ ≤ xn)

3 In [BYY14b] the definition is given in the general case for multiple clocks per role, in this article we assume one clock per role.
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The formulae expresses that given all previously occurred virtual time constraints
∧

n′∈M
δn′ there is a solution

xn of the shifted time constraint for the given node (δ[xn/x] +R(n)) and this solution is not in the past (i.e., before
the current virtual time), thus it is strictly bigger than any solutions xn′ of previously occurred constraints.

The translation of the logical formulae to a format, accepted by the Z3 checker is straightforward. The
formulae is given below, where

⋃
n′∈M fn(δn′) � {x1, . . . , xm}, δn � ∧

n′∈M
δn′ and δxn = δ[xn/x]

ForAll(x1, . . . , xm , Implies(δn,Exists(xn, (δxn + R(n)) and x1 ≤ xn and . . . and xm ≤ xn)))

Wait-freedom requires that all solutions of time constraints of receivers in a global protocol do not precede
solutions posed by previously occurred constraints. Next we give the formal definition of a wait-free node.

Definition 3.8 [Wait-free node (adapted from [BYY14b])] Let n? be a receiving node of the (unfolding) time graph
of G with const(n?) � δ, and fn(δ) � x, and M � {n′ | n′ ∈ N and n′ <G n}. We say that n? is wait-free if

(
∧

n′∈M
δn′) ∧ (δ[xn/x] + R(n) ⊃ ∧

n′∈M
xn′ ≤ xn

The formula states that all solutions xn′ of virtual time constraints of nodes preceding node n?, e.g solutions of∧

n′∈M
δn′ , and all solutions xn of the time constraint of n?, e.g solutions of δ[xn/x] +R(n), are such that the virtual

time at node n? is after the time posed by the previously occurred constraints, e.g
∧

n′∈M
xn′ ≤ xn.

The formula, as accepted in Z3, is given below.

ForAll(x1, . . . , xm , xn, Implies(δn? and δxn , x1 ≤ xn and . . . and xm ≤ xn))

where x1, . . . , xm are the free variables of δn? , and xn is the (renamed) clock of n?.
A node n such that subject(n) � ∅ or fn(const(n)) � ∅ is always satisfiable and wait-free.
We feed the constructed formulas to the Z3 SMT solver and check if they are satisfiable. When these formulas

are satisfiable for each node of a time dependency graph, then the original Scribble global protocol is feasible and
wait-free. This follows from the fact that the checking method presented and implemented in this article closely
follows the theoretical constructions used to prove decidability of feasibility and wait-freedom for infinitely
satisfiable timed global protocol in [BYY14a, BYY14b] (Proposition 5.1).

4. Implementing timed protocols with python

To implement and verify timed local protocols we extend the Pythonmonitoring framework, previously presented
in [HNY+13], with time. The framework in [HNY+13] provides (1) a monitoring tool for runtime checking of
untimed session protocols and (2) a library for distributed programming. The latter offers a high-level interface,
called conversation channel, for communication programming. A conversation channelmaps the interaction prim-
itives of session types to lower-level communication actions on concrete transports. Our current implementation
supports AMQP [AMQ] transport (a messaging middleware on top of TCP).4 In summary, conversation chan-
nels provide functionality for (1) session initiation and joining and (2) sending and receiving of messages. Thus,
role actions from a Scribble protocol should be implemented as actions on a dedicated conversation channel.
Internally, each channel is implemented as a separate greenlet (or micro/green thread), which is a light-weight
cooperatively-scheduled execution unit in Python.

We have extended our conversation channel API with two standard time primitives, sleep and timeout, and
the monitor tool with capabilities for checking time violations.

Specifically, the API is extended with:

• a delay primitive which puts the current green thread to sleep for a prescribed time. The primitive is imple-
mented using a lower level function provided by the ‘gevent’ library: gevent.sleep which lets time elapse for a
specified amount of time.

4 More precisely, the primitives for sending and receiving of a message use the primitives for sending and receiving from a Python commu-
nication library, called pikka https://github.com/pika/pika library, which is a Python implementation of the AMQP protocol.

https://github.com/pika/pika
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(a) (b)

(c)

Fig. 13. Participants implementation in Python. aMaster program. bWorker program. c Aggregator program

• a timeout primitive which interrupts an ongoing computation to meet an approaching deadline. Timeouts are
useful for computation-intensive functions, operations that take an amount of time which is not negligible such
as, for instance, the log crawling performed by the worker in our running example. It may be difficult to foresee
the exact duration of a computation-intensive function; in order to ensure that its execution does not exceed
the time prescribed by the local protocol, we associate each computation-intensive function to a parameter
timeout that is an upper bound to the duration of its execution; an exception is raised if the function is not
completed in the given time frame. In the implementation of the worker in the running example, the function
self.crawl(log, word, timeout=20) which interrupts the crawling after 20 seconds; the resulting exception can
be handled by simply proceeding with the computation.

In [BYY14a] processes are modelled using a simple extension of the π -calculus with a delay operator
delay(t).P that executes as process P after waiting exactly t units of time. All of the other actions are as-
sumed to take no time. In practice, however, operations do take time and the delay primitive models standard
operations happening between communication actions, as well as time primitives such as delays and timeouts.

The monitor tool is augmented with a local clock and performs several checks summarised below:

• when an action (send or receive) is performed on the conversation channel, the monitor checks if the action
is performed within the time constraints specified in a protocol;

• when a delay is issued, the monitor checks that the specified delay time does not exceed time constrains
specified in the protocol; and

• when a timeout is issued, the monitor checks that the timeout does not exceed the prescribed time constraints.

We illustratemore concretely the primitives introduced earlier in this section throughaPython implementation
of the running example. Figure 13 shows the Python program for the roles of our running example.

The implementation for the master process is given in Fig. 13a.
Line 1-2 start creates a conversation channel c. Then, following the local protocol, the master sends a request

to the worker passing the log name and the word to be counted. The sendmethod, called on conversation channel
c, takes as arguments the destination role, message operator and payload values. This information is encapsulated
in the message payload as part of a conversation header and is later used for checking by the runtime verification
module. The receive method can take the sender as a single argument, or additionally the operator of the desired
message. The code continues with the delay operator. The implementation for the worker process is given in
Fig. 13b; in Line 6 operation self.crawl(log, word, timeout=20) models a computation-intensive function. The
aggregator process is shown in Fig. 13c.
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Fig. 14. The work-flow for deriving monitors from Global Scribble protocols

5. Runtime verification and enforcement of time properties

In this sectionwe introduce ourmonitoring framework and discuss the challenges ofmonitoring timing of actions.
A monitor acts as a membrane between one endpoint and the rest of the network, checking that the send and
receive actions performed by that timed endpoint program conform to the implemented timed Scribble local
protocols. The main property enforced by our framework is that in a network where all endpoints are monitored
then either all actions will occur at the prescribed timing, or an error will be detected.

Figure 14 summarises the work-flow of constructing a configuration of local monitors from a global Scribble
protocol: (1) a global Scribble protocol is projected into a set of local Scribble protocols; (2) each local Scribble
protocol corresponds to a local type in [BYY14a]; (3) each local type corresponds to a CTA (Communicating
Timed Automaton); and (4) a CTA is used to monitor an application.

The monitor has two purposes (or modes) with respect to time: error detection and error prevention/enforce-
ment.

5.1. Error detection

Themonitor verifies the communication actions of themonitored endpoint against Scribble timed local protocols,
expressed as timed automata. First, the monitor verifies that the type (operation and payload) of each message
matches its specification and that occurs in the right causal order w.r.t. the Scribble protocol (as in the untimed
Scribble toolchain). Second, the monitor checks the correct timing of actions. For each ongoing protocol, the
monitor is augmentedwith a local clock. A synchronisation has been introduced in the prototype to ensure that all
processes andmonitors will start a protocol at the same time, with clocks set to 0.When a timed endpoint program
executes an action the monitor checks the clock constraint of that action (in the timed automaton) against the
value of the local clock. The value of the local clock is determined simply as a difference between two timestamps
(the initial and the current time). The time is measured using the built-in python function timeit.5 If an action
complies with the prescribed timing it is made visible (i.e., forwarded) into the network, otherwise the monitor
raises a TimeException. For example, if we change the delay of the program in Fig. 13a to be delay(30) this will
result in a TimeException. Thus the monitor stops the time error from propagating into the other endpoints.

5.2. Error prevention/enforcement

This mode relies on the error detection mechanism: when a violation occurs the monitor enforces the clock
constraints by generating compensation actions, which postpone an execution . We have two types of scenarios:
an action is launched by the local endpoint too early or too late (or not at all) w.r.t. the prescribed timing. In the
first case, the monitor generates a delay equal to the time that is left until an appropriate time is reached, and then
it forwards the action to the rest of the network. For example, if we delete the line delay(20) in Fig. 13a ormodify it
with a smaller delay then themonitorwill introduce themissingdelay so that themonitored applicationwill appear
correct to the network.When a deadline is reached but its associated action is still not executed, themonitor raises
a TimeoutException. The application can try and recover itself using the exception handler, e.g., by interrupting
an ongoing computation and continuing the conversation, or restarting the protocol with different settings.

The monitor looks at the next action prescribed by the timed automaton (or prescribed action) and acts
according to the pre- and post-actions in the table. Pre-actions (resp. post-actions) denote actions performed
by the monitor before (resp. after) that the timed endpoint program executes the action that corresponds to the
prescribed action. Table 1 summarises the actions generated by the monitor in error prevention/enforcement
mode. In the table xcur is the local clock of the monitor.

5 The function timeit returns the time in seconds since the epoch, i.e., the pointwhere the time starts. As recommended in http://pythoncentral.
io/measure-time-in-python-time-time-vs-time-clock/, this is the preferable method for measuring time in Python.

http://pythoncentral.io/measure-time-in-python-time-time-vs-time-clock/
http://pythoncentral.io/measure-time-in-python-time-time-vs-time-clock/
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Table 1. Compensation actions generated by the monitor

Prescribed action Clock constraint Pre-action Post-action

s.send x ≥ c s.sleep(c − xcur )
s.send x ≤ c s.tim eout(c − xcur)
s.recv x ≥ c s.sleep(c − xcur)
s.recv x ≤ c s.timeout(c − xcur)

Fig. 15. A recursive protocol with resets

If the clock constraint of the prescribed action specifies a lower bound x ≥ c then the monitor introduces a
delay of exactly c (mapped to the low level Python gevent.sleep primitive). In case of send we have a post-action:
the monitor sleeps after observing the action of the endpoint and forwards it to the network at the right time. In
case of receive we have a pre-action: the monitor sleeps before observing the receive action so that the incoming
message will be read at the appropriate time. Similarly, when the clock constraint specifies an upper bound x ≤ c
the monitor inserts a timeout (a timer triggering a TimeoutException).

6. Benchmarks on transparency of timed monitors

The practicality of our timedmonitoring framework depends on the transparency of the execution in amonitored
environment. By transparency we mean: a program that executes all actions at the right times when running
unmonitored will do so when running monitored. Transparency and overhead are closely related in the timed
scenario, since the overhead introduced by the monitor may interfere with the time at which the interactions
are executed. We have tested the transparency by providing two different protocols - a protocol with resets and
a protocol without resets. The former proves the usability of the monitor in a typical scenario, while the latter
demonstrates its limitations.
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To set up the benchmark, we have fixed a Scribble timed protocol andmanually created a correct implementa-
tion of the participants in that protocol using our timed PythonAPI.We run the implementation in two scenarios
using our monitoring framework, and with the monitors ‘turned off’. The graphs on Fig. 16 present the average
execution time with a confidence interval of 95%. The result is obtained by repeating each example 30 times. This
experimental design is influenced by [GBE07], where a typical large repetition size is n ≥ 30.

Participants were run as separate Python applications on the samemachine (Intel(R) Core(TM) i7-2600 CPU
@3.40GHz,Ubuntu 14.04.3LTS), tominimise the latency between the endpoints. If latency is bigger, the protocol
might become unsatisfiable and therefore an error will be triggered by the monitor before the completion of the
protocol. For example, in a scenario where a sender’s constraint is x ≤ 1, a receiver’s constraint is x ≤ 1, and
a latency is 1.5s (such latency is bigger than the monitor error margin), even if the sender sends the message on
time, the monitor at the receiver endpoint cannot receive it on time due to network delay. We are not interested
in testing such scenarios, because the errors are not due to monitor overhead. In cases of big latency the monitor
correctly detects constraint violations. In the presented results, on average the latency between two endpoints is
0.04. The full benchmark protocols, the applications and the raw data are available from the project page [pyt].
To measure the execution time we use the built-in Python function timeit.6

Scenario 1 We have initially considered a protocol with the same structure as the protocol in Fig. 3. Running
the example with the initial time constraints, however, requires significantly long time runs where most of the
execution time is spent performing time.sleep at each endpoint (see the Python implementations). Since we are
interested in measuring the monitor overhead, which is not affected by how big the actual value constraints are,
we decrease the constants in clock constraints and in time.sleep by a scale of 100. We used the implementation in
Fig. 13 with delays updated to match the protocol, as shown in Fig. 15 (left). The outcome is presented in Fig. 16
(a). The graph illustrates the time for completing a protocol for increasing number of recursive executions.

This experiment shows that for the given protocol and implementation all executions are without constraint
violations. Transparency is guaranteed (i.e., the overhead induced by the monitor does not affect the correctness
of the program). Since resets prevent the monitor overhead to accumulate up to a non negligible overall delay,
delays are bigger than the error margin. The monitor clock is reset at each iteration and therefore the monitor
overhead does not accumulate.

Scenario 2 Our second experiment was specifically targeted at checking how many interactions can generate a
non-negligible accumulation of delays. We do this by removing resets. In case of no resets both the unmonitored
and monitored programs are expected to start violating the constraints after certain number of executions. In
Scenario 1 recursion allowed us to express repeated interactions by using resets. In order to observe a large number
of repeated interactionswithout resetswe have created the sequential protocol in Fig. 17 (left) and implementation
(middle). We have generated a protocol with 200 consecutive point to point interactions happening at increasing
times (at each interaction the time is increased by c). We run the experiment for different values of c (horizontal
axis on the figure) and measure the maximum number of interactions (vertical axis on the figure) that can be
executed before the program violates the time constraint.

The experiment confirmed that, themonitored application performs 90% of themaximumnumber of possible
interactions. This example comes to show the limitations of the timed monitoring framework. The practical
scenarios we have encountered so far did not include long sequences of interactions, and repetitive operations
are handled via recursions with resets at each cycle.

Further discussion on benchmarks Overall, the time transparency of the monitoring framework depends on the
following:

• Monitor overhead. The complexity ofmonitor checking is linear in the number of protocol states and therefore
the upper boundof the overhead canbe approximated.Note that errors canbe caused by accumulatedmonitor
overhead. If clocks are not reset, the overhead of the monitor is propagated at each run. The accumulated
delay can be calculated as a sum of the delays in the longest path between two actions without resets and
executed on the same participant in the dependency graph.

6 The function timeit returns the time in seconds since the epoch, i.e., the pointwhere the time starts. As recommended in http://pythoncentral.
io/measure-time-in-python-time-time-vs-time-clock/, this is the preferable method for measuring time in Python.

http://pythoncentral.io/measure-time-in-python-time-time-vs-time-clock/
http://pythoncentral.io/measure-time-in-python-time-time-vs-time-clock/
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(a) (b) (c)

Fig. 17. A protocol with accumulating delays (a) and a Python implementation for Client (a) and Server (b) roles

• Error margin. The monitor accepts an application as correct if the timing t for a state n conforms to the time
constraints δ(n) in the specification within a certain margin of error ε. More precisely, assume that t(n) is a
function that returns the current time for the clock for a state n. Then themonitor checks if [t(n)−ε, t(n)+ε]∩
sols(δ(n)) �� ∅ where sols(δ(n)) denotes the set of solutions for δ(n). The error margin ε is a parameter set to
the monitor system during its initial configuration. The error margin is application and environment specific,
but it should be at least as big as the time accuracy guaranteed by the execution environment. For example, in
the Python documentation, the preciseness of the time function is specified as follows: “It returns the time in
seconds since the epoch as a floating point number. Note that even though the time is always returned as a floating
point number, not all systems provide time with a better precision than 1 second.”7. Therefore, for our benchmark
experiments we have chosen an error margin within a second of the specified constraints (ε � 0.5s).

Time errors can also be caused by the execution environmentwhen themachine (or the network) is overloaded.
Other system activity can make the kernel unable to schedule the endpoint process as soon as needed. The
purpose of the monitor is to detect time errors at their first occurrence and to stop time drifts propagating to
other endpoints. Therefore, although in the above case time violations are not a result of a programming error,
the executed program should be flagged as wrong, because the time constraints in the protocol are not satisfied.

Note that when the system is under load the time requirements will be violated due to the high load of
the system, not because of the overhead induced by the monitor. However, the system load have an impact on
the protocol execution, because in a system with inconsistent time drifts the protocol constraints can become
unsatisfiable. As a future work we plan to identify formal transparency requirements to calculate time drifts that
make a protocol unsafisfiable. We also plan to test the preciseness of time violations on real-time kernels, such
as the Ubuntu RT PREEMPT patch set. This will allow us to specify and enforce hard time deadlines. In an
operating system without real-time guarantees, our framework reasons only about soft time deadlines, such as
the deadline patterns expressed in Sect. 7.

7. Temporal patterns in global protocols

In this section we present a number of timed patterns that we have collected from literature, and which include
industrial cases studies [BFM98, KCD+09], verification tools [UPP, CPS09] and web service specifications such
as the Twitter API and Simple Mail Transfer Protocol (SMTP). Each pattern will be first introduced with a
motivation and reference to literature, thenmodelled using Scribble and applied to a real-case scenario. The given
set of patterns does not aim to be exhaustive, but to allow us to asses the usability of Scribble in known timed
scenarios. Table 2 summarises the timed patterns, with reference to the corresponding use cases and references
to literature.

Request-response timeout pattern This pattern allows to enforce quality of service requirements on the timing of
a response. The requirement can be set either at the server side or at the client side, as we identified in the two use
cases that follow. In the first use case, drawn from [CPS09], a service is requested to reply in a timely manner: “An
acknowledgement message ACK should be sent (by the server) no later than one second after receiving the request
message REQ”.

7 https://docs.python.org/2/library/time.html

https://docs.python.org/2/library/time.html


902 R. Neykova et al.

Table 2. Timed patterns

Pattern Use case Source

Request-response timeout Travel agency, SMTP [CPS09, SMT]
Messages in a time frame Denial of service attacks, Travel agency [CPS09]
Action duration Progress properties, User inactivity [UPP]
Repeated constraint Pull notification services [OOI]

Fig. 18. An illustrated summary of the timed patterns

Namely, the sending of a reply message should be executed within a fixed time after the corresponding request
message has been received. In the second use case, the Travel Agency web service specification, also drawn
from [CPS09], the timeout is specified at the client side : “A user should be given a response RES within one minute
of a given request REQ”. In this case, it is the receiving of the response from the server that must be possible after
the request, within the specified timeout.

The above requirements can be generalised by the following pattern, which is also illustrated in Fig. 18:

(a) After receiving a message REQ from role A, role Bmust send the acknowledgment ACK to Awithin c time units.
(b) After sending a message REQ to role B, role A must be able to receive the acknowledgment ACK from B within

c time units.

The corresponding skeletal Scribble specification is given in Fig. 19, where in (a) the sending of a reply message
should be executed within a fixed time after the corresponding request message has been received, and in (b) the
receiving of a message after sending a request should be possible within a timeout. A concrete specification can
be obtained by instantiating REQ, ACK, A, and Bwith actual messages, roles, and c with a value inQ

≥0. In Fig. 19a,
xb is a clock of B and “. . .” stands for any clock constraints, clock resets, or for any interaction that does not
include resets to xb or ACK.

(a) (b)

Fig. 19. Request-response timeout pattern in scribble: server side (a) and client side (b)
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Fig. 20. SMTP timeouts in Scribble (Request-Response Timeout Pattern)

Fig. 21.Messages in a time frame pattern in scribble: single message time frames (Ga) and overall timeframe (Gb)

First, the time of receiving the request REQ is recorded by resetting the clock xb, and then the clock constraint
xb ≤ c at the reply interaction ACK sets the maximum delay to be of c time units. The specification in Fig. 19b is
similar, but with reset and constraints for the user clock xa.

In Fig. 20 we present an example from the SMTP protocol, featuring a composition of instances of the
Request-Response Timeout Pattern (b). The specification prescribes that “A user should have a 5 minutes timeout
for the MAIL command and 3 minutes timeout for the DATABLOCK command”. The combination of two instances
of the pattern, at the client side, requires the use of two clocks, one for the MAIL command (clock xu1), and one
for the DATABLOCK command (clock xu2). In the constraints, note that 3 (reps. 5) minutes correspond to 180000
(resp. 300000) milliseconds.

Messages in a time frame pattern This pattern allows to set a limit to the number of messages that can be sent
in a given time frame. Examples of this requirement can be found in specifications for denial of service attacks
[CPS09]:“A user is allowed to send only three redirect messages to a server with interval between the messages no less
than two time units”, or in other scenarios such as the Travel Agency Service in [CPS09]: “A customer can change
the date of his travel only two times and this must happen between one and five days of the initial reservation”. These
specifications express the repetition of a specified number of messages, occurring either (a) at a specified pace or
(b) within an overall specified time-frame.

The above requirements can be generalised by the following pattern, which is also illustrated in Fig. 18:

(a) Role A is allowed to send role B at most k messages, and at time intervals of at least c and at most d time units.
(b) Role A is allowed to send role B at most k messages in the overall time frame of at least c and at most d time

units.

Figure 21 shows the abstract Scribble protocol for this pattern, where Ga accounts for case (a) and Gb for case (b).
The difference is that in (a) the clock xa is reset at each interaction. Note that in this pattern we have a-priori
knowledge of k , hence any instantiation of the pattern can be resolved as an enumeration of interactions (i.e.,
without using loops). The definition uses a parametric notation Ga(k) for the Scribble ‘body’ defined in terms of
Ga(k-1) for the sake of a general and simpler definition of the abstract Scribble protocol. Concrete specification
can be obtained by instantiating A, and B with actual roles, c and d with values in Q

≥0, and k with non-negative
integer values. Note that scenarios in which A is supposed to send exactly (and not at most) k messages can be
modelled by omitting the ‘choice’ construct and only keeping the first branch (i.e., removing the branch that
jumps straight to Ga(0) or Gb(0)).

Figure 22 shows the protocols for the denial of service attack and the Travel Agency Service in [CPS09]. Here
we comment on the latter. First, we specify the resetting of the user clock xu on the interaction reservePack.
Then the clock constraint xu > 1 and xu < 5 are set on the following messages changePack which are set to be
at most two. In this case, we did not convert days into milliseconds for readability.
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Fig. 22. Denial of service attack (Ga) and Travel Agency Service (Gb) use cases in Scribble

Fig. 23. Protocols for web service user inactivity (a) and for the UPPAAL progress property (b)

Action duration pattern This pattern sets a constraint on the delay which is allowed for a participant before
executing an action. For example, a common requirement in web services is that: “A user should not be inactive
more than 30minutes”. This pattern can also express progress properties verified by the UPPAALmodel checker
[UPP] such as: “A user is allowed to stay in the state for no more than three time units”.

The constraints above can be generalised as follows: the time elapsed between two actions performed by the
same role A, where each of these two actions can be either a send or a receive action, must not exceed c time units.
Notice that, unlike in the Request-Response Timeout Pattern, the constraint is specified only in terms of A and
not on the type of the previous actions performed by A or the other roles interacting with A.

Figure 23a, b present the two instances of the Action Duration Pattern in Scribble: the protocols for web
service user inactivity and the one for the UPPAAL progress property, respectively. In Fig. 23a the clock xa is
reset on the first message MSG1 from A to B. Then the clock check xa ≤ 30 guarantees that the user cannot send
another message MSG2 if the time constraint is violated. The verification of the progress property in Fig. 23b is
similar, but more roles are involved (A, B, C). The clock is reset during the interaction between A and C, while the
clock constraint is checked on the interaction between A and B.

Repeated constraints pattern The pattern captures requirements occurring in pull notification services, where the
intervals at which a certain interaction should be repeated is fixed. For example: “The email client should request
the emails from the service every 5 seconds”.

In general: role A must send messages to B every c time units. The main differences with the Messages in a
Time Frame Pattern is that the number of messages is not bounded, and the time is required to elapse between
messages of exactly c time units. For readability (i.e., to avoid nested ‘choice’ constructs) we will show the abstract
Scribble specification in the case of non-terminating interaction (Fig. 24).

The repetition of the pull interactions is expressed via recursion (recPull). At every recursive iteration, the
clock xa for A is checked against the constraint and then reset.

Fig. 24. Repeated constraints pattern in scribble
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8. Related and future work

Untimed runtime monitoring Recent works on multiparty session types (MPST) [HNY+13, DHH+15, NYH13]
present a runtime verification framework for Python programs. The Scribble toolchain in [NYH13] enhances
the protocol specifications with assertions on the message payload. We have built upon this feature, expressing
time constraints as assertions in our syntax. There is a substantial difference between the timed and the untimed
monitoring framework. We have shown that ensuring time-consistency over timed global protocols is non trivial.
It requires additional verification checks to be performed, namely feasibility and wait-freedom. To enable the
verification of real-time distributed systems we have designed a timed API for Python and enriched the monitor
capabilities, providing recovery mechanism for violated time constraints, which were not explored in the previous
works. Preserving time-transparency for monitored systems is a new challenge with time. We have demonstrated
preliminary results on the implications of the dynamic verification overhead over program correctness. We plan
to conduct further benchmarks to identify a necessary set of transparency requirements for monitoring timed
applications.

Specification languages The need for specifying and verifying the temporal requirements in a distributed systems
is recognised. To this aim, different specification methods and verification tools have been developed, especially
in the area of business process modelling (see [CKGJ13] for a survey on verification of temporal properties).
The work in [WIH11] describes a framework for analysing choreographies between BPEL processes with time
annotations. [GDZ12] extends BPML with time constraints. Via a mapping from BPML to timed automata,
it allows verification with the UPPAAL model checker. As a language for timed protocol specifications, the
main advantage of Scribble over alternatives such as BPEL, BPML and timed automata, is that it enables en-
forcement of global properties, e.g., conformance of the interactions to global protocols, providing an in-built
mechanism (projection) for decentralisation of the verification. Another expressive formal language for specify-
ing time-properties is XTUS-Automata, introduced in [KCD+09]. Specifications written in XTUS-Automata are
automatically translated into BPEL aspects, which ensure temporal constraints at runtime. Both absolute and
relative time can be specified. Their approach detects contradictions between the temporal constraints imple-
mented in the composition, but does not verify inconsistency at the specification level, as the Scribble checker
can offer.

Verification tools and frameworks Among the state-of-the-art runtime verification tools, a few support specifica-
tion of time properties [dBdGJ+14, CR07, CPS09]. The work in [CR07] presents a generic monitor that can be
parameterised on the logic. [dBdGJ+14] combines temporal properties and control flow specifications in a single
formalism specified per object class. Our enforcement mechanism resembles the aspect-oriented approaches used
in those verifiers, but the combination of control flow checking and temporal properties in the same global spec-
ification is an unique characteristic of our work. Our tool statically checks the correctness of the specification
itself in addition to the runtime checks for the program. Furthermore, via its formal basis in [BCD+13], our
framework allows to combine static verification [BYY14a] and dynamic enforcement.

Other works from the multi-agent community have studied distributed enforcement of temporal properties
through monitoring. [MU00] presents a distributed architecture for local enforcements, where monitors detect
if agents fulfil their specification within a given deadline. The specifications are expressed in the form of event-
condition-action andall agents belonging to a groupobey the same roles.Ourworkpresents a different perspective
where agents follow personalised laws based on the role they play in each protocol. In runtime verification for
Web Services, the work [C+11] transforms a subset of Web Services Choreography Description Language into
timed-automata and proves their transformation is correct with respect to timed traces. Their approach is model-
based, static and centralised, and does not treat either the runtime verification, or the properties of feasibility
and wait-freedom.

In the MCS (Message Sequent Charts) framework [Int98], several articles [HJ00, AHJ15] show that asyn-
chronous processes, following specifications obtained by a simple projection on each component in High-Level
Message Sequent Charts (HMSC) [Int98], allowmore behaviour than those specified by the HMSCs. Specifically,
the work [HJ00] discusses two necessary and sufficient conditions, order reconstructability and locality of choice,
for ensuring correctness of projection of HMSC to CFSMs. The former condition disallows choices where the
order of messages cannot be reconstructed from the local behaviour (as in the example on Fig. 7a). The latter
condition disallows distributed choices (as the one in the example on Fig. 4) in order to enforce a single party to
decide in each choice branch. In our framework, these conditions are automatically induced by a syntactic limi-
tation given by the global types and the projection rules in Definition 2.3. For example, order reconstructability
follows from third case of the projection rule of the branching (Definition 2.3) which enforces all branches to be
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mergeable when the choice is invoked by different participants. Similarly for locality of choice: the projection rule
of the branching (Definition 2.3) requires choices to have the same senders and receivers in order for the global
protocol to be projectable. As we have discussed in Sect. 2.3, the protocols in Fig. 7a and Fig. 4 are indeed not
projectable.

In the MSC framework, several tools for projecting local specifications from global ones are implemented (a
survey is given in [LDD06]). These framework avoid projecting into incorrect local behaviour (such as deadlock) or
detect incorrect behaviour. The Scribble toolchain prevents incorrect behaviour in local specifications by detecting
inconsistent (non-projectable) global protocols, and generates dynamic monitors to enforce that programs (e.g.,
Python code) conform to the projected protocols.

Tractable verification of distributed systems The particular shape of interaction enforced byMPSTs and inherited
by Scribble, as outlined in Sect. 2.1, is critical to guarantee tractability of verification based on MPSTs (e.g.,
relizability andprogress). For example, these syntactic constraints yield, in theuntimed scenario, a correspondence
betweenMPSTs and a subclass of Communicating Finite StateMachines (CFSMs) that, against the general case,
satisfy progress and liveness properties [DY13]. Related works on the verification of distributed protocols based
on high-level MSC [AEY05, Loh03] tackle the problem of realizability (if there is a distributed implementation
that generates precisely the behaviors in the graph). These works do not consider time constraints, and relate
to ours mainly through the restrictions we impose by projection (which we inherit from MPSTs). The precise
correspondence between implementable MSC, as identified by [Loh03], and projectable multiparty session types
is an interesting future research direction.

Timeproperties Severalworks studypropertiesof timed formalisms, especially in the contextsof automata [KY06a,
KY06b] and MSC [GMNK09, AGMK10]. In the timed scenario, problems such as reachability are known to
be undecidable in the general case. This has been shown, for example, for timed extensions of Message Sequence
Charts (e.g., Time-ConstrainedMSC [GMNK09]) and CTA [KY06a]. TimedMPSTs [BYY14a] tackle tractabil-
ity issues by relying on the syntactic constraints also inherited by Scribble and mentioned in Sect. 2.1, and a few
extra constraints on time annotations of global protocols. In particular:

• The correspondence between timedMPSTs andCTA [BYY14a], ensuring the progress and liveness properties
studied in [DY13], requires an additional constraint on the shape of global protocols, that is feasibility (recall
that it ensures that at any point of the protocol the current time constraint should be satisfiable for any possible
past).

• Progress of a well-typed program requires two additional properties: feasibility (as above) and wait-freedom.

The work in [BYY14a, BYY14b] proposes a decidable method to check if a global type is feasible and wait-free.
This method, however, relies on a further restriction on global types, called infinite satisfiability and explained
in Sect. 3. Infinite satisfiability has recently been relaxed [BLY15] to allow some clocks not to be reset, as long as
there is a viable ’escape’ from the loop, but has not yet been integrated in the Scribble toolchain.As the focus of this
work is to illustrate the implementation, practicality and usability aspects of the timed Scribble toolchain, we will
not recall the technical details of the theory here. The interested reader can refer to [BYY14a, BYY14b, BLY15]
for these.

Other approaches focus on the reachability problem, and are related to our algorithms for checking feasibility
and wait-freedom of timed global specifications. [Tri99] gives an algorithm to check deadlock freedom for timed
automata. The algorithm is based on syntactic conditions on the states relying on invariant annotations. Their
approach is not directly applicable to check feasibility on timed global specifications. Other methods based on
CTA [KY06a, KY06b] or MSC [GMNK09] address complexity by restricting topology and/or channel size.
Remarkably, none of the conditions required by timed MPSTs (hence Scribble) set limitations on the network
topology nor buffer size. For example the simple Scribble example below

rec pro [@A : x < 10, reset(x)][@B : true] a(T) from A to B; pro

allows the channel from A to B to have an arbitrary number of messages (as B can arbitrarily delay the receive
actions). Our restrictions are, rather, induced by the conversation structure of timed global protocols. Tractability
of MPSTs derives from the way interactions are structured and the way resets are organised.
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The work in [AGMK10], focused on an extension of MSCs with timed events, is particularly related to
[BYY14a] (on which theory this article is based): the former focuses on the problem of language inclusion
while the latter on statically checking conformance of abstract session types with concrete programs. The work in
[AGMK10] gives a verificationmethod that is decidable when the communication graph describing the behaviour
of each loop can be modelled as a single strongly connected component, which implies that channels have an
upper bound. In this article we hinge at the theory for static checking from [BYY14a] but practically apply it to
dynamic checking.

Calculi with time Our timed API is based on the session π -calculus with delays, introduced in [BYY14a]. The
delay primitive from [BYY14a] has been used as a model for the timeout and sleep extensions of the Python API
presented in Sect. 4. Other recent works that extend process calculi with time are, for example, [BY07, LP12,
LZ02] where timeouts are added to the π -calculus syntax. Time elapses as discrete ticks and delays propagate
asynchronously through the system. Timed COWS [LPT07] extends COWS with a ‘wait’ primitive similar to
our delays. The work in [GR+97], which is targeted to testing, introduces a ‘wait’ construct along with delay
annotations for actions. [SG13] extends the π -calculus with absolute and continuous times, and includes timed
constraints inspired by timed automata.Web-π [LZ05] andC3 [LP12] extend theπ -calculus and theConversation
Calculus (CC), respectively, to enable the reasoning on the interplay between time and exceptions.

The main focus of our work is different from the above works: we use timed specifications protocols, rather
than enriching timed primitives in the π -calculus (Python) syntax level. However, these works inspire several
future directions for our framework. Extensions allowing dynamic time-passing as in [SG13] and [LZ02] at the π -
calculus level are possible, for instance, by extendingwith time the approaches in [BHTY10] and [BDY12], inwhich
the global specifications directly model properties of the message contents. A recent work [HNY+13, DHH+15]
introduces exception handling constructs to the Scribble toolchain. We plan to integrate our time annotations
into the full Scribble syntax and to investigate the implications of propagating timeouts and delays as exceptions.

9. Conclusion

This work presents the design and implementation of a real-time verification framework. At the specification level
our time extension controls and checks, via timed Scribble, the feasibility and wait-freedom of processes at the
early design phase.At the programming level, we have introducedprimitives for a fine grainedmanagement of time
which enable to schedule interactions at exact timings w.r.t. a given protocol. At runtime, early error detection is
guaranteed by raising time exceptions when time deadlines are not met. Furthermore, the monitor is augmented
with enforcement capabilities for recovering from runtime violations of the time constraints. Benchmarking has
revealed an interesting relationship between transparency and overhead introduced by time:monitoring overhead
may break transparency by introducing delays, hence violations. The practicality of the proposed approach for
specificationanddynamic verificationof distributed interactionshasbeendemonstrated via: (1) the representation
of a number of scenarios (i.e., a OOI use case as well as time patterns distilled from literature) with Scribble, and
(2) benchmarking, showing that the overhead introduced by our monitor is, in the scenarios we encountered,
negligible.
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Fig. 25. Labelled transitions for global types in the framework of timed MPSTs (adapted from [BYY14a])

A. Correspondence between scribble and timed-MPST

The syntax of global types, in the framework of timed-MPSTs given in [BYY14a, BYY14b], is presented below:

G ::� A → B : {ai 〈Ti 〉{Ai }.Gi }i∈I | μ t.G | t | end
A ::� {δO, λO, δI, λI}

The syntax of global types is very similar to the syntax of Scribble global protocols in Sect. 2.1 except: (1) Scribble
does not cater for delegation and higher order protocols whereas Timed Global Session Types do; and (2) the
choice and interaction protocols are two separated constructs in Scribble while they are modelled as a unique
construct in Timed Global Session types. These differences, especially (2) and are consequence of the specific
focus of Scribble as a protocol design language directed at partitioners that are familiar with e.g., Java notation,
who proved to find this notation friendlier [SCR, HMB+11, YHNN13, HHN+14].

Definition A.1 (Encoding) The encoding E from (Scribble) global protocols to (timed-MPSTs) global types is
given below:

E ([@A : δO, reset(λO)][@B : δI, reset(λI)] a(T) from A to B; G) �
A → B : {a〈T〉{δO, λO, δI, λI}.E (G)}

E (choice at A {Gb
j }j∈{1,...,n}) �

A → B : {aj 〈Tj 〉{δOj , λOj , δIj , λIj }.E (G j )}j∈{1,...,n}
with (up to unfoldings) Gb

j � [@A : δOj, reset(λOj)][@B : δIj, reset(λIj)] aj (Tj ) from A to B; G j

E (rec t {G}) � μ t.E (G)
E (continue t) � t
E (end) � end

For convenience we have recalled the semantics of global types in Fig. 25. The semantics of global protocols
and global types are similar except that the one for timed-MPSTs from [BYY14a, BYY14b] have no rule �Choice
as choice is handled directly in the rule for send/selection and brach/receive. It is straightforward by induction on
the proof that a Scribble timed global protocol G is trace equivalent to its encoding E (G).

Lemma A.2 (Correspondence-global) Let G be a Scribble timed global protocol, then G ≈ E (G).

Similarly we can define the following encodings:

• ELTS which is the encoding from (timed-MPSTs) local types (without delegation, noting that delegation is
never introduced in the encoding from global protocols/types) to (Scribble) local protocols;

• ELST which is the encoding from (Scribble) local protocols to (timed-MPSTs) local types;
• ECTS which is the encoding between configurations of (timed-MPSTs) local types and configurations of
(Scribble) local protocols.

• ECST which is the encoding between configurations of (Scribble) local protocols and (timed-MPSTs) local
types.
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It is straightforward by induction on the depth of the transition rule that a Scribble timed global protocolG is trace
equivalent to its encoding E (G). Similarly since the semantics of local protocols/types and their corresponding
configurations is identical, it is straightforward to prove the following correspondence.

Lemma A.3 (Correspondence) Let G be a Scribble timed global protocol, then G ≈ E (G). Similarly let L
be a (timed-MPSTs) local type and T be a (Scribble) local protocol. Then L ≈ ELTS (L); T ≈ ELTS (T );
(L1, . . . , Ln , #»w ) ≈ (ECTS (L1), . . . ,ECTS (Ln ),

#»w ); and (T1, . . . , Tn, #»w ) ≈ (ECST (T1), . . . ,ECST (Tn), #»w ).
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