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Abstract. Ultrasonic processing (USP) during direct-chill (DC) casting of light metal alloys is 

typically applied in the sump of a billet. This approach, though successful for structure 

refinement and modification, has two main drawbacks: (a) mixture of mechanisms that rely 

heavily on dendrite fragmentation and (b) a limited volume that can be processed by a single 

ultrasonic source. We suggest moving the location of USP from the sump to the launder and 

applying it to the melt flow for continuous treatment. The apparent benefits include: (a) 

degassing of the melt volume, (b) grain refinement through activation of non-metallic inclusions, 

fragmentation of primary crystals, and deagglomeration of grain refining substrates, and (c) a 

possibility to use a single ultrasonic source for processing large melt volumes. To optimize this 

process with regard to the acoustic intensity and melt residence time in the active cavitation zone, 

flow modification with baffles as well as informed location of the ultrasonic source are required. 

In this paper, we demonstrate the results of experimental trials where the degassing degree and 

grain refinement have been the indicators of the USP efficiency for two aluminium alloys, i.e. 

LM25 and AA7050. The results are supported by acoustic measurements and computer 

simulations. 

1.  Introduction 

Treating liquid metal with ultrasound, i.e. ultrasonic melt processing (USP), produces beneficial results 

that include melt degassing and structure refinement of the as-cast alloy. It is an efficient, economical, 

and clean melt treatment technology. For example, instead of injecting an inert or chemically inactive 

gas such as argon to extract hydrogen from the melt, cavitation bubbles are generated during USP and 

leave the melt through buoyancy when they grow due to rectified diffusion of hydrogen, i.e., a process 

where hydrogen diffuses into the bubble during the rarefaction acoustic cycle [1]. In the case of structure 

refinement, the cost of common grain refinement agents such as TiB2 for aluminium alloys [2] or 

zirconium for some Mg alloys [3] could be reduced or avoided by using USP. These benefits are highly 

attractive for industrial applications. 

Due to its current limitation in treating large melt volumes, USP is mostly confined to laboratory or 

small-scale processing despite its potential advantages [4]. To circumvent this problem, multiple 
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ultrasonic sources are utilized [1]. However, this solution reduces its economic feasibility thereby 

hampering its widespread industrial adoption. The imminent challenge for USP technology is to improve 

melt treatment efficiency at industrial scale using a single ultrasonic source. 

Recent developments in USP modelling [5,6] enabled us to design a flow modification system in the 

launder (i.e. using various partition configurations and different sonotrode locations) that maximized 

the melt residence time in the cavitation active zone. In addition, such models also predicted that 

resonance conditions in a launder can increase the bubble concentration [7] and thus cavitation activity. 

Recent technological developments in cavitation intensity measurements [8] enabled us to quantify 

acoustic pressures and map the pressure field in the melt. These measurements allowed further numerical 

model development and supported the design of a smart flow modification system in the launder for 

optimized USP. 

In this work, we verify the resonance phenomenon by varying the distance between partitions in a 

launder. Resonance is an attractive trait for improving USP efficiency on a single sonotrode 

configuration. The effect of sonotrode placement with respect to partitions is also studied. Acoustic 

pressures were measured in a water model. Metallurgical indicators such as degassing efficiency and 

grain refinement analysis were used to assess USP efficiency in the liquid metal experiments. 

 

2.  Materials and methods 

2.1.  Cavitation activity measurement 

Acoustic pressures were measured in water with a calibrated cavitometer. A detailed description of 

cavitometer, data acquisition process and pressure conversion procedure has been previously described 

in [5, 9,10]. A 1-kW Hielscher piezoelectric ultrasonic transducer with a titanium cylindrical sonotrode 

(diameter 40 mm) was used in water experiments at a power of 70% (corresponding to 12 µm peak-to-

peak ultrasonic tip amplitude displacement). The sonotrode tip was immersed 1 cm below the free 

surface.  

A launder with partitions made from transparent plastic material was used to study the acoustic 

behaviour of water under USP. The length and width of such a launder were 100 cm and 9.4 cm, 

respectively. More details of this launder has been previously described in [7]. The gap between the 

partitions and the launder where water can flow through were 2 cm and 1 cm for upstream and 

downstream partition, respectively. The configuration of the partitions (flow passed below upstream 

partition and above downstream partition) was intended so there would be a recirculation of the liquid 

between the partitions. This ultimately maximizes pressures and cavitation activity to attain more 

inclusion activation and particle fragmentation by higher pressures and more efficient redistribution of 

the acoustic energy. 

To observe acoustic resonance effect in water, acoustic measurements at three partition distances 

were carried out. The measurements were performed under the sonotrode. Two partition separation 

distances represent n-fold water wavelengths at ultrasonic frequency of 20 kHz—15 cm (2 λwater) and 30 

cm (4 λwater), and one width (20 cm) represents an off-wavelength partition width. The effect of sonotrode 

placement with respect to the partitions was also studied. Three sonotrode locations were used: next to 

the upstream partition, next to the downstream partition, and equidistant between both partitions. 

Experiments were repeated with water flow (of 2 l/min) and without flow. The case corresponding to a 

partition separation of 15 cm is simulated using a numerical model that was validated with Particle 

Image Velocimetry (PIV) measurements in water [11]. 

2.2.  Metallurgical indicator 

The experiments with liquid aluminium alloys were performed in a launder made from refractory 

material. The length and width of such a launder were 90 cm and 10 cm, respectively. A liquid alloy 

was poured to the launder at a flow rate of 1 l/min. A thermocouple was placed in the vicinity of the 

launder exit, where samples were collected. USP was performed with a Reltec water-cooled 

magnetostrictive ultrasonic transducer (5 kW) operating at 17.5 kHz. A conical Nb sonotrode tip 



ICASP5-CSSCR5

IOP Conf. Series: Materials Science and Engineering 529 (2019) 012050

IOP Publishing

doi:10.1088/1757-899X/529/1/012050

3

 

 

 

 

 

 

(diameter 20 mm) was immersed 2 cm below the free surface of the melt. USP power of 3 kW 

corresponding to 33 µm peak-to-peak USP tip amplitude was used. The partitions were placed at 1 

wavelength distance for liquid aluminium at 17.5 kHz, which is 26 cm. The experimental setup for liquid 

metal experiments is shown in Figure 1. 

The degassing efficiency of USP process was assessed with an LM25 alloy (Al–7.5 wt% Si). This is 

because Al–Si alloys can have relatively high content of hydrogen in melt [12], thus may provide a clear 

indication of degassing efficiency. Samples were collected at different process conditions: without USP, 

with sonotrode at different positions while one reference sample was taken when the melt was still in 

the furnace. Density index (DI%) (the difference between the densities of the sample solidified under 

atmospheric pressure and the sample solidified under vacuum related to the density of the sample 

solidified under atmospheric pressure) that can be regarded as a measure of the end-cast product 

cleanliness  was calculated from reduced pressure tests (RPT) which was performed using RPT 

(3VTMKGmbh) machine. At least three samples from independent experiments were obtained from 

each position and process conditions. 
AA7050 alloy was used for assessing grain refinement efficiency of USP as it contains the necessary 

elements (Zr and Ti) that can trigger effective grain refinement under cavitation condition [1,13]. Three 

samples were collected as the melt left the launder. The samples were solidified in a TP1 mould. For 

this analysis, samples were obtained at different sonotrode positions and one sample obtained without 

USP as a reference. Standard metallographic sample preparation procedure and optical microscopy 

technique was utilized to measured grain size.  

 

   
(a)                                                (b)                

 

Figure 1. Photos of 

experimental setup used 

for liquid metal 

experiments. (a) Position 

of furnace, launder and 

partitions (b) with 

ultrasonic sonotrode and 

liquid metal experiment 

running.  

 

3.  Results and discussion 

3.1.  Acoustic measurements 

Figure 2a and 2b show the measured maximum and root mean square (RMS) pressures in water, 

respectively. The highest maximum pressure with flow was recorded when the sonotrode was positioned 

next to the downstream partition (1.47–1.49 MPa). The pressure at the centre position is 1.36–1.42 MPa 

and the lowest pressure was recorded with the sonotrode next to the upstream partition (1.24–1.38 MPa). 

Figure 2 also shows that the highest pressure was measured when the partition distance was 2λwater, and 

followed by 4λwater. The lowest pressure was obtained when the partition separation was at off-

wavelength distance (20 cm). These results support the prediction that a resonance length promotes an 

increase in pressures [10]. This result also reveals that this resonance effect does not only occur at one 

liquid wavelength, but also at n-fold liquid wavelengths (where n is an integer number). According to 

Figure 2, the resonance effect decreases with increasing n, presumably due to attenuating pressures as 

the sound waves have to travel over a longer distance in a bubbly medium.  
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Figure 2 also shows that the presence of the flow leads to an increase in the measured acoustic 

pressure regardless of the position of sonotrode and the distances between partitions. In terms of 

maximum pressure (Figure 2a), the upstream position has the most significant pressure increase, 

followed by downstream position and the centre position has the least pressure increase. The trend 

between maximum pressure and RMS is similar on different sonotrode positions and partition distances. 

RMS value represents the average of maximum RMS acoustic pressure measured from 60 individual 

waveforms. Figure 2b shows that without flow, the RMS value is approximately less than one-fifth of 

the maximum pressure value, while measurements with flow produced RMS value close to 20% of the 

maximum pressure value. This is probably due to the decrease in the shielding effect under the sonotrode 

as bubbles are advected downstream. With less bubbles to surround the sonotrode surface, pressure 

waves can propagate more freely and over longer distances in the liquid medium with less attenuation. 

 

 

    
(a)                                                                         (b) 

Figure 2. Effect of flow in water experiments, sonotrode positions with respect to partitions (upstream, centre 

and downstream), and distances between partitions – comparison between n-fold λwater and non-λwater partition 

distances. (a) Maximum pressure measurements and (b) RMS measurements. 
 

3.2.  Numerical results 

Figure 3 shows the predicted acoustic pressure in a 3D representation of the water launder when the 

sonotrode is placed centrally between the two partitions. The results show that the highest pressures are 

recorded downstream, in qualitative agreement with the results from the previous section. Note that 

these results are highly sensitive to the assumed bubble density in water, which is an unknown parameter 

[11]. Numerical discrepancies can be explained by the lack of knowledge of this crucial factor: an 

empirical validation of this crucial parameter is currently being studied. 

 

3.3.  Metallurgical indicator 

Figure 4 shows the effectiveness of degassing using USP assessed using density index (DI%) parameter. 

Higher value represents less degassing efficiency and lower value otherwise. The positive effect of USP 

for degassing can be clearly seen as samples taken without USP (launder) has highest average DI index. 

Among three different sonotrode positions, the best degassing result is obtained when the sonotrode was 

positioned next to the downstream partition that is in agreement with the experimental measurements of 

acoustic pressure in Figure 2. The DI is higher when the sample obtained in the launder without UST 

compared with the one in the furnace, which is logical as there is less water vapour in the furnace, thus 

less hydrogen pickup by the liquid metal. 
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Figure 5 shows the grain refinement efficiency of USP. USP clearly promoted grain refinement with 

samples after USP having smaller grain size. Figure 5a suggests that the best grain refinement was 

achieved when the sonotrode was positioned either in the centre between partitions or nearby 

downstream partition, which an average grain size reduction of up to 50% as compared to upstream 

position or without USP. The effect of melt temperature is demonstrated in Figure 5 on two sets of data 

taken at different temperatures. It is clear that USP treatment temperature has a critical influence on the 

structure refinement outcome, as reported by previous researches [1,14]. If intermetallic fragmentation 

is the main mechanism for grain refinement in this type of USP, treatment at lower temperature would 

yield better structure refinement due to the larger presence of intermetallics and due to a higher 

cavitation activity.  

 
Figure 3. Predicted acoustic pressure in the water launder for a case with flowing water, representative of 

the experiment with distance between the partitions equal to two wavelengths of water and the sonotrode 

placed at the center. The aspect ratio is altered by a factor of 5.0 for clarity. 
 

  

 

 

 

 

Figure 4. Density 

index (DI %) 

obtained through 

reduced pressure test 

for samples taken at 

different locations 

and processed with 

USP at different 

sonotrode positions. 

 

From both acoustic measurements in water and liquid metals experiments, we found a coherent 

response. The better USP efficiency was achieved by placing the sonotrode nearby downstream 

partition. This corresponds to the highest acoustic pressure built up under resonance, and  along with 

the flow pattern can increase re-circulation and residence time [14]. The second effect is the propagation 

of acoustic waves and cavitation activity beyond the downstream partition, which prolongs USP of the 

incoming melt to the downstream part of the launder. These mechanisms can ultimately improve the 

USP efficiency.  

4.  Summary 

0

5

10

15

20

25

Furnace (No UST) Launder (No UST) Upstream Centre Downstream

D
en

si
ty

 In
d

ex
 (

%
)

Sonotrode positions

Density Index (%)



ICASP5-CSSCR5

IOP Conf. Series: Materials Science and Engineering 529 (2019) 012050

IOP Publishing

doi:10.1088/1757-899X/529/1/012050

6

 

 

 

 

 

 

The resonance effect was observed in water experiments. Larger acoustic pressures were measured 

when the partition distance corresponds to integer wavelengths and lower pressures were measured 

when the distance is not a wavelength integer. The resonance effect does not only occur at one liquid 

wavelength but also at n-fold liquid wavelengths (higher-order resonance), though with attenuation.  

The optimum location of the sonotrode is next to the downstream partition. This is well supported 

by various indicators, both from water and liquid metal experiments. The findings from this work clearly 

demonstrate that flow modification through variations of partition distances and placements of the 

sonotrode could provide improvement in USP efficiency, which could be worth to explore further for 

bringing the USP technology to industry. 

  
Figure 5. Structure refinement efficiency analysis from two independent experiments for samples taken at 

different process conditions. (a) Grain size analysis and (b) temperature where samples were obtained. 
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