
Re-planning for a Successful Project Schedule

Austen Rainer and Martin Shepperd
Empirical Software Engineering Research Group

Bournemouth University
Talbot Campus

Poole, BH12 5BB, UK
{arainer, mshepper}@bournemouth.ac.uk

Abstract
Time to market or project duration has increasing
significance for commercial software development. We
report on a longitudinal study of a project at IBM
Hursley Park. The focus of this study was schedule
behaviour, however, we explored a range of related
factors including planned versus actual progress,
resource allocation and functionality delivered. In the
course of the twelve-month study, evidence was
collected from 8 interviews, 49 project meetings, a
number of other project documents and a feedback
workshop. The project leader considered the project to
be a success, not only in terms of satisfying resource
and schedule objectives, but also in the marketplace.
Whilst many of the originally planned external
commitments were met, it is clear that the project did
not adhere to its original (detailed) plan and indeed there
were no less than seven re-plans. These re-plans were
mainly in response to misestimates in the original
plan, rather than in response to the introduction of
additional requirements (of which there were several) or
problems with external dependencies. Furthermore,
these re-plans suggest a distinction between the nature
of the initial planning process and the nature of the re-
planning process during the project. Attention is also
directed at the implications these re-plans have for
metrics and estimation research.

Keywords: successful software project, case-study,
schedule, metrics, planning, estimation

1. Introduction

A growing body of research reports on the actual
behaviour of software development projects. Most of
these studies focus on low level processes, such as the
time usage of individual developers [4, 14, 15], the
progress of activities [9, 21] and the cognitive processes
of individual designers [10, 11]. There are few studies

that have systematically investigated the high-level
processes that occur within software projects, such as
the behaviour of process areas of the project, or the
interaction between low-level and high-level processes.
Notable exceptions are Curtis et al. [6-8] and the
system dynamics work of Abdel-Hamid and his
colleagues [2]. Overall, these studies, whether they
investigate the high-level or low-level processes, tend
not to evaluate the impact of the studied process(es) on
schedule behaviour (although, again, the work of Abdel-
Hamid is a notable exception).

It is already established that project managers tend
to adjust their project schedules in response to changes
in their project. For example, Sommerville writes:

“Project managers revise the assumptions
about the project as more information
becomes available. They re-plan the project
schedule.” [19], p. 50)

Rook [18] writes:

“While the major effort on planning is
required during the project initiation phase,
planning continues from phase to phase, as
further details become apparent, and as
changes are introduced.” [13], chapter 27 page
19)

And, from a different perspective, Rodden et al. [17]
write:

“All organisational life involves ‘cutting
corners’, informal ‘bending of rules’ and so
forth. In most instances, organisational
managements are aware that such work goes
on, if not in detail, and allow it precisely
because it is a means by which the work can
be done.” [17], p. 61)

Re-plans (or adjustments) are necessary for a number of
reasons, such as:

1. Events which were unexpected and unplanned for.
One example is the departure of key personnel to a
different organisation.

2. Events which were expected but cannot be planned
for. Examples here are working overtime and
working shifts: managers and developers expect
that these will be necessary, but cannot (or do not)
explicitly plan for when they will occur. In other
situations, contingency can still be built into the
plan. An example of this strategy is the
expectation that there will be changes to the
requirements: managers may plan time and effort
for those changes, but they might not be able to
plan for when these changes will occur, or what
precisely those changes will be.

3. Events which were expected and planned for, but
for which the original plans were inaccurate.
Examples include inaccurate estimates and an
incomplete or inaccurate work breakdown structure.

All of these events may occur through a combination of
high-level and low-level processes, which are internal or
external to the project. As already noted, there is a lack
of evidence on high-level project processes and their
interaction with low-level processes. As a result,
although the occurrence of re-plans is recognised,
detailed empirical studies on the nature and implications
of these re-plans do not appear to have been conducted.
Consequently, there is a clear need for further
investigation, for the study of how a project’s
management react to changes in the project (caused by
these processes), and a consideration of the effects of
these processes and their ‘associated’ re-plans on the
schedule behaviour of the project.

We have conducted two case studies based upon real-
world software development projects, Project B and C.
This paper focuses upon Project B, with some
references to Project C. The case studies were unusual
in three ways. First, they adopted a holistic approach,
considering both high and low-level processes in the
projects. As already noted, Curtis et al. [7] adopted a
similar approach, but focused on different processes to
those considered here. Curtis et al. investigated human
behaviour with a simple hierarchy of behavioural
levels, whereas this study has investigated ‘project
behaviour’, using such concepts as workload, capability
and schedule.

Second, the case studies considered the dynamic
behaviour of processes: how they changed over time.
Abdel-Hamid and his colleagues (e.g. [2]) have
investigated dynamic behaviour. Whereas Abdel-Hamid
focused on validating their systems’ dynamics models,
this investigation has concentrated on exploring the
underlying phenomena.

Third, the case studies combined multiple sources of
naturally occurring evidence. Cook et al. [5] used
naturally occurring evidence in their investigations.
Whereas Cook et al. primarily rely upon electronically
‘mining’ quantitative sources of evidence, our case
studies employed a semi-autonomous method (i.e. a
combination of electronic text searches and manual
‘browsing’ of the evidence) to identify, extract and
organise qualitative and quantitative information.

2. The Case Study

Project B is one release of a mission-critical,
middleware transaction processing system (referred to as
Product B in this paper) that operates on mainframe
computers. Other versions within the ‘family’ operate
on mid-range machines and workstations. Overall,
Project B was considered a success by its Project
Leader. As one criterion of this success, the release was
“delivered” when planned. Closer inspection of the
project, however, indicates that two features were not
delivered with the product (but were delivered some
weeks later, via the World Wide Web), and that the
quality of one of these features was much lower than
desired by the project team. Also, an important feature
was developed externally to Project B (but within the
organisation) but tested by Project B. This introduced
significant external dependencies. Nevertheless, the
feature was delivered with the product without
presenting any serious problems to the progress of the
project.

Table 1 summarises the sources of evidence that
were collected for Project B. As the table indicates,
naturally occurring evidence was supplemented by
interviews, a feedback workshop following the
completion of the project, and a number of other
documents. The feedback workshop took the form of
exploring the study’s findings with the Project Leader
and his assistant, so as to validate and clarify the
findings. Van Genuchten [21] adopted a similar
approach in his study.

Table 1 Evidence collected from Project B

Type of evidence Count
Interviews 8
Meeting minutes, of which:

- Project status meetings
- Senior management meetings
- Project review (post-mortem)

51
49
1
1

Researchers records of status meetings 21

Project schedules 1
Projector overheads
(from presentations)

1

Project documents, of which:
- Plans
- Other documents

6
3
3

Risk assessments 2
Project ‘contract’ 1
Feedback workshop questionnaires 1

Total number of ‘documents’ 73

Table 2 Summary of Project B

Characteristic Project B
Size of development team approx. 38 people
Size of management team approx. 6 people
Strategic value of the product High; long-term
Type of product Large, mission-critical, middleware, transaction-

processing, legacy system
Purpose of project New functionality
Size of changes in this release 36 KLOC2 of new code
Project duration (in weeks) 57 (planned and actual)
Product delivery date Week 52 (planned and actual)
Determination of project duration Project end-date driven, due to market considerations
Composition of management team The project used a multi-functional project

management team, with representatives from each
significant process area.

1 The researcher attended two project status meetings for Project B, with the purpose of evaluating the degree to
which the minutes of the status meetings represented the actual content of those meetings. The ‘learning curve’
required to understand the discussions at the meetings meant that this approach was unfeasible, and consequently it
was not pursued. The inability to independently assess the representiveness of the minutes is recognised as a threat to
the validity of this investigation.
2 Given the size of the product (36KLOC) and the amount of effort, it may appear that Project B was not particularly
productive. As already stated, Product B is a mission-critical, middleware processing system, which is also a legacy
system. Consequently, there are stringent quality requirements for this product, and also additional problems
associated with enhancing a legacy system.

The primary source of evidence used in this analysis
was the minutes of project status meetings, and these
were supplemented by information from interviews,
project schedules and the feedback workshop. Project
status meetings were the highest-level meetings within
the project and occur regularly (typically weekly or
fortnightly). They were attended by representatives from
all the process areas (e.g. Design/Code, Test,
Marketing, Finance, Service) of the project, and were a
naturally occurring phenomenon (so that the researcher
did not intrude on the project). Project status meetings
normally lasted between 1.5 to 2 hours, each producing
about 10 A4 pages of minutes.

At every meeting, the first item on the meeting
agenda was a discussion of proposed additional design
changes (each design change is a set of requirements) for
the project. Design changes were either rejected,
accepted or deferred for further investigation. The
representatives of each process area then reported on the
progress of their area. Action Items were also recorded
and their progress monitored at each meeting.
Interestingly, the minutes did not record any explicit
comparisons between the actual progress of the work
and the planned progress, as represented in the schedule
and the work breakdown structure. It may be that these
comparisons were made but not recorded (note,
however, that no such discussion occurred at the two
meetings attended by the researcher). Another
possibility was that the comparisons occurred outside
the project status meeting (which would be surprising
since the project status meeting was an explicit
mechanism for reporting the progress of each process
area to the rest of the project).

Naturally, minutes do not record all that was
discussed at a meeting, or even necessarily the most
important issues, and such meetings are unlikely to
discuss all the issues occurring within the project at the
time of the meeting. Consequently, there are at least
two levels of simplification with meeting minutes.
First, in reporting the progress of a process area, the
representative of that process area may simplify the
progress of that area. Second, the minutes simplify the
discussions that occurred at the meeting. Despite these
simplifications, the meeting minutes provide a large
volume of ‘rich’ information about the project over the
duration of the project, and this evidence appears rich
enough to provide a substantive, longitudinal view of
the software development process. Furthermore, the
minutes provide a type of information (i.e. dynamic

process information) that was unavailable from other
sources of evidence.

Table 2 summarises some of the characteristics of
the project. Note that the development team includes
design/code, test and support personnel (e.g. build and
library control systems). The management team
includes management and ‘support management’.

Figure 1 presents the planned and actual project-
level schedule (phases and milestones), the planned and
actual feature-level schedule for two features (features
F02 and F03), all of the plans and re-plans for the
project, and a number of events (mostly referring to
these two features) that occurred during the project.

For the project-level schedule and the plans and re-
plans, small solid squares represent internal milestones
or internal re-plans (i.e. milestones or re-plans that do
not require interaction with senior management) and
circles represent external milestones or external re-plans
(i.e. milestones or re-plans that do require interaction
with senior management). The thin horizontal lines
represent planned variation in when a milestone and/or a
phase may complete (so that, for example, the
Design/Code phase is planned to complete between
week 19 and week 23). The broken arrow-lines indicate
which features the internal re-plans refer to. The
acronyms D, FV and ST represent Design/Code,
Functional Verification and System Test respectively.
A question mark indicates uncertainty as to the
commencement or completion of a phase or re-plan.

The Design/Code phase is concerned with the high-
level design, low-level design, coding, unit testing, and
fixing of defects discovered in the unit testing. The
Functional Verification phase is concerned with testing
the proper execution of a distinct function, such as an
API (Application Programming Interface) call or a GUI
(Graphical User Interface) menu. The System Test
phase is concerned with testing the complete product
within its operating environment, with other products.

Only information on features F02 and F03 are
included in the figure because these were the only
features that were substantially referenced in the
meeting minutes. Presenting information on only two
features might appear to bias the analysis of Project B
but, in fact, the reason these features were substantially
referenced in the minutes is precisely because they are
the most problematic features on the project

