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Abstract— An event-based technique to determine the opti-
mum performance of power plants is proposed. Also known as
Event Modeller, the technique is borrowed from the Event-
Tracker principle [1] and Event Clustering method [2], to
build on cause-effect relationships of events that potentially
link many system inputs to many system outputs. Various signal
processing methods use Feature Extraction, Feature Selection
and Classifier to detect, solve, and mitigate Power Quality
(PQ) Disturbances problems. However, most of the solutions
are limited to its internal system parameters and require
high computational effort. The Event Modeller, on the other
hand, considers both internal and external or environmental
parameters, which have the potential to fill the gap to overcome
limitations of the PQ problems. The algorithm is very selective
as it only focuses on the uniqueness of the real-time data,
making it an alternative classification technique to detect the PQ
problem. A real-time simulation of a Continuous Ship Unloader
(CSU) machine is presented to demonstrate the applicability of
the Event Modeller in detecting the harmonic failure which
considers the dynamics and the interactions within the plant
machinery.

I. INTRODUCTION
Power Quality (PQ) monitoring has been the focus of

research and development for many years. The main focus
is to protect the equipment and minimise the losses while
increasing the levels of operational safety. However, systems
are becoming more complex as they are developed. Huge
numbers of control drives and other non-linear loads have
been installed to meet the demands of modern lifestyles.
It has led to power system instability, thus creating high
noises in the system grids and decayed the electrical distri-
bution system. Even worse, climate change has an impact
on the environment that the system operates in. In some
cases especially in hot countries, the electrical distribution
system requires an air conditioner to protect the electrical
devices in the substation. In normal circumstances, if the air
conditioner is a malfunction, it may exceed the allowable
set point and fail to protect the equipment. When the global
temperature increases, the probability rate of failure also
increases. Research has found that the long-term average
global temperature is rising which have a significant negative
impact on the performance of the machines [3].

Earlier, the conventional methods use manual configura-
tions and visual inspection to monitor the quality of the
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power supply in a system. This method was too difficult to
interpret and time-consuming. Later, the automatic classifica-
tion method, which uses the signal processing technique was
introduced and currently progressing with various artificial
intelligence learning techniques. Different combination of
feature extraction and classifiers have proven to locate the
PQ disturbance accurately using synthetic data. However, in
real industry data, the results may vary. The real industry
data are complex, and it is even more complicated when
there are external or environmental parameters, which could
potentially influence the system state. Thus, it creates a gap
in the existing techniques, which motivate the authors to
explore the relevance of this environmental data towards PQ
disturbance problems. Besides that, as the modern data are
even more complex, system engineer has to ensure that the
system is capable of running the learning techniques in real-
time application. Disturbance data occurs in the order of
microseconds, which increases the record data significantly
[4]. Thus, it will burden the learning classifiers to run unnec-
essary parameters that result in high computation. Therefore,
the authors are suggesting a method that could fill the gap,
by taking into account the external parameters in the system
state. This technique also capable of removing all the logical
boundaries of isolation, that exists in the complex system,
while filtering the unwanted data. Moreover, the Event Mod-
eller system is capable of including the information that was
thought irrelevant at the outset [5].

This paper aims to introduce an event-based analysis as
a technique to detect harmonics failure in real-time. The
technique is capable of grouping the high correlation system
parameters together, to form an input-output relationship,
which is not limited to internal parameters only. As such,
a homogenised correlation system will suggest the possible
root cause of the harmonic failures, while eliminating the
unimportant parameters in real-time.

In this paper, a real-time simulation of CSU machines is
presented, which demonstrates the changes to output param-
eters on input activity. This data will be used to measure the
suitability and applicability of the event modeller techniques
in the power system environment.

A. Power Quality Disturbance

The PQ disturbances are mainly due to the following
reasons [6]:

1) the increase in numbers of complex power electronic
devices, variable speed drives, power factor corrections
in the industry sector.

2) the rapid increase in the domestic, commercial and
industrial use of computers.



Fig. 1. Various techniques of Power Quality Classification

3) the increased number of renewable energy plants.
4) the complexity of industrial processes and interconnec-

tions of systems.
5) the new design of better-performance equipment which

adds new sources of PQ disturbances in the system

There are a number of different types of PQ disturbances
which include Voltage Sag, Voltage Swell, Transients, Har-
monics, Fluctuations, Flicker, Voltage Unbalance, Interrup-
tion, DC Offset and Notches. An efficient way to diagnose
these PQ disturbances requires a high level of engineering
expertise [7].

The PQ disturbance mitigation is required to avoid power
disruption between the power utility and the end user. With
modern technology, much research has been devoted to
mitigating this problem using the signal processing method.
This method has three principal stages which incorporate
feature extraction, feature selection and classification.

Feature extraction is a technique to extract useful infor-
mation from a hidden PQ signals/waveform. It may directly
be extracted from the original measurement either from some
transformed domain or from the parameters of signal models
[8]. Several approaches includes short-time Fourier transform
[9], wavelet transform [10], wavelet packet transform [11],
Hilbert Huang transform [12], Stockwell transform [13],
Gabor-Wigner transform [14], and other hybrid transform
based [15].

Feature selection is a process of selecting the most useful
and relevant data to ensure low redundancy in classifying the
PQ Disturbance. Based on the extraction data, optimisation
techniques such as Genetic Algorithm [16], Particle Swarm
Optimisation [17] and Ant Colony Optimisation [18] are the
common techniques used in PQ disturbance.

Classification is a process of predicting the class of given
data points. It uses an algorithm to implements classification
by approximating a mapping function from the input variable
to output variables. Artificial Neural Network is among the
most popular and influential classes of machine learning
algorithms. Some other machine learning includes Support
Vector Machine [19] and fuzzy expert system [20].

Figure 1 above shows the arrangement of the three prin-
cipal stages in PQ classification. A detailed review of these

techniques can be found in [21], [22] and [23].

B. Power Quality Standards

Harmonic evaluations of the utility systems involve pro-
cedures to make sure that the quality of the voltage supplied
to all customers is acceptable [24]. However, most of the
harmonic problems occur at the consumer end. Their devices
contain non-linear loads, which result in resonance condi-
tions [24]. These non-linear loads are the current sources of
harmonics. The system voltage appears stiff to individual
loads, and the loads draw distorted current waveforms.
Therefore, there is a need to maintain a PQ International
standard, to provide the guidelines and limits for the accept-
able levels of compatibility, between consumer equipment
and the system utilities.

The International Standard IEEE 519-1992 sets the limit
for both harmonic voltages and currents at the Point of Com-
mon Coupling (PCC) between the end user and the utility
supplier. It limits Voltage Total Harmonic Distortion (THD),
defined as the ratio of the RMS value of the harmonic voltage
to the RMS value of the fundamental (50Hz) voltage, to a
maximum of 5%. Individual voltage harmonic magnitudes
are limited to 3% of the fundamental voltage value [25].

The International Standard IEC 61000-3-4 sets the limits
for emission of harmonic currents in low-voltage power
supply systems for the requirement with rated current greater
than 16A [26].

C. The Environmental Parameters

It is the regulation for both utilities company and con-
sumers to comply with the International PQ Standards. To
sustain a good power quality system, a tremendous amount of
research and PQ monitoring has been done to classify these
PQ disturbance problems. However, there is still a shortfall in
solving the PQ problem effectively. Most of the solutions are
limited to the signal processing parameters within the system.
The solution does not consider the external parameters which
could have a significant impact on the problem. [27] sug-
gested that some machines fail due to the operations activity
and/or environmental factors. The gap motivates the authors
to further investigate the relevance of the external parameters
to the PQ problems. Therefore, the authors are proposing



Fig. 2. Event Modeller Techniques

the Event Modeller techniques which could link the internal
and external parameters together, to create a cause-effect
relationship, while updating the system status in near real-
time before the machine fails. The contribution of this
technique will be weight based on the application of a novel
real-time learning technique. The learning technique will
automatically reformulate the possible relationships between
the internal and external parameters. Thus, it specifies the
PQ parameter out of other control and machine parameters
which could lead to PQ failure. The further information on
Event Modeller technique are described as follows:

II. EVENT MODELLER TECHNIQUE

The event modeller technique is designed to evaluate the
relationship between the actual events (Output Data) to the
cause of the triggered events (Input Data) by using a data
mapping concept. It groups the high correlation system pa-
rameters in the form of matrices and places them into mutu-
ally exclusive blocks. This form an input-output relationship,
which take into account both internal and external factors.
The blocks are sorted based on the events coincidence and
events similarity. Each block represents a profile of a similar
event scenario, which then trained in the network to converge
the same entities together for classification purposes. One of
the important aspects of this Event Modeller technique is
its potential to include information that was initially thought
irrelevant or not considered at the design stage. Figure 2
illustrates the event modeller techniques which comprises of
Event Tracking, Event Clustering, Event Identification, Event
Convergence and Event Classification.

A. EventTracker Algorithm

The event-based sensitivity analysis method or also known
as EventTracker [28] is an input variable selection that cor-
relates between system input and system output, to construct
a discrete event framework [29]. The events are loosely
coupled, with respect to their triggers for the purpose of
sensitivity analysis. This method supports the time-critical
dimensionality reduction problem with limited computational
resources, which make it suitable for feature extraction. The
key objective of this algorithm is to record all events, while
eliminating the non-important data which is not sensitive

TABLE I
BASIC DESCRIPTION OF EVENT-MODELLER

Description Definition Impact
Discrete
Event
System

The disparate
occurrence of
events in a
specified time span.

Any changes in the
input/output will
change the system
state.

Triggered
Data
(TD)

Any input variable
whose value
transition registered
an event.

Any Individual or
combination of input
variables may have
different effects on
different system outputs
ED = {TD1, TD2, , TDn}

Event
Data
(ED)

The series of data
that represent the
state of the system
at a given time

Any Individual or
combination of input
variables may have
different effects on
different system outputs
ED = {TD1, TD2, , TDn}

Triggered
Threshold
(TT)

A given numerical
value set point that
the values of TD
series based on
experts/
historical data.

The fluctuations in the
TD series that are
interpreted as triggers
are determined in
comparison with
the TT.

Event
Threshold
(ET)

A proportion or
percentage of an
overall range of
values of TD series
over the time scale.

The fluctuations in the
ED series that are
interpreted as triggers
are determined in
comparison with the ET.

Search
Slot
(SS)

A fixed time slot
within which
batches of TD and
ED are captured.

The fixed time slot
(scan rate) is
determined by experts.

Analysis
Span
(AS)

The time span
within which a
period of
sensitivity
analysis occurs.

Comprised of a
number of
consecutive SS.

to the Triggered Data (TD). Then, it is translated into a
sensitivity index before it is added from the subsequent
search and linearly normalised. Based on a number of itera-
tions, it will verify known relations and maps new unknown
relationships. A detailed description of the EvenTracker
algorithm including the primary information of the Discrete
Event System (DES), Trigger Data (TD), and Event Data
(ED) is shown in Table I.

B. Event Clustering Algorithm

The Event Clustering Algorithm (EventiC) [5] is the exten-
sion of the EventTracker algorithm, aiming to create a logical
interrelationships of the components, and its dynamics within
the embedded system in real-time applications. It could
reveal the causal relationships that exist between a system
and its operational environment. It is designed based on
Event-Driven Incidence Matrices (EDIM), which sorts the
input (rows) and output (columns) parameter.

The main difference between EventTracker and EventiC
resides in the number of outputs. EventTracker analyses
multiple inputs with a single output relationship while the
EventiC analyse multiple inputs and multiple output relation-
ship. This relationship has made the EventiC a unique tool, as
it does not rely on any prejudgement of data relevancy. It also



has the capability of identifying new influential parameters
that were previously unknown [2]. The interpreting rate is
fast which only focuses on the unique coincidence activity
between the input and output. With that, it reduces the
computational cost, which made it relevant to operate in near
real-time for a large data processing scale.

The algorithm uses Rank Order Clustering (ROC), which
was initially introduced by King, (1980) [30] by rearranging
the row and column of a matrix in the iterative manner
of decreasing value order. The algorithm calculates the
relationship and produces a weight for further analysis. A
detailed explanation of EventiC algorithm, which includes
a definition of a Key Performance Indicator (KPI) and the
basic concept and parameters are discussed in [5].

For optimisation purposes, the authors have improved the
existing EventiC algorithm. The following are the step by
step implementation of the new event clustering.

1) Set Event Modeller Limit (for e.g. EML = 0.8)
2) Set Threshold Setting (for e.g. Th = 0.05)
3) Set Triggered Data as Analogue or Boolean

a) Populate the ULTh and LLTh

4) Populate All Input Data (TD1, TD2...TDn)

a) If Triggered Data = Analogue,
Compute TDx = TDn - TDn-1;
Compare TDx with ULTh and LLTh;

i) If (LLTh<TDx<ULTh);
TDx = 0;

ii) Else TDx = 1.

b) Else Triggered Data = Boolean.
TDx = TD1,TD2...TDn.

5) Populate All Output Data (ED1,ED2...EDn);

a) Compute EDx = EDn - EDn-1;
Compare EDx with ULTh and LLTh;

i) If (LLTh<EDx<ULTh);
EDx = 0;

ii) Else EDx = 1.

6) Populate the models input-output event coincidence
matrix with binary weighting values of exclusive NOR
function.

7) Average each input-output event coincidence.
8) Sort rows of the resultant binary matrix into decreasing

order of their decimal weights.
9) Repeat steps 5 to 7 for every column.

10) Repeat steps 5 to 8 until the position of each element
in each row and column does not change.

11) A weight for each row i and column j (in a m by n
matrix) is calculated using equation below:

Row1 : Wi =

n∑
K=1

aik2
n−k (1)

Row2 : Wi =

m∑
K=1

akj2
n−k

III. A CASE STUDY

A Continuous Ship Unloader (CSU) is one of the leading
bulk material handling machine. In a coal-fired power plant,
this machine is used to transport coal from the vessel to the
pulverized boiler through a series of belt conveyors. It has
been reported that the CSU machine in one of the power
plants in Malaysia has a frequent harmonic failure. The
repetitive incidents lead to catastrophic failure, which harms
the electrical devices. Besides having a vast replacement cost
for the faulty parts, it is also affecting the plant availability
which concerned the management team. Even worse, it could
pose a potential hazard, to the personnel working in the area
if it is happening again in the future. A thorough Power
Quality (PQ) assessment within the electrical distribution
system has been assessed, but the results have not given any
indication of internal disturbance or fault. Table II shows the
assessment result for the CSU machine.

TABLE II
ASSESSMENT RESULTS FOR CSU MACHINE

Parameters Min Max Avg

Voltage Vab 385.9 V 424.0 V 411.2 V
Vbc 216.8 V 423.8 V 382.4 V
Vca 241.8 V 424.1 V 381.5 V

Current
Ia 32 A 1718 A 525.8 A
Ib 46 A 1870 A 639.9 A
Ic 30 A 1568 A 217.6 A

Voltage Unbalance % VU 41.6 % 0.1 % 2.6 %
Current Unbalance % CU 16.7 % 8.8 % 52.8 %

THD Voltage
THDv ab 0.4 % 1.6 % 1.0 %
THDv bc 0.3 % 1.5 % 1.0 %
THDv ac 0.5 % 1.9 % 1.1 %

THD Current
THDi ab 1.9 % 20.8 % 4.5 %
THDi bc 1.8 % 25.8 % 3.7 %
THDi ac 1.9 % 82.2 % 12.0 %

TDD Current
TDDi ab 0.1 % 2.6 % 1.3 %
TDDi bc 0.1 % 1.8 % 1.2 %
TDDi ac 0.1 % 2.2 % 0.8 %

Frequency f (Hz) 49.77 50.13 49.98
THD = Total Harmonic Distortion, TDD = Total Demand Distortion,
V= volt, A = ampere, Hz = hertz

To mitigate the problem, an effort to analyse both internal
and environment parameter that has a significant impact
on the system is highly desirable. The authors are keen
to embrace the event modeller techniques, to evaluate the
significant correlation between the output and input which
could cause harmonic failures in the system.

A. CSU Real-time Simulation Application

A real-time simulation which incorporates the CSU ma-
chine parameters and the event modeller algorithm was
developed using National Instruments LabVIEW. For sim-
ulation purposes, the application was design based on the
following:

1) 8 Event Data
2) 8 Triggered Data
3) 5 % Threshold level
4) 15 minutes sampling time



Fig. 3. Snapshot of the CSU Real-time Data Simulation

Event Data (ED) is defined as a series of data that
represent the state of the system at a given time [28].
In this simulation, the ED consists of simulated voltage,
humidity, harmonics, machine positioning (slewing, luffing
and travelling), temperature and wind speed. The simulation
data is based on the actual operation and environment data of
the CSU machine events by considering the assessment result
in Table II and the location of the power plant which located
in Malaysia. The plant is located near to the seaside which
is hot and humid throughout the year and may tend to have
strong winds. On the other hand, the machine movements
are simulated based on the 3-axis movement which includes
slew (x-axis), luffing (y-axis) and travel (z-axis). Table III
summarised the Event Data Simulation Parameters.

In Discrete Event System, any input variable whose value
transition register as an event is defined as a Trigger Data
(TD) [28]. In this simulation, the TD consists of machine
status (slewing, luffing, travel and bucket) and motor run
feedback (slewing, HPP, travel and bucket). Table IV shows
the Triggered Data Simulation Parameters setting. For com-
parison purposes, two types of TD are presented here known
as Boolean (Bool) TD and Analogue (Analog) TD. The Bool
TD register the original TD signal from the source while the
Analog TD compare the current TD signal with the previous
TD signal using X-NOR logic. These two types of TD are
important to determine which method is more effective when
dealing with actual real-time data. For analogue TD, the
value will be 1 when both of the TD sequences are the same
value. Otherwise, it is 0. The application is designed with a
toggle switch to swap between the Bool TD and Analog TD.

Meanwhile, the threshold level could be adjusted based
on the expert point of view. In this simulation, the threshold

TABLE III
EVENT DATA SIMULATION PARAMETERS

No Description Normal Disturbance
Min Max Min Max

ED1 Simulated Voltage (V) 409 415 392 432
ED2 Simulated Humidity (%) 39 45 32 52
ED3 Simulated Harmonic (%) 0.4 1.2 0 3
ED4 Simulated Slew (angle) 78 95 N/A N/A
ED5 Simulated Luffing (angle) 5 10 N/A N/A
ED6 Simulated Travel (meter) 98 101 N/A N/A
ED7 Simulated Temperature (degC) 16 26 16 32
ED8 Simulated Wind Speed (m/s) 0 8 4 16

TABLE IV
TRIGGERED DATA SIMULATION PARAMETERS

No Description Normal Disturbance
Min Max Min Max

TD1 Busy Slewing Operation 0 1 N/A N/A
TD2 Busy Luffing Operation 0 1 N/A N/A
TD3 Busy Travel Operation 0 1 N/A N/A
TD4 Busy Bucket Elevator Operation 0 1 N/A N/A
TD5 Slewing Motor Run Bit 0 1 N/A N/A
TD6 Hydraulic Motor Run Bit 0 1 N/A N/A
TD7 Travel Motor Run Bit 0 1 N/A N/A
TD8 Bucket Motor Run Bit 0 1 N/A N/A

level is set at 5% (0.05); thus the Upper Limit and Lower
Limit will automatically set to 1.05 and 0.95 consecutively.
The limits will be multiplied to the individual data com-
putationally, to calculate the changes of the current data to
the previous data and reflects to the algorithm for weight
score using X-NOR logic.The event modeller limit is the
desired weight limits which also could be adjusted based
on the expert point of view. In this simulation, the event



TABLE V
CSU REAL-TIME DATA SIMULATION RESULTS BASED ON DISTURBANCE

Description Voltage Humidity Harmonic Temperature Wind Speed
Bool Analog Bool Analog Bool Analog Bool Analog Bool Analog

Overall Maximum Weight 0.83877 0.99966 0.83646 0.99965 0.83702 0.99975 0.83604 1.00000 0.83408 1.00000
Overall Minimum Weight 0.50000 0.62878 0.50000 0.63719 0.50000 0.63609 0.50000 0.63128 0.50000 0.63252
k-Disturbance Weight - Pre 0.83450 0.98900 0.82877 0.97900 0.81817 0.97919 0.83063 1.00000 0.84240 1.00000
k-Disturbance Weight - During 0.76154 0.80654 0.77812 0.83042 0.76374 0.81377 0.79774 0.89764 0.78482 0.81037
k-Disturbance Weight - Post 0.78132 0.86671 0.80119 0.87890 0.78976 0.86503 0.80875 0.93103 0.80350 0.86546

modeller limit is set at (0.8). The weights who score above
the Event Modeller Limit is shaded in the ROC Output
table, indicates a significant correlation between the ED and
the TD. The sequence of TD’s and ED’s is updated every
second and are re-arrangeable according to the weighted
score. The weighted score can take a value of 0.5 and 1.
The value is 1 when both or none of the input/output are
triggered. Otherwise, it is 0.5. The weighted score is then
averaged based on the number of iteration. Having the weight
score in real-time, system engineers could easily notify the
management team if there is any disturbance occurs in the
system state by looking at the sequence and the weights. For
trending purposes, a waveform chart is presented to improve
the visibility of the data. Figure 3 is the snapshot of the CSU
real-time data simulation.

B. Disturbance Signal

The purpose of this simulation is to test the applicability
of the Event Modeller algorithm in handling real-time data,
thus observing the reaction of the system to the abnormal
events. To ensure the system is sensitive to this abnormality,
a k-Disturbance signal is introduced to the system. In this
simulation, the data is simulated in 3 stages known as pre-
disturbance, k-disturbance and post-disturbance. The pre-
disturbance refers to the warm-up stage which represents
the machine normal steady state. The k-disturbance refers
to the fluctuation of the k-event Data, in such generating
disturbance to the system. The post-disturbance refers to the
reaction of the abnormal system back to normal steady state.
A 5 minutes time interval is selected for each stage, which
accumulates to 15 minutes of sampling time.

In this simulation, 5 ED’s signal, which represent the
internal and environment parameter has been chosen to be
disturbed. This includes voltage, humidity, harmonic, temper-
ature and wind speed. The signal data are simulated based on
random fluctuation with 5% disturbance limit from normal
operation data capability. Table III shows the disturbance
ranges for the ED’s signal.

C. Simulation Results

Table V above compares the results obtained from the
simulation of the CSU machine against the k-disturbance
signal. What stands out in the table is that the value of the
weight has changed drastically between the pre-disturbance
and during disturbance for all case. For e.g., when the k-
disturbance is applied to the machine voltage using Bool TD,
the weight value drop from 0.83450 to 0.76154. However,

when the k-disturbance is removed, the weight value rose
to 0.78132. These indicate that the system parameters are
sensitive to the disturbance signal introduced in the system.

As shown in Figure 3, the ROC Output box on the
right bottom corner represents the causal-effect relationship
between the simulated triggered data and simulated event
data. Closer inspection of the matrices table shows that
the shaded area represents the event modeller limit for the
voltage disturbance data. These determine which main input
data have a genuine impact on the output data. In this
example, TD4 and TD8 are the main parameters for the input
parameter. Further observation shows that the highest weight
is 0.99966, which represent the ED8, ED7, ED4, ED5 and
ED6. It follows by ED3 and ED2, which score second highest
of 0.98003. It is interesting to note that the lowest weight is
represented by the affected system output parameter, ED1
with the weight score of 0.86670. Taken together, these
results suggest that there is an association between TD4
with ED1 and TD8 with ED1. Thus, formulating a new
unknown relationship and further classify using learning
techniques. Alternatively, when the simulation is repeated
with other k-disturbance, such as temperature, a significant
result is expected with the temperature parameter will score
the lowest weight. These results confirm the association
between the triggered data with the k-disturbance event data
and form a new relationship.

In accordance with the present results, previous studies
have demonstrated that the power quality disturbance could
be automatically classified using internal parameters within
the signal processing system state. The results of this study
indicate that a new parameter, outside of the signal pro-
cessing system state, such as environment parameter, have
potential influence in solving the PQ disturbance problem in
the future.

IV. CONCLUSIONS

This paper presented a real-time data simulation for
Continuous Ship Unloader machine to suggest the possible
root cause of the harmonic failures. There is a gap in the
existing PQ Disturbance which does not consider external or
environment parameters in the analysis. The proposed Event
Modeller technique which is low in computational effort has
the potential to fill up this gap while having an advantage
over the conventional method which struggles with accuracy.
The purpose of this simulation is to test the applicability
of the Event Modeller algorithm in real-time handling, thus
observing the reaction of the system to abnormal events.



The technique is capable of grouping the high correlation
system parameters together, to form an input-output rela-
tionship, which is not limited to internal parameters only.
A real-time simulation which incorporates the CSU machine
parameters and the event modeller algorithm was developed
using National Instruments LabVIEW. 5 out of 8 event data
has been simulated with a disturbance signal to observe the
reaction to the system state. Results have shown that the
parameters weight and sequence had been affected when
the disturbance signal is introduced, and it recovers when
the disturbance signal is removed. This parameter will help
system engineers to build on cause-effect relationships of
events that potentially link to the repetitive harmonic failures.
For future work, the system will be integrated with the actual
plant data to help system engineer solve the harmonic issues.
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