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Abstract 

The present study deals with evaluation of the dynamic response in a pulse loaded 

homogeneous non-prismatic Timoshenko cantilever beam. Subsequent to the derivation of 

the partial differential equations (PDE’s) of motion using extended Hamilton’s principle the 

eigenvalue problem has been set up and solved for eigenfrequencies and eigenfunctions. 

Galerkin’s method of weighted residuals was applied to obtain governing ordinary differential 

equations (ODE’s) for the system. The dynamic response under arbitrary pulse loading is 

obtained using the method of eigenfunction expansion which attributes to displacement and 

rotation fields generalised coordinates when the exact modes are chosen as shape functions. 

It has been shown that inclusion of few terms (in this case 5) in the series expansion provides 

a good correlation between the displacement fields and the truncated series. Dimensionless 

response parameters are introduced and two methods of non-dimensionalisation are 

proposed which could be useful in dealing with generic problems of a specified formulation. 
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1. Introduction 

As the level of functional requirements for structures elevates so does the level of 

sophistication in design. One such scenario emerges when the designer needs to optimise 

mass and stiffness distributions in a structural component. When ‘skeletal’ structural 

members are of concern or when idealisation as such is permissible this translates to using 

non-uniform beams. An airplane wing, a wind turbine blade, and a cantilever beam 

underneath a balcony are all examples of this class of structures. While sources of non-

uniformity are numerous and could be ascribed to use of different materials or alteration of 

density along the length, the simplest case is that of geometric non-uniformity resulting in a 

homogeneous yet non-prismatic beam. Thus, the analysis of non-prismatic beams is of 

interest to aeronautical, mechanical, civil, biomedical and nuclear engineers.  

Sometimes external pulse loads are exerted to this class of structures. When such 

components are subjected to time varying loads they respond dynamically, accordingly. 

Depending on the level of accuracy sought, different beam theories could be used to study 

transversal vibration of this class of structures. The problem of a vibrating beam can be 

formulated using the extended principle of least action (extended Hamilton’s variational 

principle) and the governing partial differential equations and boundary conditions could be 

derived. The engineering theory considered in this work is the Timoshenko beam theory 

which is the most general beam theory as long as a plane deformation of a section is assumed. 

Other less general theories include Euler-Bernoulli, shear and Rayleigh beam theories. The 

differences among these theories are either due to kinematic assumptions made in reducing 

the three-dimensional continuum problem into a beam or in the inclusion of a term related 

to rotatory inertia [1]. There has been a comprehensive study conducted on the comparison 

of these formulations as applied to prismatic beams [2], nevertheless; no such study exists to 

date for non-prismatic beams. 

While the engineering theories mentioned have been around since early 20th century there 

has been a resurgence of interest in the topic of studying vibration in beams using these 

theories. There is a multitude of reasons for this but this is primarily due to requirements for 

certain applications which render a particular theory most suitable. Beam theories are used 

to study micro-vibration in micro-electromechanical systems (MEMS) [3], thermal excitations 

of high-frequency modes of cantilever vibrations [4], noise reduction using metamaterial 

beams and in reduction of magnetic noise in magnetic resonance force microscopy [5]. To 

mention but a few recent works, the vibration of a non-prismatic beam on an inertial elastic 

half-plane was studied using the Chebyshev’s series approximation method [6], Timoshenko 

beam model was used in nanotechnology to study buckling and vibration of nanowires with 

surface effects [7] as well as multi-walled carbon nanotubes [8]. Rotating uniform Timoshenko 

beams were also studied using the theory [9, 10]. Furthermore, recent studies have been 

conducted on rotating tapered Timoshenko beams [10-17] using the finite element method. 

Researchers have also introduced new basic displacement functions and have used them to 

develop finite elements for non-prismatic Timoshenko beams [18-20]. These studies are 

based on the development of beam elements and domain discretisation and are mostly 

specific to particular problems.  
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In order to gain an understanding of vibration in systems idealised as Timoshenko beams the 

first step is to extract eigenvalues and eigenfunctions of the system. Eigenfunctions of the 

system form a complete set of functions through linear combination of which one can express 

any function satisfying the same essential boundary conditions. This fact is known as the 

linear expansion theorem.  

There are differences between the models when it comes to estimation of natural frequencies 

and natural modes. Euler-Bernoulli model is known to slightly overestimate natural 

frequencies as it does not allow for shear relaxation and as a result renders the structure over-

stiff. This problem is exacerbated for the natural frequencies of higher modes and for non-

slender beams. The predictions based on Rayleigh model only marginally improve those 

obtained based on the Euler-Bernoulli theory. Shear model adds shear distortion to Euler-

Bernoulli model and improves accuracy in determination of natural frequencies considerably 

implying its effect is more pronounced than the effect of rotatory inertia [1]. Timoshenko’s 

model is a major improvement as it includes both aforementioned effects. An important 

parameter in Timoshenko model is shape factor which is also known as the shear coefficient 

or area reduction factor. This parameter arises due to non-uniform distribution of shear over 

the cross section.   

While many studies have been conducted on the derivation of equations of motion and 

finding eigenvalues and eigenfunctions as well as particular solutions using different beam 

theories no comprehensive study of general solution methods has been done on the subject 

involving non-prismatic Timoshenko beams. In the past, the dynamic response of non-

prismatic beams has been investigated using numerical methods [21], variational principles 

[22], finite element method [18-20, 23], boundary element method [24], the transfer matrix 

method [25], Laplace transform method [26], and the dynamic stiffness method [27]. These 

studies ubiquitously require numerical implementation which could lead to large systems of 

equations and require user sophistication. Conversely, analytical derivation of eigenmodes 

and establishment of orthonormality condition rendered it possible to obtain transient 

response due to external load using the method of eigenfunctions expansion.  

The present study describes the derivation and solution of equations of motion for a non-

prismatic Timoshenko model as it is the most comprehensive of the engineering models 

mentioned above. In section 2, first the equations of motion and boundary conditions are 

derived for the Timoshenko beam model using extended Hamilton’s principle. The eigenvalue 

problem i.e. the equations in the absence of the excitation term are then established. These 

equations are subsequently solved in section 3 for an example case using an analytical-

numerical approach proposed by researchers [28]. The eigenvalue problem makes it possible 

to obtain natural modes to be used at a later stage as exact shape functions in the 

eigenfunctions expansion method. The results are compared with a two-dimensional model 

in ABAQUS 6.14 and excellent agreement is observed. The method of weighted residuals 

(Galerkin) is then used to obtain the forced response for a non-prismatic beam under the 

action of a uniformly distributed pulse load of rectangular temporal pulse shape. Even though 

special spatial and temporal distributions are taken into account the formulation is generic 

and could be used to obtain similar results for other loading distributions. This is followed by 
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a brief section on non-dimensional parameters and alternative approaches to solve the same 

problem and by conclusions in section 4. 

2. Analyses 
  

2.1. Derivation of the equations of motion 

This section deals with the derivation of equations of motion for a non-prismatic cantilever 

Timoshenko beam using extended Hamilton’s principle. In this model both shear distortion 

and rotatory inertia effects are considered. Thus the strain energy is a function of both the 

angle of rotation and shear distortion and is obtained by adding the shear energy (𝑈𝑠) to 

bending energy (𝑈𝑏). Besides, kinetic energy, as an additive integral of the motion, is also 

obtained as the summation of translational 𝑇𝑡 and rotational 𝑇𝑟 terms. Therefore: 

𝑈 = 𝑈𝑏 + 𝑈𝑠 =
1

2
∫ 𝐸𝐼(𝑥)𝛼′2

𝐿

0

𝑑𝑥 +
1

2
∫ 𝑘𝐺𝐴(𝑥)(

𝜕𝑤

𝜕𝑥
− 𝛼)2𝑑𝑥.           (1)

𝐿

0

 

𝑇 = 𝑇𝑡 + 𝑇𝑟 =
1

2
∫ 𝜌𝐴(𝑥) (

𝜕𝑤

𝜕𝑡
)
2

𝑑𝑥
𝐿

0

+
1

2
∫ 𝜌𝐼(𝑥)�̇�2𝑑𝑥

𝐿

0

.                        (2) 

Where 𝑤 is the vertical displacement and 𝛼 the rotation due to bending and 𝜌, 𝐸 , 𝐺, 𝐴 , 𝐼 

and 𝑘 are density, Young modulus, shear modulus, cross sectional area, moment of inertia 

and shear coefficient, respectively.  Through the application of the extended principle of least 

action (extended Hamilton’s principle) one obtains the equations of motion as follows: 

𝛿𝑆 = ∫ 𝛿(𝑇 − 𝑈)𝑑𝑡 +
𝑡2

𝑡1

∫ 𝛿𝑊𝑛𝑐𝑑𝑡
𝑡2

𝑡1

= 0.               (3) 

Where 𝑆 is the action integral and the work of non-conservative dynamic pulse load is 

obtained as follows: 

𝛿𝑊𝑛𝑐 = ∫ 𝑓(𝑥, 𝑡)𝛿𝑤𝑑𝑥.                               (4)
𝐿

0

 

Hence: 

𝛿𝑆 = ∫ ∫ (𝜌𝐴(𝑥)�̇�𝛿�̇�
𝐿

0

+ 𝜌𝐼(𝑥)�̇�𝛿�̇� − 𝐸𝐼(𝑥)𝛼′𝛿𝛼′ − 𝑘𝐺𝐴(𝑥)(𝑤′ − 𝛼)(𝛿𝑤′ − 𝛿𝛼))𝑑𝑥𝑑𝑡
𝑡2

𝑡1

+ ∫ ∫ 𝑓(𝑥, 𝑡)𝛿𝑤𝑑𝑥𝑑𝑡
𝐿

0

𝑡2

𝑡1

= 0.                                     (5) 

Which upon integration by parts and imposition of the condition that at times 𝑡1 and 𝑡2 the 

mechanical state of the system is fully known it yields: 

(𝐸𝐼(𝑥)𝛼′)′ − 𝜌𝐼(𝑥)�̈�  + 𝑘𝐺𝐴(𝑥)(𝑤′ − 𝛼) = 0,                            (6𝑎) 
 

−𝜌𝐴(𝑥)�̈� + [𝑘𝐺𝐴(𝑥)(𝑤′ − 𝛼)]′ + 𝑓(𝑥, 𝑡) = 0.                           (6𝑏) 
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And the corresponding boundary conditions are obtained as follows: 

[(𝐸𝐼𝛼′)𝛿𝛼]0
𝐿 = 0,                                  (7𝑎) 

[𝑘𝐺𝐴(𝑥)(𝛼 − 𝑤′)𝛿𝑤]0
𝐿 = 0.               (7𝑏) 

Other beam theories can be obtained through exclusion of the terms from Eq.’s (1) and (2) 

ascribed to kinematical degrees of freedom non-existent in that model. This has been shown 

briefly in Appendix A. in Eq.’s (7a) and (7b) only one of the work conjugate parameters at a 

point on the boundary can be prescribed (either moment or rotation, either shear or 

displacement) 

2.2. Constructing the eigenvalue problem 

Solving for eigenvalues and eigenfunctions essentially provide the natural frequencies and 

modes of the non-prismatic Timoshenko beam. This is important due to two primary reasons: 

(1) It will render possible the evaluation of resonance frequencies, (2) It will let forced 

response be obtained as a linear combination of natural modes with time dependent 

coefficients. 

By setting the excitation function to zero (𝑓(𝑥, 𝑡) = 0) the eigenvalue problem is constructed 

as follows: 

(𝐸𝐼(𝑥)𝛼′)′ − 𝜌𝐼(𝑥)�̈�  + 𝑘𝐺𝐴(𝑥)(𝑤′ − 𝛼) = 0,      (8𝑎) 

−𝜌𝐴(𝑥)�̈� + [𝑘𝐺𝐴(𝑥)(𝑤′ − 𝛼)]′ = 0,                        (8𝑏) 

 

In order to formulate the problem in the most general form the method proposed by Lee and 

Lin [28] has been followed. Their study is based on dimensionless parameters of the model 

derived using Buckingham’s Pi-theorem and use of non-dimensional groups to derive a single 

governing equation for the vibrating beam based on either transverse deformation or section 

rotation. The modes obtained as such will be used in a later section to obtain forced response 

vibration for the non-prismatic beam. Once the eigenvalue problem is established a harmonic 

admissible solution could be inserted into the equation to obtain the dynamic matrix.  

Assuming the angle of rotation of the section and the flexural displacement are synchronised 

in time, as researchers have assumed [29] , and following the derivation of Lee and Lin [28] 

the two coupled partial differential equations of motion could be uncoupled. The derivation 

in the sequel reveals this condensation into the following uncoupled ordinary differential 

equations.  

Assuming the solutions take the form: 

𝑤(𝑥, 𝑡) = 𝑌(𝑥)𝑒𝑖𝜔𝑡, (9𝑎) 

𝛼(𝑥, 𝑡) = 𝜓(𝑥)𝑒𝑖𝜔𝑡.         (9𝑏) 

And defining the normalised spatial coordinate as 𝜉 = 𝑥/𝐿 all the spatial functions will be 

described as functions of 𝜉 rather than 𝑥. A set of non-dimensional parameters could be 

derived using Buckingham’s Pi-theorem [30] as follows: 
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𝑞(𝜉) = 𝑘𝐺𝐴(𝜉)/𝑘𝐺𝐴(0), (10𝑎) 

𝑟(𝜉) = 𝐸𝐼(𝜉)/𝐸𝐼(0),         (10𝑏) 

𝑠(𝜉) = 𝜌𝐴(𝜉)/𝜌𝐴(0),       (10𝑐) 

𝜐(𝜉) = 𝐽(𝜉)/𝐽(0),              (10𝑑) 

𝛿 = 𝐸𝐼(0)/(𝑘𝐺𝐴(0)𝐿2),   (10𝑒) 

𝜂 = 𝐽(0)/[𝜌𝐴(0)𝐿2],          (10𝑓) 

Ω2 = 𝜌𝐴(0)𝜔2𝐿4/𝐸𝐼(0).   (10𝑔) 

Using the non-dimensional set of parameters derived above the two governing differential 

equations can be re-cast in the following form [28]: 

[{
𝑞(𝜉)

𝛿
} (𝑦′ − 𝜓)]′ + 𝑠(𝜉)Ω2𝑦 = 0,                       (11𝑎) 

(𝑟(𝜉)𝜓′)′ + {
𝑞(𝜉)

𝛿
} (𝑦′ − 𝜓) + 𝜐(𝜉)𝜂Ω2𝜓 = 0.   (11𝑏) 

𝜉 ∈ (0,1) 

Where 𝑦 = 𝑦(𝜉) = 𝑌(𝜉)/𝐿 and 𝜓 = 𝜓(𝜉) are functions of the dimensionless spatial variable 

𝜉.  

Eq. (11a) could be re-written as follows: 

𝜓′ = (
1

𝑞
) {(𝑞𝑦′)′ + 𝛿𝑠Ω2𝑦 − 𝑞′𝜓},     (12𝑎) 

Upon substitution of Eq. (12a) into the second fundamental Eq. (11b) one obtains: 

𝜓 =
1

𝜁
{
𝛿𝑟𝑞′

𝑞2
− ((𝑞𝑦′)′ + 𝛿𝑠Ω2𝑦) − 𝛿 [

𝑟

𝑞
((𝑞𝑦′)′ + 𝛿𝑠Ω2𝑦)]

′

− 𝑞𝑦′},   (12𝑏) 

Where the function 𝜁 is defined as follows: 

𝜁 = 𝛿 [𝑟 (
𝑞′

𝑞
)

2

− (
𝑟𝑞′

𝑞
)

2

] + 𝛿𝜂𝜐Ω2 − 𝑞.          (12𝑐) 

Thus the decoupled governing differential equations in terms of 𝑦 and 𝜓 are as follows: 

In terms of 𝑦: 

(
𝑞

𝜁
{(

𝑟𝑞′

𝑞2
) [(𝑞𝑦′)′ + 𝛿𝑠Ω2𝑦] − (

𝑟

𝑞
) [(𝑞𝑦′)′ + 𝛿𝑠Ω2𝑦]′ − [𝑟 (

𝑞′

𝑞2
) − (

𝑟𝑞′

𝑞
)

′

+ 𝜐𝜂Ω2𝑦] 𝑦′})

′

− 𝑠Ω2𝑦 = 0,                                                                                                     (13𝑎) 

And in terms of 𝜓: 
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𝑞{[
1

𝑠Ω2
][(𝑟𝜓′)′′ + (𝜐𝜂Ω2𝜓)′]} ′ + 𝛿(𝑟𝜓′)′ + (𝛿𝜐𝜂Ω2 − 𝑞)𝜓 = 0.           (13𝑏) 

The boundary conditions are expressed as follows: 

𝑦(0) = 0,    (14𝑎) 

𝜓(0) = 0,   (14𝑏) 

𝜓′(1) = 0, (14𝑐) 

𝑦′(1) − 𝜓(1) = 0.  (14𝑑) 

The essential boundary conditions involve displacement and rotation as in Eq.’s (14a) and 

(14b) while the natural boundary conditions of Eq.’s (14c) and (14d) are on moment and 

shear, respectively. 

Let 𝑉𝑖(𝜉) be a set of 4 linearly independent fundamental solutions of one of the corresponding 

governing characteristic differential equations above. The homogeneous solution is then 

described as follows: 

𝑉(𝜉) = ∑𝐶𝑖

4

𝑖=1

𝑉𝑖(𝜉).     (15) 

Where 𝐶𝑖’s are constants to be determined using the boundary conditions.  

The decoupled equations of motion reduce to the following cases for the case of a prismatic 

beam: 

𝑦′′′′ + Ω2(𝜂 + 𝛿)𝑦′′ + (𝛿𝜂Ω4 − Ω2)𝑦 = 0, (16𝑎) 

𝜓′′′′ + Ω2(𝜂 + 𝛿)𝜓′′ + (𝛿𝜂Ω4 − Ω2)𝜓 = 0.        (16𝑏) 

Which renders the general solution (fundamental functions) of the two equations the same 

as they are ODE’s of exactly the same form. 

Lee and Lin [31] derived the exact associated normalised fundamental solutions for the 

uniform Timoshenko beam resting on a uniform Winkler elastic foundation and possessing 

arbitrary semi-rigid boundary conditions. Through appropriate adjustment of parameters (i.e. 

by setting all parameters defined by Eq.’s (10a)-(10d) equal to unity) one can obtain the exact 

fundamental solutions for the prismatic cantilever beam. These are 4 functions encompassing 

trigonometric and hyperbolic trigonometric functions as follows: 

𝑉1 =
1

𝜖2 + 𝜏2
(𝜏2 cosh(𝜖𝜉) + 𝜖2 cos(𝜏𝜉)), (17𝑎) 

𝑉2 =
1

𝜖2 + 𝜏2
(
𝜏2

𝜖
sinh(𝜖𝜉) +

𝜖2

𝜏
sin(𝜏𝜉)) , (17𝑏) 

𝑉3 =
1

𝜖2 + 𝜏2
(cosh(𝜖𝜉) − cos(𝜏𝜉)),                    (17𝑐) 
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𝑉4 =
1

𝜖2 + 𝜏2
(
1

𝜖
sinh(𝜖𝜉) −

1

𝜏
sin(𝜏𝜉)).              (17𝑑) 

Where 𝜖 and 𝜏 are obtained as the roots of the characteristic equation as follows: 

𝜖 = √−𝐴 + √𝐴2 − 4𝐵

2
 , (18𝑎)                 𝜏 = √𝐴 + √𝐴2 − 4𝐵

2
.  (18𝑏) 

Where 𝐴 and 𝐵 are derived as related to other system parameters as follows: 

𝐴 = Ω2(𝜂 + 𝛿),         (19𝑎) 

𝐵 = Ω2(𝛿𝜂Ω2 − 1).   (19𝑏) 

It can be observed that each 𝑉𝑖 is a function of 𝜉 and Ω2 and could hence be written as 

𝑉𝑖(𝜉,  Ω
2). Eq.’s (19a) and (19b) imply the existence of a threshold (or critical) frequency Ω𝑐 =

1
√𝜂𝛿⁄  above which the parameter 𝜖 is imaginary and a different scheme of obtaining 

eigenvalues and eigenfunctions must be implemented [2]. It must, nevertheless; be noted 

that the nature of solution does not alter. 

It can be shown, rather easily, that if the slenderness ratio approaches zero the critical 

frequency Ω𝑐 also approaches zero meaning the thick beam theory applies, while if the 

slenderness ratio approaches infinity so does the critical frequency, so thin beam theory is 

applicable. This is shown in Appendix B. The physical importance of this is that for a thin beam 

only very high modes are affected by the change in the solution.  

It should be notes that the same shape functions as of the prismatic beam can be used to 

obtain the dynamic response of a non-prismatic beam. This is obvious from the following 

simple argument. Linear expansion theorem allows for using the natural modes of the non-

prismatic beam to derive its dynamic response when subjected to an arbitrary pulse load†. As 

the deformation of a beam is essentially described by a linear combination of a complete set 

of independent functions satisfying the essential boundary conditions any natural mode of 

the non-prismatic beam is a linear combination of natural modes of the prismatic one. And as 

the natural modes of the prismatic beam are linear combinations of functions (17a)-(17d) the 

same base functions can be used to derive the eigenfunctions of the non-prismatic beam and 

therefore can be utilised through the method of eigenfunction expansion to yield the correct 

dynamic response under generalised pulse loading scenario for the non-prismatic beam. It 

must be, however, mentioned that the natural modes of the non-prismatic beam do not 

necessarily form an orthogonal set. This is proved in Appendix C. 

If the four fundamental modes are normalised as follows then subsequent to substituting the 

solution into the associated boundary conditions the associated frequency equation is 

obtained. 

                                                           
† Arbitrary in this context refers to both spatial and temporal distributions. 
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[
 
 
 

 

𝑉1(0) 𝑉2(0) 𝑉3(0)

𝑉1
′(0) 𝑉2

′(0) 𝑉3
′(0)

𝑉1
′′(0) 𝑉2

′′(0) 𝑉3
′′(0)

      

𝑉4(0)

𝑉4
′(0)

𝑉4
′′(0)

 

     𝑉1
′′′(0) 𝑉2

′′′(0) 𝑉3
′′′(0)  𝑉4

′′′(0)   ]
 
 
 

= [

1 0 0
0 1 0
0 0 1

    
0
0
0
 

 0 0 0    1  

] .            (20) 

3. Solving for the response 
3.1. Solving for eigenfrequencies and eigenmodes  

The roots of the determinant of the dynamic matrix, the entries of which are functions of Ω2, 

were solved using a code written in Matlab. The detailed derivation of terms are given in Lee 

and Lin [28] and will not be repeated here. The frequency equation (determinant of the 

dynamic matrix) for dimensionless flexural displacement is as follows: 

𝜋𝑤 = 𝐹22𝐺33𝐺44 + 𝐹23𝐺34𝐺42 + 𝐹24𝐺32𝐺43 − 𝐹22𝐺32𝐺43 − 𝐹23𝐺32𝐺44 − 𝐹24𝐺33𝐺42

= 0.  (21) 

Where the terms of the determinant as derived as follows: 

𝐹22 = 𝐵1(0),         (22𝑎)  

𝐹23 = 𝐵2(0), (22𝑏)  

𝐹24 = 𝐵3(0), (22𝑐)  

𝐹41 = 𝑞𝐵1/𝛿|𝜉=1, (22𝑑)  

𝐹42 = 𝑞(𝐵1 − 𝜁)/𝛿|𝜉=1, (22𝑒)  

𝐹43 = 𝑞𝐵2/𝛿|𝜉=1, (22𝑓)  

𝐺3𝑗 = 𝐹34𝑉𝑗
′′′(1) + 𝐹33𝑉𝑗

′′(1) + 𝐹32𝑉𝑗
′(1) + 𝐹31𝑉𝑗(1),                     (22𝑔)  

  𝐺4𝑗 = 𝐹44𝑉𝑗
′′′(1) + 𝐹43𝑉𝑗

′′(1) + 𝐹42𝑉𝑗
′(1) + 𝐹41𝑉𝑗(1).                      (22ℎ)    

Where 𝑉𝑗(𝜉) are defined by Eq.’s (17a)-(17d), and 𝐵𝑗(𝜉) as follows: 

𝐵0(𝜉) = 𝛿2𝑠Ω2(2𝑟𝑞′ − 𝑞𝑟′)/𝑞2 − 𝑠′𝑟Ω2/𝑞,                         (23𝑎) 

𝐵1(𝜉) = 𝛿𝑞′(2𝑟𝑞′ − 𝑞𝑟′)/𝑞2 − [𝑞′′ + 𝛿𝑠𝑟Ω2/𝑞] − 𝑞, (23𝑏) 

𝐵2(𝜉) = 𝛿(2𝑟𝑞′ − 𝑞𝑟′)/𝑞 − 2𝑟𝑞′/𝑞,                                        (23𝑐) 

  𝐵3(𝜉) = −𝛿𝑟.                                                                                  (23𝑑) 

Similar formulation is possible in terms of angle of rotation 𝜋𝛼 = 0 and the details are 

provided in Lee and Lin [28] (see Appendix II of that work). The frequencies obtained based 

on angle of rotation are exactly the same as those obtained by solving the eigenvalue problem 

for displacement function. This is anticipated as the two were assumed to be synchronised 

(See Eq.’s (9a) and (9b)).  

A case study has been conducted for a non-prismatic beam of dimensions shown as in Fig. 1. 

The eigenvalues obtained based on the displacement and rotation equations are 
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corroborated with those obtained using Finite element software package ABAQUS 6.14. Table 

1 shows a correlation of the results. 

 

 

Figure 1: A non-prismatic two-dimensional cantilever beam of density 𝜌 = 7800 𝑘𝑔/𝑚3, modulus of 

elasticity 𝐸 = 2𝐸11 𝑁/𝑚2 and Poisson’s ratio 𝜐 = 0.3. Dimensions of the beam are ℎ1 = 10 𝑚, ℎ2 =

5 𝑚, 𝐿 = 100 𝑚 simulated in ABAQUS using fine converged mesh of reduced integration quadratic 

plane stress (CPS8R) elements.  

While the formulation is generic and allows for any change in the cross sectional dimensions 

and properties, the considered case is a simple one with linear change in the depth of the 

beam where 𝜌 and 𝐸 are constants and 𝐴(𝑥) and 𝐼(𝑥) are determined by the non-prismatic 

geometry and for the specific case considered are defined as follows: 

𝐴(𝑥) = 𝑏 (ℎ1 + (
ℎ2 − ℎ1

𝐿
) 𝑥)   (24𝑎) 

𝐼(𝑥) =
𝑏

12
(ℎ1 + (

ℎ2 − ℎ1

𝐿
) 𝑥)3   (24𝑏) 

Where 𝑏 = 1, and 𝐿, ℎ1 and ℎ2 are constants the values of which are given in the caption of 

Fig. 1. 

 

Mode number Frequency (analytical) Frequency (FEM) Percentage of error (%) 

1 0.87 0.885 2.16 

2 4.18 4.14 0.97 

3 11.21 10.28 9.05 

4 20.02 18.751 6.74 

5 31.08 29.05 7.00 

6 44.27 40.74 8.66 

7 58.17 53.46 8.82 

8 72.53 66.96 8.32 

 

Table 1: Comparison of modal natural frequencies obtained from the analytical model and finite 

element package ABAQUS 6.14 

Natural modes derived based on the analytical model for the first 8 modes of vibration are 

also shown schematically in Fig. 2. Natural modes obtained from finite element software 

ABAQUS 6.14 are shown in Fig. 3.  
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                     Mode 1                                               Mode 2                                             Mode 3 

 

                    Mode 4                                               Mode 5                                              Mode 6 

                              

                                                    Mode 7                                      Mode 8 

Figure 2: Schematics of natural modes extracted from the analytical model  

As it could be seen the number and spacing of nodes and anti-nodes in the two models 

correspond well to each other. It must be noted that as a 2D model has been set up and run 

in ABAQUS there are natural modes associated with axial deformation of the beam. These are 

not captured in the current study as the analytical formulation for the Timoshenko beam does 

not allow for axial deformation of the beam neutral axis. Three such modes are shown in Fig. 

4.  

Once the eigenvalues and eigenmodes are derived it is a relatively simple task to obtain free 

and force vibration response for the system when subject to external excitation or as an initial 

value problem. The procedure to obtain free and forced vibration responses is as explained 

in the sequel.  
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Mode 1 

 

Mode 2 

                                                     

Mode 3 

     

Mode 4 

  

Mode 5 

   

Mode 6 

  

Mode 7 

 

 

           Mode 8 

Figure 3: Natural modes extracted from the finite element software (ABAQUS)-the blue regions 

signify nodes and the green/red regions anti-nodes 
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Axial mode 1 

 

Axial mode 2 

 

Axial mode 3 

Figure 4: The first three axial modes of vibration (not considered in the present study as inextensible 

beam theory is used)- the blue regions signify nodes and the green/red regions anti-nodes 

 

3.2. Dynamic response 

As mentioned before, the method of eigenfunctions expansion allows expressing the dynamic 

response as a linear function of natural modes (eigenfunctions) as follows: 

                              𝑦(𝜉, 𝑡) = ∑𝑊𝑖(𝑡)

𝑁

𝑖=1

Φ𝑖(𝜉, Ω
2),                      (25𝑎) 

                                𝜓(𝜉, 𝑡) = ∑Θ𝑖(𝑡)

𝑁

𝑖=1

Ψ𝑖(𝜉, Ω
2).                      (25𝑏) 

Where for each mode the non-dimensional frequency is a fixed number and in what follows 

we shall depict the natural modes as Φ𝑖(𝜉) and Ψ𝑖(𝜉), representing them for displacement 

and rotation, respectively; as a function of the spatial coordinate 𝜉 only. The functions 𝑊𝑖(𝑡) 

and Θ𝑖(𝑡) represent generalised coordinates as temporal functions. Given both Φ𝑖(𝜉) and 

Ψ𝑖(𝜉) are linear functions of 𝑉𝑗(𝜉, Ω
2) , as the orthogonal base functions which span the 

entire set of smooth functions defined over the domain, by substituting Eq.’s (25a) and (25b) 

into Eq.’s (6a) and (6b) and considering non-dimensional spatial part as Eq.’s (11a) and (11b) 

through pre-multiplication of a weighting function 𝜒𝛼 (as in (26)) and integration on the entire 

domain and by using the weighted residuals method one can obtain the Eq.’s (27a) and (27b) 

as equations of motion i.e. ODE’s in terms of generalised coordinates. 

                                  ∫ 𝜒𝛼

1

0

(∑𝐿𝑖𝑗𝑢𝑗

𝑁

𝑗=1

+ 𝑄𝑖)𝑑𝜉 = 0.            (𝛼, 𝑖 = 1,2)                         (26) 

                                                              𝐿11
∗ 𝑦 + 𝐿12

∗ 𝜓 + 𝑄1
∗ = 0,                                               (27𝑎) 

                                                               𝐿21
∗ 𝑦 + 𝐿22

∗ 𝜓 + 𝑄2
∗ = 0.                                               (27𝑏) 
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Where, in (26), 𝐿𝑖𝑗  are differential operators comprising spatial as well as temporal derivative 

operators, 𝜒𝛼 the weighting functions and 𝑢𝑗  represent functions 𝑦 and 𝜓 i.e. 𝑢1 = 𝑦  and 

 𝑢2 = 𝜓. The operators and generalised forces in Eq.’s (27a) and (27b) are re-defined in a 

similar fashion, for instance  𝑄𝑖
∗ = ∫ 𝜒𝛼𝑄𝑖

1

0
𝑑𝜉.  

By taking 𝜒𝛼 = Φ𝛼(𝜉)  or  𝜒𝛼 = Ψ𝛼(𝜉) we arrive at Galerkin’s method. Thus: 

                               ∑(𝑀𝑖𝑗
(1)

𝑁

𝑖=1

Θ̈𝑖 + 𝐾𝑖𝑗
(1)

Θ𝑖 + 𝑅𝑖𝑗
(1)

𝑊𝑖) = 0,                             (28𝑎) 

                               ∑(𝑀𝑖𝑗
(2)

𝑁

𝑖=1

�̈�𝑖 + 𝐾𝑖𝑗
(2)

𝑊𝑖 + 𝑅𝑖𝑗
(2)

Θ𝑖 + 𝐹𝑗
(2)

) = 0.                (28𝑏) 

Where the coefficients corresponding to generalised mass 𝑀𝑖𝑗
(𝑟)

, generalised stiffness  𝐾𝑖𝑗
(𝑟)

 as 

well as the generalised force 𝐹𝑗
(2)

are determined as follows: 

               𝑀𝑖𝑗
(1)

= −∫ 𝜌𝐼
1

0

Ψ𝑖Ψ𝑗𝑑𝜉,                                (29𝑎) 

𝐾𝑖𝑗
(1)

= ∫ Ψ𝑗(𝐸𝐼Ψ𝑖
′′

1

0

+ (𝐸𝐼)′Ψ𝑖
′ − 𝑘𝐺𝐴Ψ𝑖)𝑑𝜉,        (29𝑏) 

             𝑅𝑖𝑗
(1)

= ∫ 𝑘𝐺𝐴Φ𝑖
′Ψ𝑗

1

0

𝑑𝜉,                                   (29𝑐) 

            𝑀𝑖𝑗
(2)

= −∫ 𝜌𝐴Φ𝑖Φ𝑗

1

0

𝑑𝜉,                                 (29𝑑) 

𝐾𝑖𝑗
(2)

= ∫ ((𝑘𝐺𝐴)′
1

0

Φ𝑖
′Φ𝑗 + 𝑘𝐺𝐴Φ𝑖

′′Φ𝑗)𝑑𝜉,             (29𝑒) 

𝑅𝑖𝑗
(2)

= −∫ ((𝑘𝐺𝐴)′
1

0

Ψ𝑖Φ𝑗 + 𝑘𝐺𝐴Ψ𝑖
′Φ𝑗)𝑑𝜉,            (29𝑓) 

                    𝐹𝑗
(2)

= ∫ Φ𝑗

1

0

𝑓(𝜉, 𝑡)𝑑𝜉.                              (29𝑔) 

Where the spatial derivatives of system parameters are derived using the finite difference 

method. With the model parameters and the force function defined the only remaining step 

would be to determine the initial conditions in terms of generalised coordinates. This is done 

using the procedure explained in the sequel. Using (25) one obtains the relation between 

displacement and rotation fields and the generalised coordinates and generalised velocities 

as follows: 

  𝑦(𝜉, 0) = ∑𝑊𝑖(0)

𝑁

𝑖=1

Φ𝑖(𝜉),            (30𝑎) 
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                     𝜓(𝜉, 0) = ∑Θ𝑖(0)

𝑁

𝑖=1

Ψ𝑖(𝜉),            (30𝑏)                    

�̇�(𝜉, 0) = ∑�̇�𝑖(0)

𝑁

𝑖=1

Φ𝑖(𝜉),              (30𝑐) 

                   �̇�(𝜉, 0) = ∑Θ̇𝑖(0)

𝑁

𝑖=1

Ψ𝑖(𝜉).              (30𝑑)                    

Then each equation could be pre-multiplied by the relevant mode and integrated over the 

entire domain leading to generalised initial conditions. For instance, for Eq. (30a) the 

procedure is as follows: 

               Φ𝑗(𝜉)𝑦(𝜉, 0) = ∑𝑊𝑖(0)

𝑁

𝑖=1

Φ𝑗(𝜉)Φ𝑖(𝜉),             (31𝑎) 

Thus: 

∫ Φ𝑗(𝜉)𝑦(𝜉, 0)𝑑𝜉
1

0

= ∫ ∑𝑊𝑖(0)

𝑁

𝑖=1

Φ𝑗(𝜉)Φ𝑖(𝜉)𝑑𝜉
1

0

,     (31𝑏) 

Which yields: 

                 ∑Γ𝑖𝑗𝑊𝑖(0)

𝑁

𝑖=1

 = Ξ𝑗                 (31𝑐) 

Where Γ𝑖𝑗 = ∫ Φ𝑗(𝜉)Φ𝑖(𝜉)𝑑𝜉
1

0
 and Ξ𝑗 = ∫ Φ𝑗(𝜉)𝑦(𝜉, 0)𝑑𝜉

1

0
  so:  

                   {𝑊(0)} = [Γ]−1{Ξ}              (31𝑑) 

Similarly for generalised velocity: 

                   {�̇�(0)} = [Γ]−1{Π}              (31𝑑) 

Where Π𝑖 = ∫ Φ𝑖(𝜉)�̇�(𝜉, 0)𝑑𝜉
1

0
. For rotations one must use the shape functions Ψ𝑖(𝜉) and 

similar results could be obtained. 

It must be mentioned that since eigenmodes are not orthogonal in the general case (See 

Appendix C) the coefficient matrices constructed using the procedure explained above are 

not in general diagonal thus the equations cannot be uncoupled. If the modes, however, were 

orthogonal the following simple relations would provide the initial conditions for the ODE’s 

in terms of generalised coordinates and no matrix inversion were required. 
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                                    𝑊𝑖(0) =
∫ Φ𝑖(𝜉)𝑤(𝜉, 0)𝑑𝜉

1

0

∫ Φ𝑖
21

0
𝑑𝜉

,                                         (32𝑎)   

                                    Θ𝑖(0) =
∫ Ψ𝑖(𝜉)𝛼(𝜉, 0)𝑑𝜉

1

0

∫ Ψ𝑖
21

0
𝑑𝜉

,                                          (32𝑏)   

                                  �̇�𝑖(0) =
∫ Φ𝑖(𝜉)�̇�(𝜉, 0)𝑑𝜉

1

0

∫ Φ𝑖
21

0
𝑑𝜉

,                                          (32𝑐)   

                                      Θ̇𝑖(0) =
∫ Ψ𝑖(𝜉)�̇�(𝜉, 0)𝑑𝜉

1

0

∫ Ψ𝑖
21

0
𝑑𝜉

.                                             (32𝑑)       

As the integration is over space while differentiation is with respect to time there is essentially 

no difference in the procedure between the determination of initial generalised coordinate 

and initial generalised velocity for each generalised coordinate.  

For the sake of analyses in this section a rectangular pulse shape with uniform distribution 

has been considered. The temporal and spatial distributions of the pulse shape are depicted 

in Fig. 5.  

 

(a) 

 

(b) 

Figure 5: (a) temporal distribution, (b) spatial distribution, of the pulse load 

 

It is obvious that in the analytical model the uniformly distributed load (UDL) must have the 

intensity of 𝑃0. This is since the total vertical load on the upper surface is 𝑃0𝐿
′𝑐𝑜𝑠𝛾 where 𝛾 is 

the angle between the vertical and the normal to the upper beam surface i.e.  𝛾 =

𝑡𝑎𝑛−1(
(ℎ1−ℎ2)

2𝐿
) and 𝐿′ , the length of the upper surface is 𝐿′ = 𝐿/𝑐𝑜𝑠𝛾. As such, the intensity 

of the line load on the beam is 𝑃0
‡.  

                                                           
‡ The dimension of the beam perpendicular to the plane on which it is drawn is assumed unity. 
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The temporal pulse load is defined as:  

                                                     𝑃(𝑡) = {
𝑃0      0 < 𝑡 ≤ 𝑡𝑑
0                𝑡 > 𝑡𝑑

                                             (33) 

Finite element models have been set up and run using ABAQUS 6.14-2. The model has been 

meshed using a fine mesh of 0.25 element size and quadratic standard/implicit plane stress 

elements of type CPS8R, which is an 8-noded biquadratic plane stress quadrilateral, reduced 

integration element. The ratio of artificial to strain energy is almost zero which ensures no 

hour glassing spurious zero energy modes are present in the model. Displacement time 

histories have been recorded at 8 equidistant points along the length of the beam’s neutral 

axis, with point 9 being at the boundary and point 1 at the tip, and the results are correlated 

with those of the analytical model proposed.  

 

Figure 6: Contour of von Mises stress in the vibrating non-prismatic beam 

For the sake of the study in this section 𝑃0 = 106𝑁 and 𝑡𝑑 = 1.6 𝑠𝑒𝑐.  

An implicit numerical integration scheme has been used to derive the numerical solution to 

the linear system of coupled ODE’s, however; other methods such as Laplace Transform 

method or mode superposition are also applicable. Fig. 7 shows the comparison of 

displacements at two different (sample) points on the beam axis obtained by ABAQUS and 

the analytical model. Fig. 8 shows displacements at 8 points obtained by ABAQUS and Fig. 9 

presents the same data obtained by the analytical model. It can be shown that by including 5 

terms in the approximation of the displacement and rotation fields in the analytical model 

the results converge to those obtained by finite element analyses. This is especially true of 

the maximum displacements as in a pulse loaded scenario one is mostly interested in maxima 

of response parameters as displacements, strains, or stresses rather than detailed time 

history of these parameters. Maximum displacements have been corroborated and the 

results are depicted in Fig. 10 and as it can be seen the correlation is strong. It must be 

mentioned that Fig. 10 does not show the profile of deformation but rather the envelope of 

the response. This means maximum displacements at different locations along the beam do 

not necessarily happen at exactly the same time. 
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Figure 7: Comparison of displacement time histories for the beam at two sample points 
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Figure 8: Displacement time histories at different points obtained using FEM 

 

Figure 9: Displacement time histories at different points obtained using the analytical model  
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Figure 10: Comparison of maximum displacements 

It is possible to obtain non-dimensional response parameters. This particularly proves useful 

if one were to conduct parametric studies on the influence of different input parameters on 

the output. The effect of different parameters on frequency were studied by researchers (see 

[32-34], for example). 

3.3. Non-dimensional response parameters 

Parametric studies are not conducted in the present work, however; the dimensionless 

parameters for the response are constructed using Buckingham’s Pi-theorem. The reason is, 

up to this point, most equations have been presented using dimensionless parameters so it 

would be good practice if we pursued along this line. Dimensional analyses could be 

conducted in different ways. In one approach, all equations can be non-dimensionalised [35]. 

This requires the time as well as the spatial coordinate be non-dimensional. This method is of 

special interest in wave propagation and transient problems. The dimensionless spatial 

coordinate has already been introduced as 𝜉 = 𝑥/𝐿. Time can likewise be non-

dimensionalised using the wave speed in the medium and a single characteristic length e.g. 

the length of the beam as 𝜏 = 𝑡/𝐿√
𝐸

𝜌
. Any other dimension (e.g. ℎ1or ℎ2) could have been 

used to derive the dimensionless time 𝜏. The important point is all equations could be non-

dimensionalised by keeping in mind 
𝑑ℵ

𝑑𝜏
= ℵ̇𝐿√

𝜌

𝐸
 and by extension 

𝑑2ℵ

𝑑𝜏2 = ℵ̈𝐿2𝜌/𝐸 where ()̇ =

𝑑()/𝑑𝑡.  

An alternative approach involves keeping the governing differential equations dimensional 

and merely presenting the response and input parameters as non-dimensional. This will 

generalise the solutions and well as providing conclusions regarding parameters on which 

parametric studies have not been directly applied. This renders the conclusions more general 
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and avoids repetition in generating points already generated in the dimensionless space. As 

input parameters have already been presented in dimensionless form the dimensionless 

response parameters are derived as follows: 

𝑊0

𝐿
= 𝑓 (

ℎ1

𝐿
,
ℎ1

ℎ2
,
𝑡𝑑
𝐿

√
𝐸

𝜌
,
𝑃0

𝐸
),     (34𝑎) 

𝑡𝑚
𝑡𝑑

= 𝑔 (
ℎ1

𝐿
,
ℎ1

ℎ2
,
𝑡𝑑
𝐿

√
𝐸

𝜌
,
𝑃0

𝐸
).     (34𝑏) 

Where in Eq.’s (34a) and (34b) 𝑊0 is the maximum dynamic displacement of the beam (or the 

displacement at a particular point along the beam) and 𝑡𝑚 is the time at which that maximum 

is attained.  𝑓, 𝑔, 𝑝 and 𝑞 denote generic functions and for a homogeneous non-prismatic 

beam they are smooth in general. Alternative formulations are also possible as follows: 

𝜎𝑚

𝑃0
= 𝑝(

𝐼1

ℎ2
3 ,

ℎ1

𝐿
,
𝑡𝑑
𝐿

√
𝐸

𝜌
 ,
𝑃0

𝐸
),   (35𝑎) 

𝜀𝑚 = 𝑝(
𝐼1

ℎ2
3 ,

ℎ1

𝐿
,
𝑡𝑑
𝐿

√
𝐸

𝜌
 ,
𝑃0

𝐸
).   (35𝑏) 

Where 𝜎𝑚 signifies the maximum stress (𝜎𝑚 = 𝑚𝑎𝑥𝑡,𝑥(𝜎𝑖𝑗))  and the maximum strain 𝜀𝑚 in 

the beam and 𝐼1 =
ℎ1

3

12
.  For an arbitrary pulse shape the pulse can be represented by its 

normalised temporal function of shape (see Fig. 11), its maximum 𝑃0 and duration 𝑡𝑑. For the 

case of an impulsive load the shape of the pressure time-history is irrelevant and the total 

impulse 𝐼𝑚 = ∫ 𝑃(𝑡)𝑑𝑡
𝑡𝑑
0

 determines the response. In such a scenario the independent input 

parameters 
𝑡𝑑

𝐿
√

𝐸

𝜌
  and 

𝑃0

𝐸
 are replaced by a single parameter 

𝐼𝑚

𝐿√𝐸𝜌
 . This is shown in Eq. (36) 

for a generic dimensionless response parameter 𝜋𝑖. 

 

Fig. 11: Normalised arbitrary temporal pulse shape 

                                  𝜋𝑖 = 𝜋𝑖 (
ℎ1

𝐿
,
ℎ1

ℎ2
,

𝐼𝑚

𝐿√𝐸𝜌
)                              (36) 
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4. Conclusions 

The current study deals with evaluation of the dynamic response of homogeneous non-

prismatic Timoshenko cantilever beams under lateral pulse loading. Following the derivation 

of the equations of motion using the extended principle of least action (extended Hamilton’s 

principle) the eigenvalue problem has been set up by equating the excitation function to zero. 

The coupled system of non-dimensional equations of motion are decoupled and expressed in 

terms of displacement or rotation, only, following the approach presented in [28].  

The eigenvalues and eigenfunctions are then obtained through analyses of the system. A 

complete set of functions obtained by researchers has been used to derive the eigenfunctions 

of the non-prismatic beam. As the set consists of functions satisfying the essential boundary 

conditions and is a complete set, any displacement function can be expressed as a linear 

combination of them. The dynamic response under pulse loading is obtained using the 

method of eigenfunctions expansion which attributes to displacement and rotation fields 

generalised coordinates when shape functions are the exact modes. 

The results of dynamic analyses are presented for a given spatial and temporal distribution of 

the dynamic pulse and are corroborated with those obtained by commercial FE software 

ABAQUS 6.14-2. Error in the estimation of eigenfrequencies is bounded to 10% for the first 8 

modes. Maximum dynamic displacement also correlates well with FE results.  

Although the study encompasses analysis of the Timoshenko beam as it includes both the 

effects of rotatory inertia and shear deformation, it is possible, through the deletion of terms 

associated with each effect, to obtain the other three models explained in Appendix A. 

Dimensionless parameters of response are introduced and the two methods of non-

dimensionalisation are explained which could be useful in dealing with generic problems of a 

particular formulation. While the first approach proposes non-dimensional partial differential 

equations to be solved the second approach makes use of the fact that the non-dimensional 

response is a function of non-dimensional input parameters, only. Both approaches are valid 

and could be pursued.  

It is worth noting a parallel formulation of the same problem contains frequency domain 

analyses where the input and output are mapped through Fourier complex transformation 

and the modal complex frequency response functions are used to determine the response. 

This line was not pursued in the present study but has some advantages as multiplicative 

nature of response terms which renders the solution, in principle, more easily obtainable.  

A final remark here on the accuracy of models in prediction of out-of-plane shear stress is in 

order. All the theories considered give incorrect results for out-of-plane shear at the top and 

bottom of the beam cross section. Third-order shear deformation theory, on the other hand, 

deals with this problem adequately and provides a solution satisfying the zero shear stress on 

the free surfaces. It is, in particular, useful in the study of thick laminated composite plates 

and it could be shown that if functionally graded materials are not of concern it is the exact 

solution. 
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Appendix A 

The most commonly used beam theories are as follows: 

1. Euler-Bernoulli beam model: 

In this case the kinetic energy 𝑇 in the system is due to flexural displacement filed 𝑤(𝑥, 𝑡) (or 

rather transverse velocity field �̇�(𝑥, 𝑡)) and the strain energy 𝑈𝑏 is only due to bending 

(curvature field). 

𝑈 = 𝑈𝑏 =
1

2
∫ 𝐸𝐼(𝑥) (

𝜕2𝑤

𝜕𝑥2
)

2𝐿

0

𝑑𝑥         (𝐴. 1) 
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𝑇 = 𝑇𝑡 =
1

2
∫ 𝜌𝐴(𝑥) (

𝜕𝑤

𝜕𝑡
)
2

𝑑𝑥             (𝐴. 2)
𝐿

0

 

And the work of non-conservative forces as follows: 

𝛿𝑊𝑛𝑐 = ∫ 𝑓(𝑥, 𝑡)𝛿𝑤𝑑𝑥                               (𝐴. 3)
𝐿

0

 

Thus the principle of least action yields the following: 

𝛿𝑆 = ∫ 𝛿(𝑇 − 𝑈)𝑑𝑡 +
𝑡2

𝑡1

∫ 𝛿𝑊𝑛𝑐𝑑𝑡
𝑡2

𝑡1

= 0  (𝐴. 4) 

Which implies: 

𝛿𝑆 = 𝛿 ∫ {∫
1

2
𝜌𝐴(𝑥) (

𝜕𝑤

𝜕𝑡
)
2

𝑑𝑥
𝐿

0

− ∫
1

2
𝐸𝐼(𝑥) (

𝜕2𝑤

𝜕𝑥2
)

2𝐿

0

𝑑𝑥} 𝑑𝑡 +
𝑡2

𝑡1

∫ ∫ 𝑓(𝑥, 𝑡)𝛿𝑤𝑑𝑥
𝐿

0

𝑑𝑡
𝑡2

𝑡1

= 0                                                                                                                  (𝐴. 5) 

𝛿𝑆 = ∫ ∫ (𝜌𝐴(𝑥)�̇�𝛿�̇�
𝐿

0

− 𝐸𝐼(𝑥)𝑤′′𝛿𝑤′′)𝑑𝑥𝑑𝑡 + ∫ ∫ 𝑓(𝑥, 𝑡)𝛿𝑤𝑑𝑥𝑑𝑡
𝐿

0

𝑡2

𝑡1

= 0    (𝐴. 6)
𝑡2

𝑡1

 

Given that on integration by parts the integrations involved yield the following 

∫ 𝐸𝐼(𝑥)𝑤′′𝛿𝑤′′𝑑𝑥 = [(𝐸𝐼𝑤′′)𝛿𝑤′]0
𝐿 − [(𝐸𝐼𝑤′′)′𝛿𝑤]0

𝐿 +
𝐿

0

∫ (𝐸𝐼(𝑥)𝑤′′)′′𝛿𝑤 𝑑𝑥
𝐿

0

  (𝐴. 7) 

And 

∫ 𝜌𝐴(𝑥)�̇�𝛿�̇�𝑑𝑡 =
𝑡2

𝑡1

[𝜌𝐴(𝑥)�̇�𝛿𝑤]𝑡1
𝑡2 − ∫ 𝜌𝐴(𝑥)�̈�

𝑡2

𝑡1

𝛿𝑤𝑑𝑡   (𝐴. 8) 

And knowing that the first two terms in Eq. (A.7) represent boundary conditions and the first 

term in Eq. (A.8) vanishes as a result of the fundamental assumption of Hamilton’s principle 

the governing PDE (A.9) plus boundary conditions (A.10) and (A.11): 

𝜌𝐴(𝑥)�̈� + (𝐸𝐼(𝑥)𝑤′′)′′ = 𝑓(𝑥, 𝑡)             (𝐴. 9) 
 

[(𝐸𝐼𝑤′′)𝛿𝑤′]0
𝐿 = 0                                      (𝐴. 10) 

 

[(𝐸𝐼𝑤′′)′𝛿𝑤]0
𝐿 = 0                                      (𝐴. 11) 

Subsequent to the expansion of terms and rearrangement this yields: 

𝜌𝐴(𝑥)�̈� + 𝐸𝐼(𝑥)𝑤(4) + 2(𝐸𝐼(𝑥))
′
𝑤′′′ + (𝐸𝐼(𝑥))

′′
𝑤′′ = 𝑓(𝑥, 𝑡)    (𝐴. 12) 

So the eigenvalue problem is as follows: 

𝜌𝐴(𝑥)�̈� + 𝐸𝐼(𝑥)𝑤(4) + 2(𝐸𝐼(𝑥))
′
𝑤′′′ + (𝐸𝐼(𝑥))

′′
𝑤′′ = 0     (𝐴. 13) 

Boundary conditions for the cantilever beam are as follows: 
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𝑤(0) = 0,𝑤′(0) = 0                       (𝐴. 14) 

𝐸𝐼𝑤′′(𝐿) = 0, (𝐸𝐼𝑤′′)′(𝐿) = 0     (𝐴. 15) 

 

2. Rayleigh beam model 

In this model the strain energy is, as in the Euler-Bernoulli beam model, due to bending only, 

but the kinetic energy depends upon both translational and rotational velocity fields. 

𝑈 = 𝑈𝑏 =
1

2
∫ 𝐸𝐼(𝑥) (

𝜕2𝑤

𝜕𝑥2
)

2𝐿

0

𝑑𝑥                                                          (𝐴. 16) 

𝑇 = 𝑇𝑡 + 𝑇𝑟 =
1

2
∫ 𝜌𝐴(𝑥) (

𝜕𝑤

𝜕𝑡
)
2

𝑑𝑥
𝐿

0

+
1

2
∫ 𝜌𝐼(𝑥) (

𝜕2𝑤

𝜕𝑥𝜕𝑡
)

2

𝑑𝑥    (𝐴. 17)
𝐿

0

 

𝛿𝑆 = ∫ ∫ (𝜌𝐴(𝑥)�̇�𝛿�̇�
𝐿

0

+ 𝜌𝐼(𝑥)𝑤′̇ 𝛿𝑤′̇ − 𝐸𝐼(𝑥)𝑤′′𝛿𝑤′′)𝑑𝑥𝑑𝑡 + ∫ ∫ 𝑓(𝑥, 𝑡)𝛿𝑤𝑑𝑥𝑑𝑡
𝐿

0

𝑡2

𝑡1

𝑡2

𝑡1

= 0                                                                                                    (𝐴. 18) 

Given that: 

∫ ∫ 𝜌𝐼(𝑥)𝑤′̇ 𝛿𝑤′̇ 𝑑𝑥𝑑𝑡
𝐿

0

=
𝑡2

𝑡1

∫ [𝜌𝐼(𝑥)𝑤′̇ 𝛿𝑤′̇ ]
0

𝐿
𝑡2

𝑡1

− ∫ ∫ (𝜌𝐼(𝑥)𝑤′̇ )
′
𝛿�̇�𝑑𝑥𝑑𝑡

𝐿

0

𝑡2

𝑡1

  (𝐴. 19) 

𝛿𝑆 = ∫ ∫ (−𝜌𝐴(𝑥)�̈�𝛿𝑤
𝐿

0

− (𝜌𝐼(𝑥)𝑤′̇ )
′
𝛿�̇� − (𝐸𝐼(𝑥)𝑤′′)′′𝛿𝑤)𝑑𝑥𝑑𝑡 + ∫ [𝜌𝐼(𝑥)𝑤′̇ 𝛿�̇�]

0

𝐿
𝑡2

𝑡1

𝑡2

𝑡1

+ ∫ [𝜌𝐴(𝑥)�̇�𝛿𝑤]0
𝐿𝑑𝑥

𝐿

0

− ∫ [(𝐸𝐼(𝑥)𝑤′′)𝛿𝑤′]0
𝐿𝑑𝑡 

𝑡2

𝑡1

+ ∫ [(𝐸𝐼(𝑥)𝑤′′)′𝛿𝑤]0
𝐿 𝑑𝑡 

𝑡2

𝑡1

+ ∫ ∫ 𝑓(𝑥, 𝑡)𝛿𝑤𝑑𝑥𝑑𝑡
𝐿

0

𝑡2

𝑡1

= 0                                                         (𝐴. 20) 

Which considering the zero terms after integration by parts yields: 

𝜌𝐴(𝑥)�̈� − (𝜌𝐼(𝑥)�̈�′)′ + (𝐸𝐼(𝑥)𝑤′′)′′ = 𝑓(𝑥, 𝑡)            (𝐴. 21) 
 

[((𝐸𝐼𝑤′′)′ − 𝜌𝐼�̈�′)𝛿𝑤]0
𝐿 = 0     (𝐴. 22) 

[(𝐸𝐼𝑤′′)𝛿𝑤′]0
𝐿 = 0         (𝐴. 23) 

 

3. Shear beam model 

In this case the strain energy in the beam is due to both bending flexure and shear distortion 

and is expressed as 𝑈 = 𝑈𝑏 + 𝑈𝑠. 

Defining the new kinematic variables of 𝛼(𝑥, 𝑡)as the angle of rotation of the section and 

𝛽(𝑥, 𝑡) as the angle of distortion due to shear, energy terms are redefined as following: 
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𝑈𝑏 =
1

2
∫ 𝐸𝐼(𝑥)(

𝜕𝛼

𝜕𝑥
)2

𝐿

0

𝑑𝑥 =
1

2
∫ 𝐸𝐼(𝑥)𝛼′2

𝐿

0

𝑑𝑥              (𝐴. 24) 

𝑈𝑠 =
1

2
∫ 𝑘𝐺𝐴(𝑥)𝛽2𝑑𝑥 =

𝐿

0

1

2
∫ 𝑘𝐺𝐴(𝑥)(

𝜕𝑤

𝜕𝑥
− 𝛼)2𝑑𝑥

𝐿

0

   (𝐴. 25) 

𝑇 = 𝑇𝑡 =
1

2
∫ 𝜌𝐴(𝑥) (

𝜕𝑤

𝜕𝑡
)
2

𝑑𝑥
𝐿

0

   (𝐴. 26) 

Notice the relation below is approximately valid for the beam: 

𝛼(𝑥, 𝑡) + 𝛽(𝑥, 𝑡) =
𝜕𝑤

𝜕𝑥
    (𝐴. 27) 

Thus the principle of least action yields the following 

𝛿𝑆 = ∫ ∫ (𝜌𝐴(𝑥)�̇�𝛿�̇�
𝐿

0

− 𝑘𝐺𝐴(𝑥)(𝑤′ − 𝛼)(𝛿𝑤′ − 𝛿𝛼) − 𝐸𝐼(𝑥)𝑤′′𝛿𝑤′′)𝑑𝑥𝑑𝑡
𝑡2

𝑡1

+ ∫ ∫ 𝑓(𝑥, 𝑡)𝛿𝑤𝑑𝑥𝑑𝑡
𝐿

0

𝑡2

𝑡1

= 0    (𝐴. 28) 

On integration by parts and omitting the terms which yield zero one can obtain the following 

governing PDE’s along with boundary conditions: 

𝜌𝐴(𝑥)�̈� + [𝑘𝐺𝐴(𝑥)(𝛼 − 𝑤′)]′ = 𝑓(𝑥, 𝑡)   (𝐴. 29) 

𝑘𝐺𝐴(𝑥)(𝛼 − 𝑤′) − (𝐸𝐼𝛼′)′ = 0                  (𝐴. 30) 

[𝑘𝐺𝐴(𝑥)(𝛼 − 𝑤′)𝛿𝑤]0
𝐿 = 0                          (𝐴. 31) 

[𝐸𝐼𝛼′𝛿𝛼]0
𝐿 = 0                                                 (𝐴. 32) 

 

 

Appendix B 

The dimensionless frequency is defined by Eq. (10g) as follows: 

Ω2 = 𝜌𝐴(0)𝜔2𝐿4/𝐸𝐼(0)   (10𝑔) 

Considering parameters 𝛿 and 𝜂 defined by Eq.’s (10e) and (10f), respectively; one can derive 

the following: 

𝛿 = 𝐸𝐼(0)/(𝑘𝐺𝐴(0)𝐿2)   (10𝑒) 

𝜂 = 𝐽(0)/[𝜌𝐴(0)𝐿2]          (10𝑓) 

𝛿𝜂 = 𝐸𝐼2(0)/(𝑘𝐺𝐴2(0)𝐿4) (𝐵. 1)   
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Which renders Ω𝑐
2 =

1

𝛿𝜂
∝

𝐿4

𝐼2

𝐴2

= 𝜆4, where is the slenderness defined as 𝜆 =
𝐿

√
𝐼

𝐴

 , and √
𝐼

𝐴
 is the 

radius of gyration. It is obvious that: 

lim
𝜆→0

Ω𝑐
2 = 0   and lim

𝜆→+∞
Ω𝑐

2 = +∞     (𝐵. 2)   

 

 

 

 

Appendix C 

Let 𝑉𝑖 represent a complete set of linearly independent orthonormal functions. By the virtue 

of orthonormality Eq. (C.1) is satisfied (all functions are understood to be functions of a single 

spatial coordinate). 

∫ 𝑉𝑖
Ω

𝑉𝑗𝑑Ω = 𝛿𝑖𝑗                       (𝐶. 1) 

Where 𝛿𝑖𝑗 is the Kronecker delta function. Any other function can be described as a linear 

combination of thus could be written as follows: 

𝜓𝑖 = 𝑎𝑘
(𝑖)

𝑉𝑘                (𝐶. 2) 

Where Einstein’s summation convention in implied on subscripts. Thus: 

∫ 𝜓𝑖
Ω

𝜓𝑗𝑑Ω = ∫ 𝑎𝑘
(𝑖)

𝑉𝑘𝑎𝑚
(𝑗)

𝑉𝑚
Ω

𝑑Ω = 𝑎𝑘
(𝑖)

𝑎𝑚
(𝑗)

∫ 𝑉𝑘𝑉𝑚
Ω

𝑑Ω = 𝑎𝑘
(𝑖)

𝑎𝑚
(𝑗)

𝛿𝑘𝑚 = 𝑎𝑘
(𝑖)

𝑎𝑘
(𝑗)

   (𝐶. 3) 

Since there is no precondition on the Orthogonality of 𝒂(𝑖)and 𝒂(𝑗)the dot product of these 

vectors in general does not vanish. 

                   𝒂(𝑖). 𝒂(𝑗) = 𝑎𝑘
(𝑖)

𝑎𝑘
(𝑗)

≠ 0           (𝐶. 4) 


