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Abstract: A fuzzy random conditional value-at-risk-based linear programming (FCVLP) model
was proposed in this study for dealing with municipal solid waste (MSW) management problems
under uncertainty. FCVLP improves upon the existing fuzzy linear programming and fuzzy random
conditional value-at-risk methods by allowing analysis of the risks of violating constraints that contain
fuzzy parameters. A long-term MSW management problem was used to illustrate the applicability of
FCVLP. The optimal feasibility solutions under various significance risk levels could be generated in
order to analysis the trade-offs among the system cost, the feasibility degree of capacity constraints,
and the risk level of waste-disposal-demand constraints. The results demonstrated that (1) a lower
system cost may lead to a lower feasibility of waste-facility-capacity constraint and a higher risk of
waste-disposal-demand constraint; (2) effects on system cost from vague information in incinerator
capacity inputs would be greater than those in landfill capacity inputs; (3) the total allowable waste
allocation would vary significantly because of the variations of risk levels and feasibility degrees.
The proposed FCVLP method could be used to identify optimal waste allocation scenarios associated
with a variety of complexities in MSW management systems.

Keywords: fuzzy random conditional value-at-risk; fuzzy linear programming; risk control; decision
making; uncertainty; municipal solid waste management

1. Introduction

Due to rising waste generation rates, municipal solid waste (MSW) management is still a major
challenge for urban development and planning throughout the world [1–3]. The contradiction between
decreasing capacities of waste disposal and increasing rates of waste generation is becoming more
acute than before [4,5]. In response to this concern, there is increasing interest in developing effective
optimization models for MSW management problems.

Previously, numbers of MSW-management models were developed by using linear programming
(LP) methods [6–12]. For example, Anderson and Nigam [6] firstly proposed an optimization model for
a solid waste management system. Baetz [8] formulated a mixed-integer linear programming model
to generate optimal facility-expansion patterns for MSW management problems. In order balance
the economic, environmental, and social dimensions. Harijani et al. [12] developed a multi-objective
mixed-integer linear programming model in a MSW management system.
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Many factors in MSW management systems, such as waste management facility capacity, waste
transportation costs, operating costs, and their interactions, may be uncertain. These uncertainties pose
a big challenge in model development due to their significant effects on final decisions. Therefore, many
inexact optimization methods, such as interval, fuzzy, and stochastic programming methods, have been
proposed for dealing with uncertainties that exist in MSW management problems [13–24]. Among
them, the fuzzy linear programming (FLP) method, which is recognized as an effective alternative to
tackle uncertainties expressed as fuzzy sets, has been widely studied over the past decades [25–34].
For example, Huang et al. [26] proposed a grey fuzzy linear programming approach for MSW
management planning. Stanciulescu et al. [27] modeled a multi-objective decision-making process by
multi-objective fuzzy linear programming. The proposed method can deal with problems with fuzzy
coefficients that exist in both objectives and constraints. A fuzzy-robust stochastic multi-objective
programming (FRSMOP) method was developed by Zhang et al. [30] through combining fuzzy-robust
and stochastic linear programming into a multi-objective programming framework. The results
indicated that FRSMOP can effectively tackle uncertainties expressed as fuzzy membership functions
and probability distribution. Fan et al. [32] proposed a generalized fuzzy linear programming (GFLP)
method for problems under uncertainties expressed as fuzzy sets. In GFLP, a stepwise interactive
algorithm was incorporated into the solving process. The results showed that reasonable and robust
membership functions for variables and objectives can be generated. After that, Fan et al. [33] applied
GFLP to waste management planning problems. It has been illustrated that GFLP can effectively
identify optimal waste allocation schemes for decision makers under uncertainty.

However, most of these studies concentrated on (1) advancing an algorithm to tackle uncertainties
presented as fuzzy sets; (2) developing the combination of fuzzy linear programming and other inexact
mathematics programming methods. The fact that few of the previous studies incorporated risk
control into their modeling frameworks leads to the models’ incapability in reflecting the subjective
judgment of decision makers and the possible risk of financial loss. Accordingly, it is desired that
(1) the feasibility degrees of capacity constraints and the risk of waste-disposal-demand constraints be
introduced into MSW management frameworks and (2) various uncertainties be addressed to increase
the identified policies’ robustness.

Therefore, this study aims to develop a fuzzy random conditional value-at-risk (FCVaR)-based
linear programming (FCVLP) method for supporting MSW management. The proposed FCVLP
integrates the FCVaR method and the FLP method into a framework: (i) the FLP method will be
proposed for dealing with uncertainties expressed as fuzzy sets in MSW management, (ii) FCVaR is
then introduced to reveal the risk of waste-disposal-demand constraints, and (iii) an interactive fuzzy
resolution (IFR) method is employed to identify the trade-offs between system cost and feasibility
degrees of capacity constraints. The developed FCVLP method will be able to deal with uncertainties
presented as fuzzy sets and reflect the associated risks in MSW management planning systems. It will
also provide more useful information for enabling decision makers to identify desired policies with
minimized system costs under different feasibility degrees and risk levels.

2. Methodology

2.1. Fuzzy Linear Programming

Consider a problem in which decision makers (DMs) are responsible for municipal solid waste
(MSW) management over a multi-period planning horizon and the related data are mostly uncertain
in this problem [20]. Moreover, the vague information from subjective estimations is influential in the
decision process, and the uncertainties can hardly be reflected by intervals [2]. Fuzzy sets are effective
at reflecting the vague information from subjective estimations in the real world [29]. Thus, a FLP
model is formulated below:
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Minimize
f̃ =

∑
i, j,k

Lk

(
R̃i jk + P̃ik

)
xi jk +

∑
j,k

Lk

(
F
(
T̃k + P̃2k

)
− Ñk

)
x2 jk (1)

Subject to: ∑
j,k

Lk

(
x1 jk + Fx2 jk

)
(1− α̃) ≤ L̃ (2)

∑
j

x2 jk(1− α̃) ≤ W̃ ∀k (3)

∑
i

x jki ≥ G̃ jk ∀ j, k (4)

xi jk ≥ 0, ∀i, j, k (5)

where Equation (2) is the landfill-capacity constraint; Equation (3) is the incinerator-capacity constraint;
Equation (4) is the waste-disposal-demand constraint; Equation (5) is the non-negativity constraint; L̃,
R̃i jk, P̃ik, T̃k, Ñk, W̃, and G̃ jk are parameters presented as fuzzy sets; f̃ is the total cost for waste disposal
and facility expansion; i is the waste management facility (i = 1 for landfill, and i = 2 for incinerator);
j is the city; k the is time period; xi jk denotes waste flow from city j to facility i during time period k
(tons/day); Lk denotes the length of time period k (day); R̃i jk denotes the waste flow transportation cost

from city j to facility i during time period k ($/ton); P̃ik denotes the operating cost of facility k ($/ton);
F denotes the residue flow rate from incinerator to landfill, where the corresponding transportation
cost for residue is T̃k ($/ton); Ñk denotes the revenue from the incinerator ($/ton); α̃ denotes the rate of

waste loss during transportation; L̃ and W̃ denote the capacities of the landfill (ton) and incineration
(tons/day), respectively; and G̃ jk denotes the waste generation (tons/day). The FLP method is effective
in defining the preference level of decision makers.

2.2. Fuzzy Random Conditional Value-at-Risk

As a single, summary statistical measure of possible losses on the random events, value-at-risk
(VaR) makes it possible for DMs to set the probability of a loss and then to find the corresponding
threshold, and vice versa [35]. As to VaR, conditional value-at-risk (CVaR) is considered to provide
a better measure of risk which accounts for the size of losses that may occur when the threshold is
exceeded rather than just giving the chance of failure. It deals with the limitation of VaR by considering
the expected value of the loss beyond the threshold. In a fuzzy random environment, for a given risk
confidence level β ∈ (0, 1], the corresponding β FCVaR (i.e., ξFCVaR) is defined as follows:

Definition 1 [36,37]. We let ξ be the loss variable with fuzzy random parameters and β ∈ (0, 1] be
the risk confidence level. Then the FCVaR of ξ with the risk confidence level β is the function ξFCVaR:
(0, 1]→< such that

ξFCVaR(x, β) = E
[
x
∣∣∣M{ξ ≤ x} ≥ β

]
(6)

where M(Λ) is an axiomatic uncertain measure; it can express the chance that uncertain event Λ ∈ L
occurs. L is a σ-algebra over a nonempty set Γ. The loss variable ξ with fuzzy random parameters is
defined as a membership function from uncertainty space (Γ, L, M) to the set of real numbers< [38].

FCVaR defined by Definition 1 has some fundamental properties, such as law invariance, positive
homogeneity, monotonicity, translation invariance, monotonicity transformation, subadditivity under
independence, and convexity under independence [37,39].
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In this study, we consider a triangular uncertain variable ξ = (a, b, c), and the FCVaR function
ξFCVaR can be analytically presented as follows:

ξFCVaR(x, β) =

 1
4(1−β) [(1− 2β)(a + 2b + 2β(b− a)) + c], i f β ≤ 0.5

(1− β)b + βc, i f β > 0.5
(7)

2.3. Fuzzy Random Conditional Value-at-Risk-Based Linear Programming

The FLP method has an advantage in that it can deal with uncertainties expressed as fuzzy sets.
Waste flow from cities to facilities during different time periods can be determined for decision makers.
However, the differences between generated total waste flows and real waste generations pose risk
to MSW management system. In order to solve this kind of problem, the FCVaR method will be
integrated into the FLP framework, which leads to the fuzzy random conditional value-at-risk-based
linear programming (FCVLP) method. FCVLP can not only tackle uncertainties expressed as fuzzy sets
of parameters, but also control the possible risk of waste-disposal-demand constraints. The FCVLP
model can be formulated as follows:

Minimize
f̃ =

∑
i, j,k

Lk

(
R̃i jk + P̃ik

)
xi jk +

∑
j,k

Lk

(
F
(
T̃k + P̃2k

)
− Ñk

)
x2 jk (8)

∑
j,k

Lk

(
x1 jk + Fx2 jk

)
(1− α̃) ≤ L̃ (9)

∑
j

x2 jk(1− α̃) ≤ W̃ ∀k (10)

ξFCVaR

∑
i

x jki − G̃ jk, β

 ≤ τ (11)

xi jk ≥ 0, ∀i, j, k (12)

where x jki can be regarded as triangular (a, b, c) (where a = b = c); τ is the maximum acceptable risk
set; Equation (11) is the FCVaR-based constraint for the possible risk control of waste-disposal demand.

2.4. Solution Method

An interactive fuzzy resolution (IFR) method [2,40] is introduced to deal with a FCVLP model (full
model description in Appendix A). A fuzzy set Ã is triangular denoted by Ã = (a, b, c). The expected
interval of a fuzzy set Ã (denoted by EI

(
Ã
)
) and the corresponding expected value (denoted by EV

(
Ã
)
)

can be calculated as follows [2]:

EI
(
Ã
)
=

[1
2
(a + b),

1
2
(b + c)

]
(13)

EV
(
Ã
)
=

[1
4
(a + 2b + c)

]
(14)

The expected interval EI
(
Ã
)

and expected value EV
(
Ã
)

are used to define the feasibility of a
decision vector, if the constraints involve fuzzy sets. Therefore, the FCVLP model can be transformed
as follows:

Minimize
f̃ =

∑
i, j,k

Lk

(
R̃i jk + P̃ik

)
xi jk +

∑
j,k

Lk

(
F
(
T̃k + P̃2k

)
− Ñk

)
x2 jk (15)
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Subject to: ∑
j,k

Lk

(
x1 jk + Fx2 jk

)(
1 + (1−ω1)Eα̃1 +ω1Eα̃2

)
≤ ω1ẼL

1 + (1−ω1)ẼL
2 (16)

∑
j

x2 jk

(
1 + (1−ω2)Eα̃1 +ω2Eα̃2

)
≤ ω2EW̃

1 + (1−ω2)EW̃
2 ∀k (17)

ξFCVaR

∑
i

x jki − G̃ jk, β

 ≤ τ (18)

xi jk ≥ 0, ∀i, j, k (19)

where ω1 is the feasibility degree of the landfill-capacity constraint and ω2 is the feasibility degree of
the incinerator-capacity constraint. The feasibility degree ω is used to reflect the decision maker’s
preference. Eleven scales have been established by Jiménez et al. [40]. Scale 0.0 means an unacceptable
solution; scale 0.2 means an almost unacceptable solution; scale 0.4 means a quite unacceptable
solution; scale 0.6 means a quite acceptable solution; scale 0.8 means an almost acceptable solution;
scale 1.0 means a completely acceptable solution. The higher the scale value, the higher the feasibility
of the modeling constraints.

The optimal waste allocation from cities to facilities xi jk and system cost f̃ under various feasibility
degrees of capacity constraints and risk levels of waste-disposal-demand constraints can be obtained.

3. Application

3.1. Overview of the Study System

In this study, a MSW management problem over a multi-period planning horizon will be used for
demonstrating the applicability of the FCVLP method. The parameters of the model are obtained from
literature based on technical data [1,2,20]. In the study system, decision makers are responsible for
allocating waste flows from three cities to two facilities (landfill and incinerator). The planning horizon
is 15 years, which is further divided into three periods (5 years for each period). Time period k = 1
denotes the first 5 years’ planning period; time period k = 2 denotes the second 5 years’ planning period;
and time period k = 3 denotes the last 5 years’ planning period. Depending on the characteristics
and the quality of available data, it is assumed that the parameters in this study MSW management
problem could be described by fuzzy sets (shown in Tables 1 and 2). The capacities of landfill and
incinerator are (2.8, 3.0, 3.2) million tons and (440, 500, 560) tons/day, respectively. The incinerator
generates residues of approximately 30% of the incoming waste flows. All residues from the incinerator
are transported to the landfill for final disposal. The representative values of feasibility degrees ω1 and
ω2 are 0.4, 0.6, and 0.8. We consider a risk level β ∈ (0, 1) corresponding to the cumulative probability
of one scenario, which in applications would be something like β = 0.95 [39]. Then ξFCVaR(x, β) is the
threshold at which the probability of a loss exceeding the threshold is equal to 1− β [36]. In this study,
the representative scale values of risk level β are 0.4, 0.6, 0.9, and 0.95. The higher the scale value, the
lower the probability of a loss exceeding the threshold within the modeling constraints. There are
18 conditions including C1-LF on k = 1, C1-LF on k = 2, C1-LF on k = 3, C1-IR on k = 1, C1-IR on k = 2,
C1-IR on k = 3, C2-LF on k = 1, C2-LF on k = 2, C2-LF on k = 3, C2-IR on k = 1, C2-IR on k = 2, C2-IR on
k = 3, C2-LF on k = 1, C2-LF on k = 2, C2-LF on k = 3, C2-IR on k = 1, C2-IR on k = 2, and C2-IR on
k = 3 under each value of parameters β, ω1, and ω2, where C1, C2, and C3 present cities; and LF and IR
represent the landfill and the incinerator, respectively. For example, C1-LF on k = 1 means the waste
flow from City 1 to landfill under time period k = 1; C2-IR on k = 3 means the waste flow from City 2 to
incinerator under time period k = 3.
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Table 1. Operating and transportation cost.

Time period

k = 1 k = 2 k = 3

Operating cost ($/ton)
P̃±1k(landfill) (36, 38, 40) (52, 52.5, 53) (65, 65.8, 66.6)

P̃±2k(incinerator) (62, 63, 64) (77, 78, 79) (86, 86.5, 87)

Waste transportation cost ($/ton)
R̃±11k (17.4, 18.1, 18.8) (19.3, 19.6, 19.9) (21.5, 21.8, 22.1)
R̃±12k (15.5, 15.6, 15.7) (17.6, 17.8, 18) (21.6, 21.9, 22.2)
R̃±13k (21, 22, 23) (20.6, 20.8, 21) (22.7, 22.8, 22.9)
R̃±21k (12.6, 13.3, 14) (13.6, 14.7, 15.8) (16.2, 16.5, 16.8)
R̃±22k (13.95, 14, 14.05) (15.3, 15.5, 15.7) (16.8, 16.9, 17)
R̃±23k (11.9, 12.1, 12.3) (12.9, 13.5, 14.1) (14.3, 14.8, 15.3)

Residue transportation cost from incinerator to landfill ($/ton)
T̃±2k (6.5, 6.9, 7.3) (6.6, 7.6, 8.6) (8.15, 8.4, 8.65)

Table 2. Waste generation of cities.

Time period

k = 1 k = 2 k = 3

Waste generation (tons/day)
G̃±1k(City 1) (220, 250, 280) (380, 400, 420) (440, 470, 500)
G̃±2k(City 2) (155, 160, 165) (244, 254, 264) (255, 270, 285)
G̃±3k(City 3) (350, 355, 360) (335, 350, 365) (400, 412, 424)

3.2. Results Analysis

3.2.1. System Cost, Feasibility Degree, and Risk Level Analysis

The relation between system cost f̃ and feasibility degree ω corresponds to a trade-off between
system cost and degrees of capacity feasibility, and the relation between system cost f̃ and risk level
β corresponds to a trade-off between system cost and the risk level of the waste-disposal-demand
constraint. Table 3 shows the system cost under different feasibility degrees and risk levels. The system
costs under each β level and ω degree are fuzzy sets, demonstrating that the system costs would be
sensitive to uncertain inputs with vague information. From Table 3, with the increase of risk level β, the
system cost would increase. For example, given feasibility degree ω1 = ω2 = 0.4, the system costs are
(3.4157, 3.4705, 3.5226) ($108), (3.4763, 3.5319, 3.5846) ($108), (3.5673, 3.6242, 3.6780) ($108), and (3.5825,
3.6400, 3.6942) ($108) under risk levels at β = 0.4, 0.6, 0.9, and 0.95, respectively. This implies that a
higher system cost may guarantee that waste disposal demands are met. Table 3 also indicates that
with the increase of feasibility degrees ω1 and ω2, the system cost would increase. For example, given
risk level β = 0.4 and feasibility degree ω1 = 0.4, the system costs are (3.4157, 3.4705, 3.5226) ($108),
(3.4164, 3.4714, 3.5236) ($108), and (3.4171, 3.4723, 3.5247) ($108) under feasibility degrees at ω2 = 0.4,
0.6, and 0.8, respectively. Given risk level β = 0.4 and feasibility degree ω2 = 0.4, the system costs are
(3.4157, 3.4705, 3.5226) ($108), (3.4437, 3.4985, 3.5504) ($108), and (3.4712, 3.5260, 3.5778) ($108) under
feasibility degrees at ω1 = 0.4, 0.6, and 0.8, respectively. This implies that a higher system cost may
guarantee that waste facility capacities are met. Moreover, the system cost is more sensitive to the
feasibility of the incinerator-capacity constraint than that of the landfill-capacity constraint. This is
because the cost of the incinerator is higher than that of the landfill. Therefore, the effects on the system
cost from vague information in regard to incinerator-capacity inputs would be greater than those in
landfill-capacity inputs.
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Table 3. System costs obtained from the fuzzy random conditional value-at-risk-based linear
programming (FCVLP) model ($108).

ω2 = 0.4 ω2 = 0.6 ω2 = 0.8

β = 0.4
ω1 = 0.4 (3.4157, 3.4705, 3.5226) (3.4164, 3.4714, 3.5236) (3.4171, 3.4723, 3.5247)
ω1 = 0.6 (3.4437, 3.4985, 3.5504) (3.4444, 3.4994, 3.5514) (3.4452, 3.5012, 3.5543)
ω1 = 0.8 (3.4712, 3.5260, 3.5778) (3.4722, 3.5283, 3.5815) (3.4731, 3.5307, 3.5853)

ω2 = 0.4 ω2 = 0.6 ω2 = 0.8

β = 0.6
ω1 = 0.4 (3.4763, 3.5319, 3.5846) (3.4770, 3.5328, 3.5857) (3.4779, 3.5344, 3.5879)
ω1 = 0.6 (3.5043, 3.5599, 3.6125) (3.5052, 3.5619, 3.6156) (3.5062, 3.5642, 3.6194)
ω1 = 0.8 (3.5321, 3.5890, 3.6428) (3.5331, 3.5913, 3.6466) (3.5340, 3.5937, 3.65.3)

ω2 = 0.4 ω2 = 0.6 ω2 = 0.8

β = 0.9
ω1 = 0.4 (3.5673, 3.6242, 3.6780) (3.5623, 3.6266, 3.6818) (3.5692, 3.6289, 3.6855)
ω1 = 0.6 (3.5956, 3.6540, 3.7094) (3.5966, 3.6564, 3.7132) (3.5975, 3.6587, 3.7169)
ω1 = 0.8 (3.6234, 3.6835, 3.7404) (3.6245, 3.6858, 3.7442) (3.6254, 3.6882, 3.7479)

ω2 = 0.4 ω2 = 0.6 ω2 = 0.8

β = 0.95
ω1 = 0.4 (3.5825, 3.6400, 3.6942) (3.5835, 3.6423, 3.6981) (3.5845, 3.6446, 3.7018)
ω1 = 0.6 (3.6108, 3.6698, 3.7257) (3.6118, 3.6722, 3.7295) (3.6397, 3.6745, 3.7332)
ω1 = 0.8 (3.6387, 3.6992, 3.7566) (3.6397, 3.7016, 3.7604) (3.6406, 3.7039, 3.7642)

Note: β is the risk level; ω1 and ω2 are the feasibility degrees of landfill and incinerator capacities, respectively.

3.2.2. Waste Allocation Analysis

Figure 1 presents the solutions of total allowable waste allocation to facilities under different risk
levels (β). The value of risk level β changes from 0.4 to 0.95 under the given specific feasibility degree
ω1 = ω2 = 0.4. The results indicate that the total allowable waste allocation would vary significantly
because of the variations of risk levels. This means that the violation of the waste-disposal-demand
constraint influences the optimized waste flow from cities to facilities. In detail, for waste flow to
landfill: the optimized waste flows in time period k = 1 would increase from 212.63 to 234.63 tons/day.
The optimized flows in time period k = 2 would increase from 482 to 493.83 tons/day, and then
decrease to 485.94 tons/day. The optimized flows in time period k = 3 would decrease from 520.49 to
457.93 tons/day, then increase to 460.78 tons/day. For waste flow to incinerator: the optimized waste
flows in time period k = 1 would still stay at 463.37 tons/day. The optimized flows in time period k = 2
would increase from 241 to 261.81 tons/day. The optimized flows in time period k = 3 would increase
from 372.61 to 463.37 tons/day.

Figures 2 and 3 present the solutions of total allowable waste allocation to facilities under different
feasibility degrees ω1 and ω2, respectively. The results indicate that the optimized waste allocation
is more sensitive to feasibility degree ω2 than ω1. For example, for larger values of ω1, the amounts
of waste to landfill would decrease in time period k = 3, at the same time, the amounts of waste to
incinerator would increase in time period k = 3. However, for larger values of ω2, the amounts of
waste to landfill would increase in time period k = 1 and decrease in time period k = 3; at the same
time, the amounts of waste to incinerator would decrease in time period k = 1 and increase in time
period k = 3. Therefore, the effect of vague information in regard to incinerator capacity inputs on
waste allocation would be greater.



Climate 2019, 7, 80 8 of 13
Climate 2019, 7, x FOR PEER REVIEW 8 of 14 

 

 

Figure 1. Total waste flow to facilities under different   levels when 1 2 0.4   : (a) to landfill; (b) 

to incinerator. 

Figures 2 and 3 present the solutions of total allowable waste allocation to facilities under 

different feasibility degrees 1  and 2 , respectively. The results indicate that the optimized waste 

allocation is more sensitive to feasibility degree 2  than 1 . For example, for larger values of 1 , 

the amounts of waste to landfill would decrease in time period k = 3, at the same time, the amounts 

of waste to incinerator would increase in time period k = 3. However, for larger values of 2 , the 

amounts of waste to landfill would increase in time period k = 1 and decrease in time period k = 3; at 

the same time, the amounts of waste to incinerator would decrease in time period k = 1 and increase 

in time period k = 3. Therefore, the effect of vague information in regard to incinerator capacity 

inputs on waste allocation would be greater. 

200

250

300

350

400

450

500

550

Time period k = 1 Time period k = 2 Time period k = 3

W
a

st
e
 f
lo

w
 (
to

n
s/

d
)

β = 0.4

β = 0.6

β = 0.9

β = 0.95

200

250

300

350

400

450

500

Time period k = 1 Time period k = 2 Time period k = 3

W
a

st
e
 f
lo

w
 (
to

n
s/

d
)

β = 0.4

β = 0.6

β = 0.9

β = 0.95

(a)

(b)

Figure 1. Total waste flow to facilities under different β levels when ω1 = ω2 = 0.4: (a) to landfill;
(b) to incinerator.
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Figure 2. Total waste flow to facilities under different ω1 degrees when β = ω2 = 0.4: (a) to landfill;
(b) to incinerator.
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Figure 3. Total waste flow to facilities under different ω2 degrees when β = ω1 = 0.4: (a) to landfill;
(b) to incinerator.

Figure 4 presents the solution generated by the FCVLP model under ω1 = ω2 = 0.4 and β = 0.9.
The results show that a reasonable amount of waste flows would be allocated to facilities over three
time periods. For example, the waste flows to the landfill and the incinerator from City 1 are 69.88 and
208.62 tons/day in time period k = 1, 306.44 and 12.56 tons/day in time period k = 2, and 216.53 and
151.97 tons/day in time period k = 3, respectively. The waste flows to the landfill from City2 are 164.75,
179.5, and 244.25 tons/day in the three time periods, respectively. There is no waste flow distributed to the
incinerator from City 2. The waste flows to the incinerator from City 3 are 254.75, 249.25, and 311.4 tons/day
in the three time periods, respectively. There is no waste flow distributed to the landfill from City 3.
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Figure 4. Waste flow from cities to facilities under ω1 = ω2 = 0.4, β = 0.9 (where C1, C2, and
C3 represent cities; and LF and IR represent the landfill and the incinerator, respectively. There are
18 conditions including C1-LF on k = 1, C1-IR on k = 2, and so on).
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The above results demonstrated that FCVLP has the advantages that (1) it can evaluate trade-offs
among system cost, feasibility of capacity constraint, and risk of violating the waste-disposal-demand
constraint; (2) it can obtain stable solutions of waste flow from cities to facilities; (3) vague information
from subjective estimations can be reflected, and MSW managers can identify desired waste
management scenarios according to different feasibility degrees and risk levels under uncertainties.

4. Conclusions

In this study, a fuzzy random conditional value-at-risk-based linear programming (FCVLP)
method was proposed for municipal solid waste (MSW) management. It can not only deal with
uncertainty presented as fuzzy sets, but also tackle problems with respect to trade-offs among the
system cost, the risk level of demand constraints, and the feasibility degree of capacity constraints.

In order to demonstrate the applicability of the FCVLP model, a long-term waste management
problem was provided. The results indicated that the FCVLP model could generate various plans
of waste allocation under various feasibility degrees (ω) and risk levels (β). The system cost would
increase with the increase of risk level β, which implies that a higher system cost may guarantee that
waste disposal demands are met. The system cost would increase with the increase of feasibility
degrees ω1 and ω2, which implies that a higher system cost may guarantee that waste facility capacities
are met. Moreover, the effects on the system cost from vague information regarding incinerator capacity
inputs would be greater than those for landfill capacity inputs.

The total allowable waste allocation would vary significantly because of the variations in risk levels,
and the optimized waste allocation is more sensitive to the feasibility degrees of the incinerator-capacity
constraints than those of the landfill-capacity constraints.

The study is the first attempt to integrate the FCVaR and FIP methods into a general framework
and apply it in solid waste management systems. The proposed method could also be used in other
environmental problems under fuzzy random conditions.
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Appendix A

IFR is a method that can tackle uncertainties presented as fuzzy sets in the FCVLP model. Firstly,
consider a following linear programming model with fuzzy parameters:

Maximize
f = C̃X (A1)

Subject to:
ÃX ≤ B̃ (A2)

X ≥ 0 (A3)
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where C̃, Ã, and B̃ denote fuzzy parameters involved in the objective function and constraints; X
denotes the decision variable. A fuzzy set Ã = (a, b, c) in X is characterized by a membership function
µÃ as follows:

µÃ(x) =



0 x ≤ a,

fÃ(x) a ≤ x ≤ b,

gÃ(x) b ≤ x ≤ c,

0 c ≤ x,

(A4)

where fÃ(x) and gÃ(x) represent a linear increasing function and a linear decreasing function,

respectively. Since µÃ is upper semi-continuous, the ω-level set of Ã can be described by a closed and
bound interval

Ãω =
[

fÃ
−1(x), gÃ

−1(x)
]

(A5)

where
fÃ
−1(x) = inf

{
x : µÃ(x) ≥ ω

}
(A6)

gÃ
−1(x) = sup

{
x : µÃ(x) ≥ ω

}
(A7)

Therefore, the expected interval of a fuzzy set Ã (denoted by EI(Ã)) and the corresponding
expected value (denoted by EV(Ã)) can be calculated as follows:

EI(Ã) =

[∫ 1

0
fÃ
−1(ω)dω,

∫ 1

0
gÃ
−1(ω)dω

]
=

[1
2
(a + b),

1
2
(b + c)

]
(A8)

EV(Ã) =

∫ 1
0 fÃ

−1(ω)dω+
∫ 1

0 gÃ
−1(ω)dω

2
=

[1
4
(a + 2b + c)

]
(A9)

Let EÃ
1 and EÃ

2 denote
∫ 1

0 fÃ
−1(ω)dω and

∫ 1
0 gÃ

−1(ω)dω, respectively. For any pair of fuzzy sets Ã

and B̃, the degree to which B̃ is larger than Ã can be defined as follows:

µ(Ã, B̃) =


0 EB̃

2 − EÃ
1 ≤ 0,

EB̃
2−EÃ

1

EB̃
2−EÃ

1 −

(
EB̃

1−EÃ
2

) EB̃
1 − EÃ

2 ≤ 0 ≤ EB̃
2 − EÃ

1 ,

1 EB̃
1 − EÃ

2 > 0.

(A10)

where
[
EÃ

1 , EÃ
2

]
and

[
EB̃

1 , EB̃
2

]
are the expected intervals of fuzzy sets Ã and B̃, respectively. According to

Jiménez et al. (2007), a decision vector X will be feasible in a feasibility degree ω if

min
{
µ(ÃX, B̃)

}
= ω (A11)

Therefore, the constraint (A2) can be transformed to:[
(1−ω)EÃ

1 +ωEÃ
2

]
X ≤ ωEB̃

1 + (1−ω)EB̃
2 (A12)
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