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Abstract

In healthcare, multilevel models are typically used to evaluate hospitals’ performance
and to rank hospitals accordingly. While multilevel models capture the hierarchical struc-
ture in the data, such as the grouping of patients into hospitals, these models do not account
for additional latent structures. In this paper, we develop a novel multilevel logistic cluster-
weighted model which can predict a binary outcome, such as mortality within 30 days of
discharge, while accounting both for known and latent structures of the data. We develop
an Expectation-Maximization algorithm for parameter estimation and a parametric boot-
strap approach for assessing the variability of the estimators. Using a rich dataset of the
Lombardy (Italy) healthcare system and focussing on the two wards of cardiosurgery and
medicine, we show how the proposed model detects, in both cases, two well-defined clusters
within the patient to hospital hierarchical structure of the data. A comparison with standard
multilevel and cluster-weighted approaches reveals a better fit of the proposed model and
a greater insight into the structure of the data. We show how this can have implications in
the resulting league tables and thus how the proposed model can be a useful tool for policy
makers and healthcare managers to conduct hospital evaluations.

Keywords: Cluster-weighted models, model-based clustering, multilevel models, EM
algorithm, healthcare, hospital evaluation.

1 Introduction
Statistical models are used by policy makers and healthcare managers in order to evaluate
hospitals’ performance. Multilevel models (also referred to as random-effects models or
hierarchical models) are typically used for hospital performance evaluations: the data have
a natural hierarchical structure, with patients nested into wards and hospitals, and there
are often various other contextual variables, at individual and aggregate level, which are
needed to predict helthcare outcomes of interest. The use of this approach in healthcare was
pioneered by the seminal paper by Goldstein and Spiegelhalter [12] and subsequently used
in many other studies, e.g. [9, 17, 18, 19, 26].

Multilevel models require the knowledge of the hierarchical structure in the data. In
cases when this is unknown but one expects latent groups in the data, finite mixture models
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allow to account for this heterogeneity in the outcome distribution by splitting the popu-
lation into a finite number of relatively homogeneous classes [20]. Ingrassia et al. [14]
have generalized this framework by introducing the so-called Cluster-Weighted Models
(CWMs). Here, the joint density of the outcome and the covariates is clustered into groups.
This results in a mixture of local models, which are represented by the conditional densi-
ties of the outcome given the covariates within a group. These densities are weighted both
by the local densities of the covariates, which are typically not considered within standard
mixture regression models, and by the usual mixing weights.

When both known and latent groups are to be modelled, a strand of research has pro-
posed an extension of the mixture models to the multilevel setting in order to disentangle
latent classes within the natural grouping in the data [3, 5, 11, 22, 28, 30]. Recently, Berta
et al. [6] have extended CWMs to the multilevel framework in the case when the dependent
variable is Gaussian. Since healthcare evaluations are typically based on binary outcomes,
such as mortality, in this paper we propose a novel extension of CWM suited to binary
outcomes. We develop the model in a rather general form where the covariates are of a
mixed nature, namely continuous and categorical, and we propose a parametric bootstrap
approach for building confidence intervals of the parameter estimates. Using a rich dataset
from the Lombardy healthcare system, we show how the evaluation of the hospital perfor-
mance is affected both by known and latent groupings in the data and how the final results
are strongly impacted by the use of a model which accounts for this heterogeneity. The final
hospital evaluation results are often presented in the form of league tables, where hospitals
are sorted according to their quality. The use of an appropriate statistical model allows to
accurately disentangle the significant differences between hospitals at this stage [12].

The paper is organized as follows: in Section 2 the new Multilevel Logistic Cluster-
Weighted Model (ML-CWM) is introduced; in Section 3 inference of the proposed model
is discussed including the generation of confidence intervals for the parameters; in Section
4 we show how this new approach can be used in a context of hospital evaluation; finally,
in Section 5 we make some concluding remarks.

2 The Multilevel Logistic Cluster-Weighted Model
A cluster-weighted framework allows to estimate the joint probability of a random vector
of covariates X and a binary dependent variable Y . Suppose that X and Y are defined
in some finite space Ω with values in Rd × R and that Ω is partitioned into C clusters,
say Ω1, . . . ,ΩC . Extending the CWMs to the multilevel framework allows to account for
the fact that both the conditional distribution Y |X and the marginal distributionX depend
on the C groups. In this way, the joint density of (Y,X) can be described by a mixture
of conditional densities p(Y |X,Ωc) weighted on the marginal densities p(X|Ωc) by the
mixture’s weights wc.

Let Y be a binary variable, and let X = (U ,V ) be the set of covariates, where U
is a vector of p continuous covariates and V is a vector of q categorical covariates, so
that d = q + p. Assuming that U and V are locally independent within the clusters, a
simplification usually adopted in model based clustering [13, 15, 29], the joint probability
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can be factorized as

p (x, y;θ) =

C∑
c=1

wcp(y|x; ξc)p(x;νc) =

=

C∑
c=1

wcp(y|x; ξc)φ(u;µc,Σc)ψ(v;λc), (1)

where θ is the vector of all model parameters, with ξc the vector of the cluster-dependent
fixed and random effects of the regression part of the model and νc the vector of cluster-
dependent parameters for the covariate part of the model. In this paper, the density φ of u
is assumed multivariate normal with mean µc and covariance Σc, whereas the density ψ
of v is given by the product of q conditionally independent multinomial distributions with
q parameters λcr, r = 1, ..., q, as espressed in [15]. For the covariance Σc, we consider
several parametrizations, as discussed in [25] and [21].

The conditional distribution of Y given X is Bernoulli, with a probability π which
depends both on the hierarchical structure in the data (in our case patients within hospitals)
and on possible latent groups. In particular, considering a logit link and a random effect
model, the probability is described by

logit(πj |X,C = c) = αc + βcXcj + bcj , (2)

where bcj ∼ N (0, σ2
bc) is the random effect for hospital j in the cluster c. For this case

of a random effect model, the vector of parameters ξc in Equation 1 is given by ξc =
(αc,βc, σ

2
bc). Although a canonical logit link is used here, other links for binary outcomes

can be considered at this stage.
This model extends the multilevel CWM proposed by Berta et al [6] to the case of a logistic
link, which is particularly needed in the evaluation of healthcare systems where outcomes
are typically binary. In the healthcare evaluation context, the random effects measure the
relative effectiveness of hospitals with respect to the adjusted outcome under consideration.
Taking mortality as the outcome, a positive and significant value of the random effect bcj
for the hospital j in the cluster c indicates that the hospital j has a negative effectiveness
compared to the other evaluated hospitals within that cluster. At the opposite spectrum, a
well performing hospital will be associated with a negative and significant random effect.

Using this model, which we denote by ML-CWM, each patient can be assigned to one
of the C clusters according to the maximum posterior probability

p(Ωc|x, y;θ) =
wcp(y|x; ξc)φ(u;µc,Σc)ψ(v;λc)

C∑
k=1

wkp(y|x; ξk)φ(u;µk,Σk)ψ(v;λk)

.

For the case of Gaussian covariates only, conditions for identifiability of the model can be
derived using the same approach of [15] for generalized cluster-weighted models.

3 Inference for ML-CWM

3.1 The EM-algorithm
In the presence of latent groups, the parameters θ are estimated by an Expectation-Maximization
(EM) algorithm, and the estimates of parameters which results from this method are those
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that achieve at least a local maximum of the likelihood. Using the notation in Equation 1,
the aim of the estimation process is to identify the vector of parameters θ composed by

θ = (w1 . . . wC−1, ξ1 . . . ξC ,µ1, . . . ,µC ,Σ1, . . . ,ΣC ,λ1, . . . ,λC)′,

The log-likelihood for θ can be expressed as:

`((x, y)|θ) =

J∑
j=1

nj∑
i=1

log{
C∑
c=1

p(yij |xij ; ξc)φ(u;µc,Σc)ψ(v;λc)}

where yij and xij are the observed values of Y and X , respectively, for the ith first
level observation (patient) in the jth second level unit (hospital), with j = 1, . . . , J and
i = 1, . . . , nj , where nj is the total number of patients admitted to the hospital j.
Following [20], the formulation of the CWM problem can be viewed as a situation of incom-
plete data and an EM algorithm can be applied in order to estimate the maximum likelihood
and to identify the probability that the observation (xij , yij) belongs to one of the identified
clusters. Assuming a C-dimensional component-label vector zij where zijc = 1 if the ob-
servation (xij , yij) belongs to the cth cluster and 0 otherwise, and considering the presence
of continuous and categorical covariates, the complete data log-likelihood function for the
observation (xij , yij) and the latent allocation zijc can be expressed as:

`c((x, y, z)|θ) =

J∑
j=1

nj∑
i=1

C∑
c=1

zijc log(wc)+

J∑
j=1

nj∑
i=1

C∑
c=1

zijc log[p(yij |xij , ξc)]+

J∑
j=1

nj∑
i=1

C∑
c=1

zijc log[φ(uij ;µc,Σc)]+

J∑
j=1

nj∑
i=1

C∑
c=1

zijc log[ψ(vij ;λc)].

(3)

Equation 3 implies that the complete data log-likelihood is composed of the four parts
of the model: the probability of belonging to one of the clusters, the regression part of
the outcome given the covariates, the marginal multivariate Gaussian distribution of the
continuous covariates and the marginal distribution of the categorical covariates.

The EM algorithm follows an iterative process starting with an evaluation of the missing
data based on the available data (E-step) and then a maximization of the expected log-
likelihood (M-step). Assuming an unknown z vector, the (r + 1)th iteration of the EM-
algorithm is based on the expectation with respect to z of the complete data log-likelihood
`c((x, y,z)|θ) in Equation 3, with θ estimated at the rth iteration, i.e.

Q(θ,θ(r)) = Ez|(x,y);θ(r)(`c((x, y, z)|θ)).

This requires the calculation of the probability that the observation (xij , yij) belongs to the
cth cluster, since

E(zijc|(x, y),θ(r)) = Pr{zijc = 1|(x, y),θ(r)} = τc((x, y),θ(r)).
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Given our proposed ML-CWM model,

τc((xij , yij),θ
(r)) =

p(yij |xij ; ξ(r)c )φ(uij ;µ
(r)
c ,Σ(r)

c )φ(vij ;λ
(r)
c )w

(r)
c∑C

k=1 p(yij |xij ; ξ
(r)
k )φ(uij ;µ

(r)
k ,Σ

(r)
k )φ(vij ;λ

(r)
k )w

(r)
k

,

leading to

Q(θ,θ(r)) =

J∑
j=1

nj∑
i=1

C∑
c=1

τc((xij , yij),θ
(r)){log(wc) + log[p(yij |xij , ξc)]+

+ log[φ(uij ;µc,Σc)] + log[φ(vij ;λc)]}.

At this point the M-Step performs the estimation of the maximum likelihood, obtaining the
new parameters θ for the next iteration of the E-Step. The iterative process continues until
a pre-defined convergence criterion is met. The convergence is guaranteed when the Aitken
acceleration index [1] is lower than a defined threshold, which is typically set to 1e-04.

From a computational point of view, EM algorithms can be sensitive to the starting
point. Several initialization strategies can be implemented (see, e.g., [7], [4]), and these
are described in [15] for cluster-weighted models. As well as repeated random initializa-
tions, we will consider also using repeated k-means initializations, which make better use
of the data available. The value maximizing the observed-data log-likelihood among these
repeated initializations is selected.

The end of the EM algorithm provides two main results: the allocation of the observa-
tions to one of the identified clusters and the estimates of the parameters for both the fixed
and the random effects of the regression part.

3.2 Standard errors via parametric bootstrap
Considering that the number of level 2 units could be small and that asymptotic MLE proce-
dures may not accurately estimate the uncertainty associated with the parameter estimates
from the EM algorithm [23], we include in the estimation process a further step consisting of
a bootstrap process, in order to assess the variability of the EM estimates. In particular, we
implement a parametric bootstrap approach for mixed models, adapting the steps described
in [8] to the ML-CWM framework. Using the notation of Equation 2, and considering C
latent clusters, the bootstrap approach follows these steps:

1. We denote by α̂c, β̂c, σ̂
2
bc, µ̂c, Σ̂c, λ̂c, the set of the estimated parameters in the c-th

latent cluster, and by τ̂ the group membership probabilities, from a model fitted on
the full data using the EM algorithm described in the previous section.

2. We simulate the vector of the random effects b∗j ∼ N(0, σ̂2
bc), for j = 1, . . . , J and

c = 1, . . . , C ;

3. We simulate the covariatesX∗c from a N(µ̂c, Σ̂c) if continuous, and from a Multino-
mial with parameters λ̂c if categorical;

4. We simulate the bootstrap data y∗ijc from a Bernoulli(π∗ijc) with

π∗cj = exp(α̂c + β̂cX
∗
cj + b∗cj)/(1 + exp(α̂c + β̂cX

∗
cj + b∗cj));

5. We refit the model on y∗ij , using τ̂ as the initialization of the cluster allocations, and

we obtain the set of bootstrap parameters α̂∗c , β̂
∗
c , σ̂2∗

bc , µ̂∗c , Σ̂
∗
c and λ̂

∗
c ;
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6. We repeat the steps 2-5 B times, where B is the number of bootstrap iterations.

Within the bootstrap iterative procedure, we initialize the EM algorithm using the poste-
rior probabilities τ̂ estimated from the full data. This avoids possible problems with label
switching and small sample sizes, as suggested by [23].

In order to evaluate whether this procedure produces the correct coverage error, we
perform a simulation study on a dataset with a hierarchical structure and a different number
of units at level 1 and level 2 which provide different degrees of imbalance. We consider
a binary dependent variable and three covariates, two of which distributed as a standard
normal and one categorical with two categories. We consider the case of 2 latent clusters and
we fix the parameters as in Table 1, whereby the covariance matrix of the two continuous
covariates is assumed diagonal and with equal variance (case “EII” in [25]). In order to
measure the coverage of the bootstrap procedure, we construct 50 datasets from the same
model and, in each case, we build bootstrap confidence intervals for each parameter using
B = 100 bootstrap replications. For a single parameter, the coverage is defined by the
percentage of times that the true parameter falls in the confidence intervals. If the confidence
level is set to 95%, one would expect the coverage close to this nominal value [8]. Table 2
shows a good performance in terms of coverage for the bootstrap algorithm and shows that
the higher is the number of observations the better the coverage.

Cluster 1 Cluster 2
α -0.5 0.5
β1 0.5 -0.5
β2 0.1 -0.1
β3 0.5 -0.5
λ 0.7 0.3
σ2b 4 2
µ1 -4 -5
µ2 4 5
(Σ)i,i 1 1

Table 1: Parameters used for data generation from the ML-CWM model.

4 Hospital evaluation by a ML-CWM approach
We analyze an administrative dataset gathered from the Lombardy region in Italy, which
collects information on patients admitted to 150 hospitals in 2014. The data include demo-
graphic information (age, gender), information on hospitalizations, such as length of stay,
special-care unit use, within-hospital mortality, and a total of 6 diagnosis codes and pro-
cedures defined according to the International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM). In order to test the ability of the model in identifying
clusters among patients in the context of prediction of hospital performance within a specific
discipline, we test the ML-CWM on two different disciplines: cardiosurgery and medicine.
Cardiosurgery is a highly specialized discipline admitting patients that need complex surgi-
cal intervention, but with a low risk of 30-day mortality, whereas medicine is a widespread
general discipline, characterized by a high risk of mortality.
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Parameters Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2
20 level 1, 15 level 2 40 level 1, 20 level 2 100 level 1, 30 level 2

α 0.92 0.90 0.90 0.92 0.93 0.94
β1 0.96 0.90 0.92 0.94 0.97 0.94
β2 0.96 0.98 0.98 0.94 0.94 0.93
β3 0.96 0.94 0.94 0.94 0.94 0.92
σ2b 0.86 0.86 0.86 0.84 0.88 0.89
µ1 0.90 0.91 0.92 0.92 0.91 0.92
µ2 0.94 0.90 0.91 0.92 0.92 0.92
Σ 0.92 0.89 0.94 0.98 0.92 0.94
λ 0.96 0.92 0.92 0.98 0.93 0.94
Observations w/i clusters 300 300 800 800 3000 3000
Num. of Observations 600 1600 6000

Table 2: Coverage of the parametric bootstrap approach for 95% confidence inter-
vals from simulated data with varying sample sizes.

The outcome of interest is 30-day mortality, the most used proxy of quality in this research
field. This outcome is measured by merging the hospital record described above with the
registry of citizens conserved in Lombardy, where we can find the date of death for each
patient. In this way we can identify whether a patient discharged alive has died within 30
days after the discharge. In the event of death for patient i, the outcome is recorded as
yi = 1.
A number of characteristics are selected for each patient, namely sex, age, the DRG weight,
measuring the resources used by the hospital to treat each patient, and the Elixhauser index
[10], measuring the level of patients’ comorbidities. These patients’ characteristics are typ-
ically used in healthcare evaluation frameworks as risk-adjustment covariates, and age and
gender in particular are notorious for accounting for the largest share of case-mix variability
while not being dependent on the quality provided during the hospitalization [2, 24].

We apply the proposed ML-CWM to this dataset, separately for cardiosurgery hospi-
talizations and for patients admitted in medicine. We exploit the hierarchical structure of
patients nested within hospitals using a multilevel model and we use the proposed mul-
tilevel cluster-weighted model to investigate whether there is evidence for further latent
structures. To initialise the clusters, we use repeated k-means initializations: we found the
cluster-weighted model to be more stable and faster under this initialization strategy than
using random initializations. In particular, we performed 10 k-means initializations which
resulted in 3 different starting points, but led to the same final estimates from the cluster-
weighted model. Table 3 reports the results from the best fitting model for the case of two
clusters. We fitted models under a growing number of latent clusters, but the inference
failed with C > 2 even after various attempts of tweaking parameters and options. Accord-
ing to the descriptive statistics in Table 3, the covariate age disentangles very well the latent
hetereogeneity in the data and when 2 clusters are identified (young patients and older pa-
tients), there are no other sensible divisions. Both for the case of one cluster (C = 1,
standard multilevel model) and for the case of two clusters (C = 2), we tested a large num-
ber of parametrizations of the covariance matrix Σc for the three continuous covariates.
Using the nomenclature of [21], we considered the “EEI”, “VII”, “EEI”, “VEI”, “EVI”,
“VVI”, “EEE”, “VVV”, “EVV”, “VEV”, “EVE”, “VEE”, “VVE”, and “VVV” structures
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for C = 2 and the ”EII”, ”EEI”, and ”EEE” structures for C = 1. For both cardiosurgery
and medicine the case of two clusters and the “VEV” decomposition performed best, by
giving the lowest Bayesian Information Criterion (BIC) [27], namely 145,055.8 for cardio-
surgery and 1,981,374 for medicine.

The descriptive statistics in Table 3 from the fitted model allow us to appreciate the
different case-mix of patients admitted in the two considered wards and in the two identified
clusters. Patients in cardiosurgery are on average younger than patients in medicine, while
the risk of mortality in medicine is 10 times higher compared to cardiosurgery. The value of
the DRG weight shows how cardiosurgery is a highly specialized discipline. The clustering
composition for cardiosurgery indicates how the two latent groups mainly differ according
to the age (in cluster 2 the patients are younger). Considering the clusters identified in
medicine, we observe that patients in cluster 2 are younger than patients in cluster 1, which
leads to a lower risk of mortality for this cluster compared to cluster 1. Moreover, higher
levels of comorbidities are observed for the patients allocated to cluster 1. The last column
compares the observed mortality in the identified clusters with the expected mortality by
the fitted ML-CWM model. The expected rates are quite similar to the observed ones,
indicating a good fit of the models and a need to include the hierarchical structure of the
data in the model specification.

Covariates Outcome
Observed Expected

DRG Weight Comorbidities Age Female Mortality Mortality
Cardiosurgery
Cluster 1 Mean 5.4110 1.2235 70.5777 0.3305 0.0140 0.0131
(#Obs 7,788) Std Dev 2.8120 1.0693 8.4312 0.4704
(#Hospitals 20)
Cluster 2 Mean 5.5688 1.0551 42.6457 0.3363 0.0067 0.0053
(#Obs 889) Std Dev 3.3237 0.8868 8.4884 0.4727
(#Hospitals 20)
Medicine
Cluster 1 Mean 1.0922 1.3463 79.0967 0.5179 0.1660 0.1641
(#Obs 119,678) Std Dev 0.7092 1.1230 9.1036 0.4997
(#Hospitals 107)
Cluster 2 Mean 0.9399 0.8611 44.0957 0.4851 0.0605 0.0526
(#Obs 18,407) Std Dev 0.5520 0.9337 10.3680 0.4998
(#Hospitals 107)

Table 3: Descriptive statistics of the two clusters identified by ML-CWM on the
two separate wards of cardiosurgery and medicine.

We compare the results provided by the ML-CWM with a classical multilevel model in
terms of goodness of fit and parameter estimates of both the fixed and random effects. In
addition, in order to check whether the main improvement of the ML-CWM comes from
the multilevel or from the cluster-weighted aspect, we also compare the results with a stan-
dard logistic CWM (L-CWM), which does not contain the random effects in the model
and thus does not consider the hierarchical structure in the data. In each case, we selected
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the optimal parametrization of the covariance of the continuous covariates based on BIC.
This resulted in the choice of the “EEE” decomposition both for the multilevel and the L-
CWM models. Table 4 shows that the ML-CWM has the lowest BIC, compared to both the
classical multilevel model and the standard logistic CWM. Looking further at the parame-
ter estimates, Table 4 shows how several effects of the covariates on the risk of mortality
are different between latent groups, and how these differences are not picked up by the
standard multilevel model. The significance level of the estimates is evaluated via the para-
metric bootstrap approach described before. For cardiosurgery, the model finds a different
direction and significance for the effect of age and DRG weight on mortality among the
two clusters. Whereas in the standard multilevel model the coefficient related to the DRG
weight is negative and significant, the application of both the CWM and ML-CWM shows
how this relationship is positive and significant for the patients allocated in cluster 1, in-
dicating that the higher the resources used by the hospital to treat patients in this group
the higher their risk of mortality, while the relationship is negative and not-significant for
the patients allocated in cluster 2. Moreover, we observe that cluster 2 is characterized by
non-significant coefficients for the patients’ gender and that the estimated coefficient for
comorbidities is positive and significant only in cluster 1. The covariate related to the pa-
tients’ age is, as expected, always positive and significant, confirming the main role of this
covariate in adjusting the risk of mortality in our analysis. In particular, this covariate is the
only covariate explaining the differences in the risk of mortality for the patients allocated
in cluster 2. In contrast to this, in the ward of medicine, we do not observe any differences
in the direction of coefficients in the compared models, but using the ML-CWM we detect
a different magnitude for the coefficients related to age and DRG weight. In particular in
cluster 1 the DRG weight has the highest magnitude compared to the other coefficients.
Finally, in medicine we observe a gender effect in cluster 1, with female patients having a
lower risk of mortality in that cluster. The results show the flexibility of the model in cap-
turing the impact of variables on the adjusted outcome when latent structures are present:
covariates such as gender in cardiosurgery do not have an impact on mortality within any of
the identified clusters, corresponding to the case of a variable that could be dropped from
the model. Other covariates on the other hand, have an impact on the outcome only for
some of the clusters or a different impact across the clusters, a situation that could not be
contemplated by a traditional multilevel model.

The effects detected in Table 4 have a significant impact on the final league tables, and
show also here a difference between the results obtained by the proposed ML-CWM model
and by a standard multilevel approach. Figure 1 shows the league tables for cardiosurgery
using the multilevel model, in the first top plot, and the ML-CWM at the bottom. Figure
2 provides the same results for medicine. These figures are drawn based on the estimated
random effects and on confidence intervals obtained using the same parametric bootstrap
approach described before. Such plots can be produced, for each cluster, using the function
plotREsim in the R package merTools, where we use the option of plotting in the
odds ratio scale [16]. Hospital random effects different from the overall average (i.e. when
the confidence interval does not cross the red line) are highlighted in bold. The figures
show how, in cardiosurgery, the league tables of the multilevel model and of cluster 1 of
ML-CWM are the same, but ML-CWM allows to detect a bad performance related to the
hospital coded as 7 in cluster 2 . This is the only hospital presenting a bad performance in
this cluster, and it is the only hospital with bad results both in cluster 1 and cluster 2. This
means that the patients allocated in cluster 2 receive the same quality in all the hospitals
except for hospital 7 (see last plot in Figure 1).
In medicine, we are able to compare the overall heterogeneity of the first plot in Figure 2
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Covariates Multilevel L-CWM ML-CWM
Cardiosurgery Cluster1 Cluster2 Cluster1 Cluster2

(Intercept) -8.5821*** -8.5868*** -8.5097*** -8.5509*** -30.0003***
Female 0.1786 0.2142 0.3393 0.2045 9.1940
Age 0.0517*** 0.0676*** 0.0467*** 0.1319*** 0.2299**
DRG Weight -0.0339*** 0.1353** -0.098*** 0.437** -0.8226***
Elix Index 0.2485*** 0.6892*** 0.197 0.1318*** -10.4423

#Parameters 6 37 39
BIC 147,644.7 145,255.8 145,055.8

Medicine
(Intercept) -5.7630*** -6.7061*** -6.7950*** -6.8485*** -7.1120***
Female -0.2683*** -0.2559*** 0.0097 -0.2515*** -0.0208
Age 0.0491*** 0.0442*** 0.0626*** 0.0436*** 0.0678***
DRG Weight 0.3679*** 1.6026*** 0.1365*** 1.6780*** 0.1255***
Elix Index 0.0677*** -0.0099 -0.0682 0.0212*** -0.0579

#Parameters 6 37 39
BIC 2,149,655 1,982,832 1,981,374

Table 4: Regression coefficients of the multilevel, the L-CWM and the proposed
ML-CWM models fitted to the Lombardy healthcare data for the cases of cardio-
surgery and medicine. */**/*** indicate 10%/5%/1% significance from the the
boostrap procedure.

with the cluster specific heterogeneity in the last two plots in Figure 2. As we observed for
cardiosurgery, patients allocated in cluster 2 receive a more homogeneous level of quality.
This could therefore be a useful cluster for policy makers to identify the hospitals that have a
bad performance for a specific analysis. Furthermore, we can detect a number of hospitals,
i.e. “8”, “29”, “90”, “40”, which are ranked as having a significant bad performance in
both clusters. However, there are several other hospitals, such as “26”, “54”, “46”, “83”
and others, which are bad performers in the first cluster but they are ranked as average in
the second one, showing a greater flexibility in ranking when latent clusters are accounted
for. The final ranking of the hospital can be obtained using the expected rank test, which is
implemented in the expectedRank function in the R package merTools. The ranking
produced by this test confirmed the best and worst hospitals identified above.

5 Conclusions
In this paper we have presented an extension of multilevel cluster-weighted models for bi-
nary outcomes and have shown its use and benefits within a hospital evaluation framework.
The proposed model allows to identify latent clusters in the data, related to both the out-
come and the risk-adjustment variables, as well as to account for the hierarchical structure
of the data which is typical in healthcare evaluations. We present inference of the model,
including an EM-algorithm for parameter estimation and a parametric bootstrap approach
for building confidence intervals for the parameters.

Using a rich dataset on the Lombardy healthcare system, we show how the proposed
multilevel cluster-weighted model detects two well-defined latent groups within the hierar-
chical structure of hospitals. Interestingly, the regression coefficients have different signs,
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Figure 1: League Tables for the Multilevel Model (first) and ML-CWM (second
and third) in Cardiosurgery

11



Figure 2: League Tables for the Multilevel Model (first) and ML-CWM (second
and third) in Medicine
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magnitude and statistical significance for the two different groups, showing the advantage
of this method compared to a standard multilevel model. The Bayesian information crite-
rion supports this comparison. In addition to the fixed effects, the league tables of hospitals
constructed from the random effects show different patterns between the two latent groups.
This may have great implications for policy makers and healthcare managers because these
effects could be masked using a classic approach and the final rankings of hospitals may be
biased.

This paper provides a new method to evaluate performance in the healthcare sector.
However, the proposed model can be widely applied in all research fields where there is
a binary outcome and a hierarchical structure of the data. For example, education is a
typical field of research where data are characterized by a hierarchical structure and binary
outcomes are often considered.
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