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ABSTRACT

Context: Most research into software defect prediction ignores the

differing amount of effort entailed in searching for defects between

software components. The result is sub-optimal solutions in terms

of allocating testing resources. Recently effort-aware (EA) defect

prediction has sought to redress this deficiency. However, there is

a gap between previous classification research and EA prediction.

Objective: We seek to transfer strong defect classification capabil-

ity to efficient effort-aware software defect prediction.

Method: We study the relationship between classification perfor-

mance and the cost-effectiveness curve experimentally (using six

open-source software data sets).

Results: We observe extremely skewed distributions of change size

which contributes to the lack of relationship between classification

performance and the ability to find efficient test orderings for defect

detection. Trimming allows all effort-aware approaches bridging

high classification capability to efficient effort-aware performance.

Conclusion: Effort distributions dominate effort-aware models.

Trimming is a practical method to handle this problem.
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1 INTRODUCTION

A major cost in software engineering is testing. Though software

defect prediction aims to make testing a more focused activity, it

assumes that there are equal costs for detecting and repairing any

defect, which is far from true in the real world. Cost-effectiveness

was highlighted by Arisholm et al. [2] who proposed the cost-

effectiveness curve as a new predictive performance measure. They

also found that classifier performance is not clearly related to gen-

erating good effort-aware (EA) defect prediction. Subsequently,

several effort-aware defect prediction models have been proposed

[4, 5, 7], however, the connection between classification ability

(defective or not) and effort-aware prediction remains unclear.

In this paper, we aim to bridge the gap between high classifi-

cation capability and effort-aware performance by revisiting six

effort-aware models in the context of just-in-time (JiT) defect pre-

diction. The main contributions of this paper are that we: (i) show

there is great variability in repair effort which explains why many

effort-aware prediction models are unstable when confronted with

extreme values of effort; (ii) find a linear relationship between

effort-aware performance and classification capability when we

trim effort outliers.

2 EFFORT-AWARE DEFECT PREDICTION

We summarize the six different effort-aware prediction approaches

to date in Table 1. The basic idea of effort-aware prediction is to

find more defects with less effort. To achieve this goal, effort-aware

models prioritize software components according to their estimated

relative defect risk.

Table 1: Summary of EA Prediction Approaches

No Model Learn Predict Relative Risk Reference

1 Rad defect p(x ) p(x ) · (1 −
E(x )
Emax

) [5]

2 Rdd defect Y (x )
Y (x )
E(x )

[3, 5]

3 Ree defect p(x )
p(x )

E(x )
[6]

4 EALR
defect
effort

RLR (x ) RLR (x ) [4]

5 Rnon−EA defect p(x ) p(x ) [2, 7]

6 Runsup - 1
metr ic

1
metr ic [7]

Note that (1) x denotes a software change, p(x ) is its probability to be

defective. (2) Y (x ) is the binary prediction whether change x is defective

or not. (3) E(x ) is the effort required to inspect x , and Emax is the max

value of E(x). (4) RLR is the predicted risk of EALR.
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Relative risk is the trade-off between the risk of being defective

and the effort to inspect the defect. Sorting predictions by rela-

tive risk gives the cost-effective order each model predicts. The

cost-effectiveness curve proposed by Arisholm et al. [2] simulates

inspection on defects following such cost-effective order, then as-

sesses its actual cost-effectiveness.

3 EXPERIMENTAL DETAILS

Our experiment is based on public available scripts and data sets

including six open source projects shared by Yang et al. [7] and

Kamei et al. [4]. They studied effort-aware models in the context

of JiT prediction that focuses on determining whether a software

change is likely to be risky.

Differing from their work, our paper explores the relationship

between classification capability and EA performance. For clas-

sification, we use Area under the Curve (AUC) which sums up

the potential classification capability.For EA performance, there

are two popular performance measures calculated from the cost-

effectiveness (CE) curve: (i) Popt that computes the area under the

CE curve (normalized version); (ii)ACC computes recall of defective

components when using 20% of the entire effort required.

Cross-validation is applied to evaluate. To setup EA models i.e.

Rad , Rdd , Ree and Rnon−EA, 11 supervised machine learning meth-

ods are chosen to build base classifiers: IBk, C4.5, LMT, Random

Forest, Naive Bayes, JRip, Ridor, SMO, RBFNet and Logistic Regres-

sion and Simple Logistic. For details of algorithms see [7].

4 EXPERIMENTAL RESULTS

4.1 Extreme Distribution of Effort Data

The first finding is that the distribution of effort (measured by

churn) is extreme (skewness ≈ 20). For 75% of changes the churn

is less than 52 lines but a few large changes can be as exceed 6000

lines plus. Alali et al. [1] found similar characteristics for typical

software changes.

Since effort part defines the CE curve, it is crucial to the EA

performance. Such extreme distributions will significantly impact

the EA performance, so we trim the outliers. Outliers were identified

according to Alali et al. [1]’s change size categories. Less than 15%

data were trimmed by the cut-line Q3 + 1.5 · IQR.

4.2 A Path and Evidence
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Figure 1: AUC vs Popt including effort outliers
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Figure 2: AUC vs Popt excluding effort outliers

Figs. 1 and 2 show the overall picture of effort-aware approaches

as scatter-plots before and after trimmed. Observe the lack of pos-

itive correlation between AUC and Popt on Fig. 1. This supports

the findings of other researchers who also reported unclear or even

negative relationships [2, 7]. There are also some interesting data-

points in the bottom right corner: specifically models with strong

classification capability that perform badly when considering ef-

fort. In contrast, there are some high values (Popt ≈ 0.87) when

AUC ≈ 0.6, which is unexpected since the classification capability

is not much better than random.

Second, there is a trend in Fig. 2 that higher AUC could relate to

better EA performance evidenced by the moderate positive correla-

tion (the percentage bend correlation r=0.575). This suggests that

we harnessing stronger classifiers to enable better EA performance.

The same trends are found for ACC . Such contrasts are because all

EA models are dominated by the effort distributions.

5 CONCLUSIONS

We believe our results1 are important to both researchers and soft-

ware engineering practitioners. For researchers, we consider why

models with poor classification performance can perform well in

effort-aware prediction and vice versa. The results demonstrate that

all six EA models are vulnerable to skewed effort distributions. For

software engineering practitioners we offer a guideline to bridge the

gap between classification and effort-aware prediction.
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1See https://github.com/yuchen1990/EAposter for data, scripts and further analysis.
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