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ABSTRACT 

This paper considers the problem of integration testing the components of a timed distributed software system. We assume that 

communication between the components is specified using timed interface automata and use computational tree logic (CTL) to define 

communication-based coverage criteria that refer to send- and receive-statements and communication paths. The proposed method enables 

testers to focus during component integration on such parts of the specification, e.g. behaviour specifications or Markovian usage models, 

that are involved in the communication between components to be integrated. A more specific application area of this approach is the 

integration of test-models, e.g. a transmission gear can be tested based on separated models for the driver behaviour, the engine condition, 

and the mechanical and hydraulical transmission states. Given such a state-based specification of a distributed system and a concrete 

coverage goal, a model checker is used in order to determine the coverage or generate test sequences that achieve the goal. Given the 

generated test sequences we derive a partial test-model of the components from which the test sequences are derived. The partial model 

can be used to drive further testing and can also be used as the basis for producing additional partial models in incremental integration 

testing. While the process of deriving the test sequences could suffer from a combinatorial explosion, the effort required to generate the 

partial model is polynomial in the number of test sequences and their length. Thus, where it is not feasible to produce test sequences that 

achieve a given type of coverage it is still possible to produce a partial model on the basis of test sequences generated to achieve some 

other criterion. As a result, the process of generating a partial model has the potential to scale to large industrial software systems. While a 

particular model checker, UPPAAL, was used, it should be relatively straightforward to adapt the approach for use with other CTL based 

model checkers. A potential additional benefit of the approach is that it provides a visual description of the state-based testing of 

distributed systems, which may be beneficial in other contexts such as education and comprehension. 
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1. INTRODUCTION 
Testing is one of the most frequently used quality assurance techniques in practical software development. Motivation for 

the practical deployment of software testing techniques ranges from the location of as many defects as possible to reliability 

analysis. Test automation limits the scope for human errors and can significantly reduce the cost and time involved in 

software development. Consequently, it has been an important research topic in recent years. In this paper, we present a 

method for the automated generation of test inputs for the integration of distributed systems consisting of independently 
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executing components. The proposed method enables testers to focus during component integration on such parts of the 

specification, e.g. behaviour specifications or Markovian usage models, that are involved in the communication between 

components to be integrated. A more specific application area of this approach is the integration of test-models, e.g. an 

automatic transmission control software can be tested based on separated models for the driver behaviour, the engine 

condition, and the mechanical and hydraulical transmission states. When generating a test with a specific goal, e.g. testing of 

clutch behaviour during automatic shifting, error conditions, or shift times, it is possible that only a subset of the product of 

all involved test models is needed. The proposed model integration approach allows testers to choose between such model 

parts of interest at the price of an overall incomplete model coverage, but which is computable within relatively low time and 

space bounds. 

The construction of test sequences that can be used to check conformance of an implementation against its state-based 

specification has been a major research topic since the earliest days of computing [21]. The problem of constructing a test 

suite that achieves a given level of coverage of a state-based specification is relatively well understood (see, for example, 

[22]). Recently model checkers have been used to automate test generation on the basis of a coverage criterion, bridging the 

gap between static verification and testing (see, for example, [17] or [26]).  

We assume that the software under test consists of several black-box components and that we have state-based models of 

each component. We also assume that these models are in the form of timed interface automata [4]. In [3] the use of parallel 

finite automata is proposed in order to describe communication between components in a distributed system. In [4] the 

approach is expanded to timed specifications. De Alfaro and Henzinger consider two components to be compatible if there is 

some environment in which they work correctly and they locate the test-generation and coverage analysis problems into the 

domain of gaming problems. We are interested in the problem of testing from such timed interface automata in order to test 

the communication between components and in order to provide a framework for expressing integration testing problems. 

This paper introduces a new approach for the integration testing of real-time distributed systems. The first step is to 

generate a set of test sequences that check the interaction between components, potentially by using a predefined test 

criterion and a model checker. These test sequences are then combined in order to form a test-model, which is a partial model 

of the system. A partial model is used since the generation of a complete model can encounter the state explosion problem; in 

the worst case the number of system states grows exponentially as the number of components increases. This second step 

extends the approach reported in [28] to use timed interface automata rather than interface automata and can thus form the 

basis of the integration testing of real-time systems. As a side-effect of our method, the partial test-model may contain 

transitions that are not covered by the test sequences from which it was constructed and thus it is possible to generate further 

test sequences that increase the coverage of the product component specifications. In addition, the approach is designed to 

support incremental integration testing: we can produce a partial model for two or more components and extend this when 

integrating additional components. In [28] we presented an approach to generate Markov-chain test-models from interface 

specifications for use in statistical testing [23]; the partial model described in this paper can be used in a similar way.  

While the initial test sequences can be produced in any way, we describe the use of a model checker since this ensures that 

our approach resolves timing and feasibility problems both on the component and on the inter-component level. We use a 

model checker for both coverage analysis [27] and test sequence generation and use a subset of the Computational Tree 

Logic (CTL) [10] (see, e.g. [9], for an overview of alternative approaches to model checking). The focus is on covering the 
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possible communications between machines, as represented by the sending and receiving of messages. In this paper we 

define four coverage criteria: demanding the coverage of either all send or receive statements of a machine; insisting that all 

possible send/receive pairs are covered; and recognizing that the messages will be sent through an underlying network and 

there may be different paths through this network and so insisting that for each send/receive pair we use every possible path1 

through the network. We focus on testing from deterministic state-based specifications whose semantics can be described in 

terms of timed interface automata [3], but it should be possible to use the approach with any state-based formalism. Since we 

use a centralized test architecture we avoid the controllability and observability problems described by Cardell-Oliver [7] and 

Khoumsi [19].  

A main contribution of this paper is the description of an incremental approach to the integration testing of a concurrent 

real-time system supported by a partial test-model that has been formed from a set of test sequences. While the method relies 

on the existence of test sequences, we describe how a model checker can be used in order to generate test sequences that 

‘cover’ the communications in the system model. Since each possible communication can occur on many different paths 

through the system, the partial test-model can be smaller than the complete model. The use of a model checker in the initial 

test sequence generation phase ensures that the presented approach is applicable to a variety of practical testing problems, 

where state-based specifications with data extensions and timing constraints are used to describe the behavior of concurrent 

real-time systems. Additional value can be found in the visual description of the state-based testing of distributed systems, 

which may be beneficial in other contexts such as education and comprehension. 

This article is divided into nine sections, including the introduction in Section 1. In Section 2 an example of a distributed 

system is presented. In Section 3 the relevant basics regarding timed interface automata are presented and Section 4 describes 

some forms of test coverage at the inter-component level. In Section 5 we present an integration approach based on 

communication coverage and an algorithm for generating timed test-models that can support incremental integration testing. 

In Section 6 we present an industrial application of the presented approach. In Section 7 we discuss complexity issues of our 

approach. In Section 8 we discuss related work and position our approach into the research area and in Section 9 we 

conclude this paper and present future research topics.  

 

Figure 1. Example "Sorting Line" of a Distributed System  

                                                                 
1 where infinitely many paths exists, we recommend the use of appropriate path coverage criteria, e.g. Boundary-Interior Coverage 
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2. EXAMPLE 
An example of a sorting line is presented in Figure 1. The distributed system consists of three software controlled 

components. On a conveyer belt objects, here triangles and squares, pass a sensor. The sensor signals after 1 second that an 

object has passed, so that this object will pass the sorter in another 1 second. The sorter checks the object and signals to the 

Robot whether the next object that is expected at P1 in 1 second is good or bad. The Robot puts the good objects into the left 

basket (P2) and the bad objects into the right basket (P3). Within a second the Robot puts an object in either basket P2 or P3, 

and returns to P1. Having returned to P1, the Robot signals that the job is done and another object may be processed. If an 

object enters the sensor while an object is being processed, the whole system immediately stops. We assume that the 

underlying reliable communication system provides an immediate delivery of messages. Test sequence generation using 

communication systems with delay are considered in [27]. 

In 1995 the model checker UPPAAL was presented [5]. It supports an extended version of timed automata [1]; such a 

timed automaton can be produced from a timed interface automaton. Some of the extensions are integer variables and 

constants, send (!) and receive (?) synchronization, broadcast channels, and committed locations. Synchronization over a 

channel e is defined between a sending transition (e!) and a receiving transition (e?). A broadcast channel allows 

synchronization of multiple automata in one step. In a committed location time must not pass and an outgoing transition must 

be taken immediately.  

The example in Figure 2, Figure 3, and Figure 4, presents UPPAAL timed automata (UTA). The communication between 

the components is performed through broadcast channels OBJECT, NEW, GOOD, BAD, STOP, and DONE, thus any 

component may receive any message during execution. The initial locations are marked through double lines. Committed 

locations, i.e. such that time must not pass, are marked with the letter C. The components use continuous time clocks c1, c2, 

and c3, which may be initialized or reset on transitions and are used in constraints. In component Robot the integer variables 

gc and bc are used as counters of good and bad passed objects. Furthermore, the automata contain definitions of coverage 

variables s and sr whose use is described in Section 4. 

The model checker UPPAAL supports a restricted form of CTL, of which we only need a small subset for the definition of 

reachability properties. A reachability property describes a state on a trace, in which a certain condition holds. The condition 

is expressed in terms of propositional logic. The CTL property E<> p demands the existence of a trace, expressed by E, on 

which in at least one state, expressed by <>, the formula p holds.  
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Figure 2. UTA component "Sensor"

 

Figure 3. UTA component "Sorter" 

 

 

Figure 4. UTA component "Robot"  

The example will be used throughout the paper in order to demonstrate the proposed integration procedure. Briefly, for this 

example the approach follows the following steps, which are outlined in detail in Section 5: 

A. Definition of a set of test sequences in the form of communication paths between two components "Sensor" and 

"Sorter". The example contains several communication paths, such as that defined by "Sensor" sending the message NEW 

through a transition from state WAIT and Sorter receiving this message through a transition from state STAND_BY. Test 

sequence generation is hard to perform manually once models exceed a certain complexity. In [27] and in Section 5.1 we 

discuss how a tests suite can be produced for the example under different assumption regarding the communication system.  

B. Generation of a partial model, called Sensor⊕Sorter, from the test sequences. The state space of Sensor⊕Sorter is a 

subset of that of the model Sensor⊗Sorter formed by composing Sensor and Sorter. In Section 5.2 we present an approach to 

derive a partial model from a finite set of test sequences. The partial model Sensor⊕Sorter can be used as the basis of further 

testing of the subsystem formed by integrating the implementations of Sensor and Sorter. 
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C. Once we have finished testing the subsystem formed from the Sensor and Sorter components, we extend the partial 

model Sensor⊕Sorter to incorporate "Robot" and so form Sensor⊕Sorter⊕Robot. The resultant partial model is used to test 

the final system composed of the Sensor, Sorter and Robot components. 

Note that this approach can be used for incremental integration testing since the procedure is identical for the cases where 

there are two components, there are two composite models, or there is a composite model and a component. 

3. TIMED INTERFACE AUTOMATA 
In this section we describe timed interface automata, which are used in this paper because of their ability to describe the 

visible behavior of a distributed system in a straightforward and generic fashion. The definition of timed interface automata 

is taken from the work of de Alfaro and Henzinger [4], which we recommend for a detailed study. A timed interface 

automaton is defined by a tuple P=(VP,VP
init,XP,AP

I,AP
O,InvP

I,InvP
O,RP), where Vp is a finite set of states, VP

init⊆VP is a set of 

initial states, and XP is a finite set of clocks. AP
I and AP

O are mutually disjoint sets of input and output actions and 

AP=AP
I∪AP

O. The set AP is disjoint from the set T of timed actions that simply represent the passing of time. For a state v, 

InvP
I(v) and InvP

O(v) are the input and output invariants on the clocks for state v; these give conditions under which a state 

may be left or entered. Thus, a transition can only leave a state if the state’s invariant holds and a transition can only enter a 

state if that state’s invariant holds; whether we consider the input or output invariant depends on whether the action that 

triggers the transition is an input or an output. RP⊆VP×C(XP)×AP×P(XP)×VP is the transition relation; here C(XP) denotes the 

set of guards on clocks and for a set B, P(B) denotes the powerset of B. A transition (v,g,a,X’,v’) should be interpreted in the 

following way: if P is in state v and guard g on the clocks holds then action a can lead to P moving to state v’ and the clocks 

in X’ being reset but this can only happen if the invariant for states v holds for the clock valuations before the transition and 

the invariant for v’ holds after the reset of the clocks in X’ (if a is an input then the input invariants must hold and otherwise 

the output invariants must hold). 

An execution fragment of a timed interface automaton P is a finite alternating sequence of states and actions 

v0,a0,v1,a1,...,vn such that for all 0≤i<n there is a (possibly timed) transition from vi to vi+1 with action a; for a timed transition 

the action simply represents the passing of time. Timed interface automata are not required to be input-enabled [3]; in a state 

there might be an input in Ap
I that is not accepted. If an interface automaton only contains internal actions then we say it is 

closed; otherwise it is open. 

The composition of timed interface automata is only defined if their actions are disjoint, except that an input action of one 

may coincide with an output action of another. Two timed interface automata will synchronize on such shared actions, and 

asynchronously interleave all other actions. The composition of interface automata P and Q is the product automaton P⊗Q, 

see [4] for a detailed definition. Since P and Q are not necessarily input enabled [4], some transitions present in P or Q may 

not be present in P⊗Q; in P⊗Q we may reach a state where the current state of P suggests that it can follow a transition but 

the current state of Q does not allow this.  

4. COVERAGE CRITERIA FOR PARALLEL TIMED AUTOMATA 
Typical coverage criteria for sequential specifications, such as state coverage or transition coverage, are defined for the 

case where we have only one automaton. When we have many parallel machines P1, …, Pm we could apply these criteria to 
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the product automaton P1⊗…⊗Pm formed by composing P1, …, Pm but this can lead to a state explosion problem. 

Alternatively, we could apply these criteria to the individual machines P1, …, Pm but this does not consider how the automata 

can interact. 

This section describes test criteria that consider the ways in which the Pi can interact but do not require the entire product 

automaton P1⊗…⊗Pm to be formed. Test criteria for the coverage of communication in a model formed using (untimed) 

interface automata have been described [27]. Here we extend these test criteria to timed interface automata. These criteria do 

not require us to have the product automaton at hand; we can use a model checker to produce parts of this during test 

sequence generation. We know that each send and receive pair in the Pi may cause a transition in the product automaton. 

Therefore we can define a weak coverage criterion for send and receive pairs, referred to as sr-pairs-coverage. It is weak in 

the sense that due to transition guards and automata structures we cannot guarantee that each sr-pair is feasible, and thus we 

may never obtain complete sr-pairs coverage. 

Definition 

sender coverage: In order to achieve complete sender coverage every send statement in each Pi has to be executed at least 

once. 

Definition 

receiver coverage: In order to achieve complete receiver coverage every receive statement in each Pi has to be executed at 

least once. 

Definition 

sr-pairs coverage: A combination of send (s) and receive (r) statements for a message m in different machines is called an sr-

pair. In order to achieve complete sr-pairs coverage every sr-pair must be executed at least once in testing. 

Definition 

sr-paths coverage: When a message m is exchanged it passes through a communication path p in an underlying network 

that starts with a send statement s and ends with a receive statement r. Coverage is complete if every communication path is 

executed at least once in testing for every sr-pair. 

Clearly complete sr-paths coverage subsumes complete sr-pairs coverage. Since each sr-pair may occur in many paths of 

P1⊗…⊗Pm, it may not be necessary to explore the entire state space of the product automaton P1⊗…⊗Pm in order generate a 

set of test sequences that provide complete sr-pairs coverage or complete sr-paths coverage. 

In addition to sr-pairs coverage we might also demand transition coverage. Transition coverage applies to parallel 

automata as described in [17]; therefore we recommend this work for a detailed description.  

5. INTEGRATION TESTING PROCEDURE 
Given state-based models P1, …, Pm of the components, integration testing can be based on the product automaton 

P1⊗…⊗Pm but the process of generating P1⊗…⊗Pm can suffer from the state-explosion problem. Instead, we propose the 
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use of partial models, called test-models, which are generated from the test sequences. These test sequences might have been 

created in a manual or automatic manner during component testing.  

Let us suppose that we have tested a subsystem formed from components that are intended to implement P1, …Pk using a 

test-model M=P1⊕…⊕Pk and are now going to introduce a new component Pk+1. We can now generate test sequences from 

M and Pk+1. The resultant test sequences can be used in order to form a new test-model M’= P1⊕…⊕Pk+1, which can now be 

used in testing the new subsystem. This process can be repeated until all of the components have been integrated. Naturally, 

even if we use a criterion such as all sr-pairs, this iterative process could lead us to failing to cover some feasible sr-pairs as a 

result of the test sequences chosen in devising an earlier test-model. Where this occurs, it is possible to extend a test-model 

with additional test sequences. Furthermore, the tester component, e.g. such as presented in Figure 6, can be used to 

predefine the interface of M’, either by creating or by demanding specific coverage of senders in the tester component so that 

M’ will possess the desired open receivers.  

At each integration step, the size of the partial model is linear in the total number of steps included by the chosen test 

sequences. Of course, the complexity of integrating a system depends on the procedures used for generating sequences from 

models and generating models from sequences. 

In Section 5 we will use the sorting line example to demonstrate the proposed integration strategy. In a first step we will 

demonstrate the integration of Sensor and Sorter and the generation of a test-model based on test sequences produced to 

satisfy a coverage criterion. In the second step component "Robot" is integrated making use of the test-model generated 

during the integration of Sensor and Sorter. 

 

Figure 5. Integration process for the sorting line example 

5.1 Test Sequence Generation 
A test sequence t is represented by a sequence v0,a0,v1,a1,…,vn in which v0,…,vn are states of the product P=P1⊗...⊗Pm, 

a0,…,an-1 are actions of P, and (v0,q0,v1),...,(vn-1,an-1,vn) are transitions of P. We denote the states of component Pi using terms 

of the form vij. A state of P is represented by a tuple v=(v1i,...,vmj). The initial state of P is v0=(v10,…,vm0).  



 - 9 - 

For example, the test sequence in Fig. 7 is represented by the sequence v0,a0,v1,a1,v2 in which: 

• v0 is the initial state (Sensor_STAND_BY,Sorter_STAND_BY),  

• v1 is the state (Sensor_WAIT,Sorter_STAND_BY), 

• v2 is the state (Sensor_OFF,Sorter_OFF), and 

• a0 is the action OBJECT? and a1 is the action OBJECT?,STOP!. 

The test sequence t represented by v0,a0,v1,a1,…,vn defines a state structure that has state set V(t)={v0,…,vn} and we let 

R(t) denote the set of transitions of P that are in t. Note that while each transition in t is a transition from the product 

automaton, it is not necessary to generate the product automaton in order to find the set R(t)={(v0,q0,v1),...,(vn-1,an-1,vn)} of 

transitions in t. For example, in the above sequence we have two transitions: one from state 

(Sensor_STAND_BY,Sorter_STAND_BY) to state (Sensor_ WAIT,Sorter_STAND_BY) with action OBJECT? and one 

from  state (Sensor_ WAIT,Sorter_STAND_BY) to state (Sensor_OFF,Sorter_OFF) with action OBJECT?,STOP!. Note that 

in this paper we only consider deterministic models; extending the approach to allow non-determinism is a topic for future 

work. 

Here we use a model checker for test sequence generation based on sr-pair coverage. Of course, other coverage criteria can 

be used. The effect of different coverage criteria on the quality of integration test-sequences is an important area of future 

research. 

The coverage of sr-pairs is measured by adding variables to each model, which might be either a component specification 

Pi or a test model as described in Section 5.2. For each send statement one Boolean global variable s is needed, which is set 

true once the send statement has been executed. For each send and receive pair a Boolean global variable sr is introduced and 

this is set to true directly after the execution of the corresponding pair, i.e. once a receive statement is executed and a 

corresponding send variable s is true. After updating the sr variable the value of the corresponding s variable is reset to false. 

The UTA test-models in Figure 2, Figure 3, and Figure 4 include variables s and sr in order to record the sr-pairs executed. 

For example, in Figure 2 for "Sensor" we see that the STOP! statement is followed by the definition s[3]:=true and 

corresponding pair variable sr[8] and sr[9] are defined in Figure 3 "Sorter". 

In order to generate a test sequence the test-model is augmented with a "Tester" component, which is able to send every 

possible input to the model and to accept all possible responses. In Figure 6 the "Tester" component for the test-model is 

presented.  

 
Figure 6. "Tester" component 

Given a test-model we can define reachability properties in CTL that demand the execution of one or more of the sr-pairs 

that have not been covered. For instance, to generate a test sequence that sends the NEW message from "Sensor" to "Sorter" 
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we use the CTL formula E<> sr[10]. For more details regarding communication based test sequence generation we refer to 

[27]. 

The model checker UPPAAL produces a shortest or fastest trace that executes the required messages. Note that we can 

define a property that leads to a trace that covers multiple sr pairs. The use of reachability properties for single sr-pairs/-paths 

can lead to decreased execution time and memory consumption. If instead we use properties that represent covering several 

elements of a model we get fewer test sequences but these can be longer and their generation may take more time and 

memory. In addition, there may be no test sequence that covers a given combination of elements even if each can be covered 

separately.  

5.2 Integration Model Generation 
Let us suppose that we wish to produce a test-model to assist in testing a subsystem formed by integrating components that 

implement P1,…,Pk. Unfortunately, the generation of the product P=P1⊗…⊗Pk can lead to a combinatorial explosion. For 

this reason we describe the construction of a test-model P'=P1⊕…⊕Pk on the basis of a given set of test sequences. Here we 

describe this process for two models in order to simplify the exposition but this easily generalizes to k models.  

Given two timed interface automata Pi and Pj, Pi⊕Pj = (V’P,V’P
init, XP,A’P

I,A’P
O, Inv’P

I,Inv’P
O,R’P) is produced using the 

following steps: 

1. Generate test sequences t1,…,tl from Pi and Pj, possibly using a communication coverage criterion such as sr-

path coverage and breadth first search. 

2. Set V’P to be the union of the sets of states contained in the test sequences. Thus, V’P=V(t1)∪…∪V(tl) and is a 

subset of the set of states of the product automaton P. Each element of V’P is in the form (vi,vj) for state vi of Pi 

and vj of Pj. For each v∈V’P we have that Inv’P
I(v)=InvP

I(v) and Inv’P
O(v)=InvP

O(v). 

3. The initial state V’P
init of P’ is the tuple (vi0,vj0) containing the initial state of each component model. 

4. Define input alphabet A’P
I to be the set of inputs that appear in the test sequences. 

5. Define A’P
O to be the set of outputs that appear in the test sequences. 

6. Set R’P to be the set of transitions contained in the test sequences and so initially R’P = R(t1)∪…∪R(tk). The 

initial set R’P is complemented with transition in an additional step. Suppose that state (vi,vj) is in V’P, the action 

a when Pi is in state vi affects Pi only, some test sequence includes a transition t that takes Pi from state vi to state 

v’i with action a, and the transition corresponding to t can occur in state (vi,vj). Then we can add the 

corresponding transition from (vi,vj) to (v’i,vj) to R’P and add the state (v’i,vj) to V’P if this is not already in V’P. 

Note that this says that we only add such a transition if the transition can take us from (vi,vj) to (v’i,vj) and this 

requires there being a time that satisfies the timing constraint of the transition and the appropriate invariants of 

these two states2.  

7. We label a state in V’P as the final state.  

                                                                 
2 i.e. if a is an input then it is the input invariants of these two states and otherwise the output invariant of the states 
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8. Connect any states without outgoing transitions to the final state. 

The test-model Pi⊕Pj is essentially a union of the test sequences. We add copies of any transition t contained in a test 

sequence such that t involves just one component but only do this where timing constraints and invariants can be satisfied. 

Note that if one or more of Pi and Pj has been produced in an earlier stage from two or more timed interface automata then 

the states of Pi and Pj may themselves be tuples of states of timed interface automata. 

The resultant automaton represents a subset of all possible interactions between the components. The size and quality of 

this test-model depends on the test sequences and thus on the test sequence generation method used. It is clear that if we have 

test sequences t1,…,tl and each has length at most m then the test-model has at most m·l states.  

Distributed software systems often do not possess a final state and even if there is one it might not be in V’P. Therefore, we 

mark a state of V’P as the final state of P’. This is the only mandatory manual step in the generation of a test-model. 

5.3 Integration of the sorting line example 
Integration testing of the sorting line example is performed in two steps. In step 1 components "Sensor" and "Sorter" are 

integrated. Communication coverage, e.g. sr-pairs coverage, is applied in order to generate test sequences that focus on the 

interaction between "Sensor" and "Sorter". The test sequences are the basis for generating a communication model, which 

represents parts of the possible interaction between "Sensor" and "Sorter". The "Tester" component in Figure 6 is added to 

the test configuration, which accepts all open outputs and produces all open inputs. 

 

 

 

  

Figure 7. Test sequence to execute  
send-receive pair sr[8]  

 
Figure 8. Test sequence to execute  

send-receive pair sr[9] 

 



 - 12 - 

 

Figure 9. Test sequence to execute  
send-receive pairs sr[11],sr[12] 

 

Figure 10. Test sequence to execute  
send-receive pair sr[3] 

 

Figure 11. Test sequence to execute  
send-receive pair sr[2] 

 

Figure 12. Test Sequence to execute  
send receive pairs sr[5],sr[6]  

 

Figure 13. Test-model (Sensor⊕Sorter) based on sr-pairs and receiver coverage 
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The first step integrates "Sensor" and "Sorter" into Sensor⊕Sorter. Applying communication based test sequence generation delivers the 

test sequences presented in Figure 7, Figure 8, Figure 9. and Figure 10. The message DONE is not communicated between "Sensor" and 

"Sorter". However, we can observe at this point that this is required in the following integration step if we wish to be able to cover all sr-

pairs. Therefore, we apply receiver coverage; which extends the test sequence in Figure 10 with the final "DONE" message from "Tester" 

to "Sensor". Alternatively, we integrate "Tester" into the coverage analysis and demand sender coverage, with the benefit of being able to 

choose the desired input signals of Sensor⊕Sorter. Currently the addition of such a test sequence is based on the tester’s judgment and not 

the sr-pairs test criterion. This example suggests that there may be value in insisting on receiver coverage in addition to sr-pair coverage 

but the development of alternative test criteria and heuristics that assist later parts of the integration testing process is a topic for future 

work.  

 

  

Figure 14. Test sequence to execute  
send-receive pair sr[21] 

 

  

Figure 15. Test sequence to execute  
send-receive pair sr[22]

 

  

Figure 16. Test sequence to execute  
send-receive pairs sr[13] 

  

Figure 17. Test sequence to execute  
send-receive pairs sr[23] 
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Figure 18. Test sequence to execute  
send-receive pair sr[20], sr[16] 

  

Figure 19. Test sequence to execute  
send-receive pair sr[21], sr[18]

 

 

Figure 20. Test-model ((Sensor⊕Sorter) ⊕Robot)  

In the second integration step we add the implementation of "Robot" to form the entire system and generate test sequences 

from M1= Sensor⊕Sorter and the model of "Robot". The test sequences in Figure 14, Figure 15, Figure 16, Figure 17, Figure 

18, and Figure 19 are generated from M1 and "Robot" using sr-pairs coverage. The resulting model M2= 

Sensor⊕Sorter⊕Robot is presented in Figure 20. During test sequence generation it transpired that several sr-pairs were 

infeasible. The final model may serve to automatically generate test sequences for the completely integrated system.  
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The resulting models Sensor⊕Sorter⊕Robot and Sensor⊕Sorter may be used to generate additional test sequences of 

arbitrary number and length, for instance for the purpose of statistical testing [23]. This is especially during testing of 

distributed electronic systems, e.g. automotive electronics, of great benefit, when for each sub-system statistical quality 

estimations can be produced. But also during integration testing of a concurrent software but not necessarily distributed 

software, e.g. transmission or engine controls, this approach is beneficial as test-models of different purpose and detail can 

be adapted to a specific integration scenario from existing specifications. 
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Figure 21. Simplified Dual Clutch Transmission Control UTA 

// Physical variables 

int[-120,100] gear, gear1, gear2, pre;  

int[-50,500] v=0; int[0,7500] rpm=900; 

// GEAR coding 

int[-2,100] N=0,G1=100,G2=60,G3=40, 

 G4=30,G5=25,R=-120,U=-2; 

//Downshift Speeds 

int[10,95]  SP_G1=10, SP_G2=25, SP_G3=40,  

 SP_G4=65, SP_G5=95; 

//Upshift RPM 

int[3000,3000] MAX_RPM = 3000; 

6. AN INDUSTRIAL APPLICATION 
This section describes the application of the proposed integration method to the integration testing of a piece of control 

software for a dual clutch transmission3. 

The example presented in Figure 21 is a simplified extract of the UPPAAL model of the transmission control software. The 

test concept for the final validation of the transmission control software includes the automatic test-case generation for 

Model-in-the-Loop and Hardware-in-the-Loop testing using JUMBL [24], a JAVA library to build Markovian usage models 

and to generate test-cases stochastically from these. The model checker UPPAAL is used for test model development and 

validation.  

The main simplifications of the example are as follows: 

• five instead of six forward gears 
• no gear skipping functions 
• no safety function 
• no robustness functions 
• unrealistic calibration parameters 
• missing technical details, e.g. no hydraulic models 
• no timing constraints 

The simplified transmission control UTA consists of 12 components spanning a state space of over 1020, while the real 

transmission control software consists of more than 40 components.  

Briefly, a dual clutch transmission consists of two integrated partial transmissions, one for odd and reverse gears and the 

other for even gears. For each transmission a separate clutch controls input torque. A transmission consists of shift forks that 

engage gears mechanically. In contrast to standard gear boxes, in a dual clutch transmission always two gears are engaged. 

                                                                 
3 GETRAG Ford Transmission GmbH (www.getrag-ford.com) 
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Gears are automatically shifted seemlessly by synchronously opening and closing the two clutches, if the preselected gear is 

the next gear in the shift strategy, e.g. during acceleration usually the next gear is expected to be the next upper gear. If gear 

shifts are unexpected the dual clutch behaves like a standard gear box3. The components of the simplified transmission 

control are: 

• Shift Lever - Selector of shift modes for the driver  
• Shift Manager - Controls shift strategy, the order of gears to engage based on shift mode, vehicle and engine speed 
• Transmissions Manager - Controls the two transmissions to engage and preselect gears 
• Clutch Manager - Control of the two clutches 
• Clutch 1 - Opens and closes clutch 1, slipping clutch operates in torque control mode (TC) 
• Clutch 2 - Opens and closes clutch 2, slipping clutch operates in torque control mode (TC) 
• Fork 1 - Middle position is neutral, left is reverse gear, right is gear 1 
• Fork 2 - Middle position is neutral, left is gear 3, right is gear 5 
• Fork 3 - Middle position is neutral, left is gear 2, right is gear 4 
• Driver - arbitrary selection of shift modes, accelerate and brake commands 
• Vehicle - computation of vehicle and engine speeds on acceleration and brake commands 

The dual clutch transmission model demonstrates the size and complexity of a real-world application of timed automata. 

Such models are used in transmission control integration testing, such that the model structure is developed and checked 

using UPPAAL while JUMBL is used as a test-case generator for Model-in-the-Loop and Hardware-in-the-Loop simulation. 

During integration testing we are often interested in only a small part of the model, when the presented approach eases 

slicing of the test models. Also UPPAAL is used to generate single test-cases with specific testing purpose. 

 

Figure 22. Test Model to execute gear 1 to gear 2 shift loops 

In the agile development environment of the dual clutch transmission control software with up to two builds a week the 

presented approach enables testers to generate test-cases with specific purpose in the given time and allows testing of 

specific functionalities in the integrated software.  Furthermore, as the software is tested on the target hardware observability 

and controllability are restricted to the hardware communication interface. Due to complexity problems while generating 

test-cases from the complete model, it soon became clear that a method for simplification and slicing of the complete model 

into computable parts was demanded that allows the generation of observable and controllable communication based test-

cases.  

We apply sr-coverage to UP and DOWN signals of the model presented in Figure 21 with the requirement to execute these 

commands until gear 1 is engaged. UPPAAL can be used to deliver traces that can be used to generate the (simplified) test 



 - 18 - 

model presented in Figure 22. For the ease of explanation, a simplifation of the test model is needed for ACCELERATE and 

BRAKE signals, of which in the real application multiple are needed to exceed the up- and downshift bounds. During 

transmission control verification, test models of this form are primarily used in simulation-based testing of transmission 

control electronics, e.g. in Hardware-in-the-Loop, and transmission control software, e.g. in Model-in-the-Loop, to generate 

test-cases of arbitrary length, which is required for testing the effect of long-term timers and physical parameters, e.g. 

temperature dependend mechanical and electronical behaviours. The test model represents the behaviour of the transmission 

when the driver selects driving mode and accelerates/decelerates the car so that the transmission alternates between gear 1 

and gear 2. The input language TML of JUMBL allows to describe finite state machine structures, so that the generated test 

model can be used as an input to JUMBL. Note that using the product machine of this example as an input to JUMBL would 

result in a test-model with a size of over 1020 states, while the partial model contains only 3 states.  Of course the generated 

test model represents only a small part of the transmission behaviour, but the proprosed model generation approach can be 

used to extend and combine these models where needed. Costs of generating such a partial model are in this case mainly 

depending on the trace length. The example trace was generated in less than a second, while the test-model is generated and 

verified semi-automatically using UPPAAL and JUMBL. 

7. COMPLEXITY 
The complexity of CTL model checking has been discussed in a number of publications, e.g. [9]. Here, we briefly discuss 

the complexity of generating test sequences with complete sr-pairs coverage, under the assumption that each sr-pair is 

feasible. Furthermore, we assume that UPPAAL is used, breadth first search is performed, and no complexity reduction 

methods are applied. The process of determining which sr-pairs are covered by a test sequence is polynomial in the length of 

the sequence and so we concentrate on test sequence generation. 

We consider a set of sr-pairs Z to be given. The length of a minimal test-sequence t that executes sr-pair z∈Z is |t|. It is 

well-known that a lower bound for time consumption using CTL model checking and breadth first search is exponential in 

the length of the solution, polynomial in the degree of freedom of the system under test, and polynomial in the length of the 

CTL formula |f|. An upper bound for time consumption is polynomial in the overall size of the state-space and |f|. State space 

size is polynomial in the number of local states, and the size of clock and variable domains. Furthermore, it is exponential in 

the number of parallel automata, clocks and variables. The length of the CTL formula for the execution of z is 1. The test 

generation method presented requires the addition of a variable for each send and for each sr-pair.  

The generation of a communication test-model is linear in the length and the number of test sequences. Test sequences 

may exist from earlier testing activities or may be constructed as the basis for the process of generating a communication 

test-model. In [29] we proposed a method to generate test sequences and presented a detailed discussion of the complexity of 

our approach and the inherent testing problem. For more details on generating test sequences from component test-models 

we may refer to [22] and [29].  

To conclude, the time upper bound of our approach is exponential in the number of sr-pairs. However, the knowledge on 

the upper bound time consumption is only of restricted practical use as a model checker may fail to traverse the complete 

state space and so, in practice we place an upper bound c on the test sequence lengths. Also, in many practical applications 

test sequences might be given in advance.  
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8. RELATED WORK 
The development of automata-theoretic testing methods was originally motivated by checking problems of sequential 

circuits [21]. The adoption of these methods to software has been an important research topic over decades. A detailed 

overview of testing methods for sequential finite state machines can be found in a number of articles, e.g. [6].  

Communication coverage has been discussed in only a few recent publications. Liu and Dasiewicz presented coverage 

criteria on event flows in UML diagrams and proposed the use of model checkers for coverage analysis and test sequence 

generation in [20]. Their definitions of related pairs and related paths correspond to sr-pairs and sr-paths in this paper. Here, 

we extend this approach to real-time systems with data extensions and solve the path feasibility problems described in [20]. 

Furthermore, we generalize the approach through the use of timed interface automata and CTL for system and requirements 

specification, thus our results also apply to UML specifications as used in [20]. 

In [2] Aizenbud-Reshef presents an abstract approach to message flow modeling and analysis. A message flow is defined 

as a directed graph consisting of message processing nodes and message flow connections. Coverage criteria are defined on 

the elements of a message flow graph. An execution of a flow model follows the connections in the graph from a message 

source to its target point. We can easily relate our results to the approach of Aizenbud-Reshef when we assume abstract 

communication specifications, e.g. sequence diagrams, as a message flow model and the system description in the form of 

timed interface automata to be the execution model. Under these assumptions sr-pair coverage subsumes Connection 

Coverage and sr-path coverage subsumes Path Coverage as used in [2].  

Testing of distributed systems on the basis of state-based specifications using CTL model checking, and the model checker 

UPPAAL, was addressed by Cardell-Oliver in [7]. However, only a brief description of test selection and test completeness 

is given; here, we present coverage measures that can be used to address these issues.  

In [19], Khoumsi presents a formal description of test execution on a timed and distributed system. In this paper 

controllability and observability are defined for these kinds of systems. Informally, controllability is the capability of the 

testing system to force the software under test to receive inputs in a given order. In our approach, we are using a centralized 

testing architecture and a reliable communication system [19]. We generate test sequences with respect to the timing and data 

restrictions of the system under test. Therefore, the resultant test sequences are always feasible and there are no 

controllability problems, but there need not exist a test sequence that satisfies a specific testing goal. Observability is the 

capability of the testing system to observe the outputs of the software under test and to determine the input that was the cause 

of an output. Again, we rely on the centralized test architecture and the reliability of our communication system, which 

allows us to observe input/output pairs within a constant timing delay. The approaches of Cardell-Oliver and Khoumsi deal 

with deterministic closed systems. By contrast, in this work we consider both closed and open systems. 

A number of approaches that use model checkers for test sequence coverage analysis and generation have been proposed 

[15][16][17], where the ability of the model-checker to produce counter-examples, in the form of traces, is extensively used. 

We follow the same approach, with the difference that UPPAAL produces traces into target states on demand. In [29] we 

adapted these approaches to component black box testing, also referred to as conformance testing [6], which allows the tester 

to deduce the intra-component coverage through observation of the interface input/output behavior only. Similarly to [26] 

and [29] we used CTL for the expression of coverage criteria and complemented the component's behavior specification. 
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Therefore it should be relatively straight-forward to combine both approaches in order to achieve complete test coverage at 

the inter- and intra-component levels. 

In [11], Glasser et al. propose the use of state-based communication models for the testing of distributed systems and point 

out the need to generate partial models in order to avoid state-space explosion problems. Here, we propose a method that 

may be used to generate such incomplete models.  

9. CONCLUSION 
The testing of real-time systems consisting of several parallel components frequently turns out to be a non-trivial task. The 

choice of test sequences and reasoning about test quality on the basis of structural coverage criteria is insufficient, if criteria 

intended for single components only were applied, e.g. transition coverage.  

This paper describes an approach to integration testing based on partial test-models. The process is driven by a set of test 

sequences, possibly generated to satisfy a particular test criterion, from which the test-model is derived. The test-model can 

then be used as the basis for the testing of the integrated components. When additional components are to be integrated into a 

subsystem that has test-model M, M can be extended and so the approach can be used in incremental integration testing. 

While the approach presented is for components specified using timed interface automata it should be possible to adapt it to 

other types of state-based model. A potential additional advantage of this approach is that it provides a visual description of 

the state-based testing of distributed systems, which may be beneficial in other contexts such as education and 

comprehension. 

Our approach is inspired by data-flow testing, specifically when applied to object-oriented programs as proposed in [12]. 

The annotation of def-use pairs with probabilities of executions, devised for testing at the inter-class level when there is 

dynamic binding, may be applied analogously to the inter-component level when dealing with uncertain sr-pairs and 

unreliable communication environments. The use of probabilistic annotations in combination with statistical testing [23] 

seems promising and might allow our approach to be extended towards non-functional testing at the inter-component level. 

A corresponding method for synthesizing a Markov-chain from test sequences generated using the communication coverage 

criterion is presented in [28]. It should be possible to extend this approach to provide a statistical testing framework for timed 

distributed systems. 

The size of the test-model is linear, in terms of the number and size of the test sequences. This complexity analysis 

assumes that the test sequences from which the test-model is generated already exist. Test sequence generation can be 

automatically achieved by a model checker and while a particular model checker, UPPAAL, was used, it should be relatively 

straightforward to adapt the approach for use with other model checkers. In particular, the use of heuristic and symbolic 

model checking approaches could improve performance as might complexity reduction methods such as data abstraction [9]. 

One possible area of future work is the use of the proposed method in optimizing configuration parameters of a distributed 

system or to assess non-functional quality attributes, e.g. reliability, performance, and availability. There should also be 

scope for applying this approach for online diagnosis, where the communication test-model may be dynamically extended 

during run-time. In addition, the proposed approach is designed for systems whose components are deterministic. The 

extension of this to non-deterministic components is a topic for future work. 
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