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ABSTRACT Mild cognitive impairment (MCI) is the early stage of Alzheimer’s disease (AD). In this article, 

we propose a novel voxel-based hierarchical feature extraction (VHFE) method for the early AD diagnosis. 

First, we parcellate the whole brain into 90 regions of interests (ROIs) based on an Automated Anatomical 

Labeling (AAL) template. To split the uninformative data, we select the informative voxels in each ROI with 

a baseline of their values and arrange them into a vector. Then, the first stage features are selected based on 

the correlation of the voxels between different groups. Next, the brain feature maps of each subjects made up 

of the fetched voxels is fed into a convolutional neural network (CNN) to learn the deep hidden features. 

Finally, to validate the effectiveness of the proposed method, we test it with the subset of the Alzheimer’s 

Disease Neuroimaging (ADNI) database. The testing results demonstrate that the proposed method is robust 

with promising performance in comparison with the state-of-the-art methods. 

Key words: Alzheimer’s disease; Convolutional neural network; Hierarchical feature extraction; Mild 

cognitive impairment. 

I. INTRODUCTION 

Alzheimer’s disease (AD) is one of the most common 

degenerative brain diseases. There are more than 50 million 

people in the world, who are suffering from Alzheimer’s 

disease and other dementias [1]. The typical symptoms of AD 

are a continuous decline in thinking, behavioral and social 

skills that disrupt a person's ability to function independently 

[2]. It is both a mental and financial burden on a family if there 

is an Alzheimer’ disease sufferer [3] [4]. With the progress of 

science and technology, medical health care has helped to 

increase the average life of the human beings. But in the past 

20 years, only two types of drugs were discovered to treat 

some symptoms of the disease [1]. Mild cognitive impairment 

(MCI) is a decline in memory or other thinking skills. People 

who have MCI would face a significant risk of developing 

dementia. The primary MCI deficit is memory and this 

condition is more likely to progress to dementia due to 

Alzheimer's disease. In its early stages, memory loss is mild, 

but with late-stage Alzheimer's, individuals lose the ability to 

carry on a conversation and respond to their environment. As 

a result, it will represent a significant contribution to be able 

to diagnose Alzheimer’s disease at an early stage to help delay 

deterioration [5]. 

As a safe, rapid accurate clinical diagnosis method without 

any harm to human body, Magnetic resonance imaging (MRI) 

is widely used in clinical diagnosis. In recent years, artificial 

intelligence has shown great advantages in computer aided 

diagnosis. We can extract meaningful features from large 

dimensional MRI images by machine learning methods. 

Generally, the feature learning methods can be divided into 

three categories which are regions of interests (ROIs)-based 

methods, voxels-based methods and patch-based methods [6]. 

ROIs-based methods extract features in regions that are 

parcellated based on   anatomical or functional atlas. Due to its 

small data size, it has been widely used in the early research 

studies [7] [8] [9]. However, in ROIs-based methods, features 

were extracted based on the overall changes of each ROI 

where the subtle variations are barely covered. The voxels-

based methods can solve this problem because it can figure out 

the subtle changes in brain. However, voxels-based methods 

incur a data set of high dimension which is computationally 

expensive. Patch-based methods have been proposed to make 
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up for these short comings. Liu et al. proposed a local patch-

based subspace ensemble method [10]. The whole brain was 

segmented into a set of patches. Classifiers were used to learn 

the optimal sparse representation by randomly select some 

subsets. And then a feature vector were constructed with the 

voxel densities. Zhang et al. [11] proposed a landmark-based 

feature extraction method. The work was divided into two 

stages. In the first stage, the landmarks were figured out by 

comparing the local morphological differences. In the second 

stage, a regression forest was used to find the landmarks in the 

testing data. The limitation of this method is the number of 

training data and the error of detecting landmarks may also 

affect the results [12]. Liu et al. also proposed a landmark-

based framework in his article. What different is that he used 

a multi-instance convolutional neural network (CNN) to learn 

the representation of each patch. And then the features were 

concatenated together and fed into another deep 3D CNN 

model. However, classification results of this method are 

mostly limited by the number of the training data. Liu et al. 

proposed a 3-D texture feature learning framework. To learn 

the best nodes and edge features, multiple kernel classifiers 

were used. But they only used F-score for feature selection 

[12].  There are also many scientists using multiple modality 

data in their researches. Suk et al. proposed to use a multi-

modal Deep Boltzmann Machine (DBM) to extract the latent 

features of the 3-D patches learned from the MRI images and 

Positron Emission Tomography (PET) data [6]. It worth 

mention that they made a fusion of the 3-D patches of MRI 

and PET images so than they can fetch the representations that 

contains the correlations between the multimode data. Liu et 

al. proposed to use a stacked auto-encoders to learn the 

optimal representations of MRI and PET data by randomly 

hiding one modality in the training set. So that the features can 

reflect the interactions of the two model of data. 

In this article, we propose a novel voxel-based hierarchical 

feature extraction (VHFE) method. First, we extract the first-

level features by calculating the correlation between subjects 

at a voxel level. Then, the features are processed in the form 

of feature vectors and fed into a classifier to verify the 

effectiveness of the features. Next, the morphological 

variation related features are organized into a brain feature 

map.  To capture the deep hidden features of the whole brain, 

the brain feature maps are fed into a convolutional neural 

network to learn the deep global features.  

The major contributions of the paper are as follows: 

(1) A novel voxel-based hierarchical feature extraction 

method, which provides to be a more convenient and 

effective method in AD diagnosis, is proposed. 

(2) Feature vectors are made up with voxels that are 

selected in strict flow and non-registration is needed. 

Furthermore, the effect of registration error on 

classification results is avoided. 

(3) The proposed method not only greatly reduces the data 

dimension and calculation cost, but also covers the 

subtle pathological changes at the voxel level. 

The rest of the paper is organized as follows. Section II 

details the data use in this research and its preprocessing. 

Section Ⅲ introduces the proposed method. Section Ⅳ 

evaluates the performance of VHFE and discusses the results. 

Section Ⅴ concludes the paper. 

II. DATASETS AND PREPROCESSING 

We chose two datasets from the ADNI database to confirm 

the framework proposed in this research. ADNI is a 

longitudinal multicenter study designed to develop clinical, 

imaging, genetic, and biochemical biomarkers for the early 

detection and tracking of AD (http://adni.loni.usc.edu/). 

A. DATASET 

All the subjects in this research are selected from the ADNI 

database. We choose two datasets (ADNI-1 and ADNI-2) here 

to verify the method proposed in this article.  

1) ADNI-1 

The ADNI-1 database is composed of three different stages 

of subjects: normal controllers (NC), mild cognitive 

impairment (MCI), and AD. Particularly, we chose the 

structural MRI data which were scanned with 1.5 Tesla 

SIEMENS nuclear magnetic resonance scanner. Flip Angle is 

8.0 degree; Slice thickness of each image is 1.2mm, Echo time 

(TE) is 3.6ms, inversion time (TI) is 1000.0 ms and repetition 

time (TR) is 3000.0 ms. All the images were preprocessed by 

GradWarp and B1 Correction with pro_ADNI_script [14], 

then processed by ADNI pipeline with nonparametric non-

uniform intensity normalization (N3) algorithm for a  

correction of intensity inhomogeneity [10][14]. Despite the ill-

formatted data, there are 1662 volumes remained including 

785 NC, 542 MCI, 335 AD. The subject info is detailed in 

Table1. 

2)  ADNI-2 

The T1 weighted structural images in ADNI-2 were 

scanned with 3.0 Tesla SIEMENS nuclear magnetic resonance 

scanner. The image Slice thickness is 1.2 mm, TE is 2.95 ms, 

TI is 900.0 ms, and TR is 2300.0 ms. The data were 

preprocessed a little different from that in ADNI-1. First, the 

images were processed to correct gradient non-linearity 

distortions [16]. Then, N3 algorithm was also implemented 

here. Different from the ADNI-1database, there are four 

categories in ADNI-2 dataset including 1106 NC, 1320 early 

mild cognitive impairment (EMCI), 987 late mild cognitive 

impairment (LMCI), and 305 AD. The subject info is detailed 

in Table2. 
TABLE I 

DEMOGRAPHIC AND CLINICAL INFORMATION OF ADNI-1 

 Number Age Gender(Female/Male) MMSE 

NC 785 74.63±3.69 416/369 29.07±1.32 

MCI 542 78.86±5.35 193/349 26.56±2.63 

AD 335 78.56±5.34 156/180 23.84±2.10 
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TABLE 2 

DEMOGRAPHIC AND CLINICAL INFORMATION OF ADNI -2 

 Number Age Gender(Female/Male) MMSE 

NC 1106 74.63±3.69 554/552 29.10±1.25 

EMCI 1583 76.86±4.97 570/1013 28.37±1.48 
LMCI 1304 76.53±5.35 639/665 27.19±2.23 

AD 366 78.58±5.38 138/228 21.84±4.10 

B. PREPROCESSING 

As mentioned above, in order to verify the validity of the 

method, we selected subjects form two subsets from the ADNI 

database. Then a strictly preprocessing pipeline was 

implemented. Firstly, the T1 images were normalized to a 

template space and segmented into gray matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF). After the 

quality check step, we smoothed the GM images with the 

smooth module in SPM12. We preprocessed all the data with 

voxel-based morphometry (VBM8) [17] which is a 

neuroimaging analysis technique that uses statistical methods 

of statistical parameter mapping to study local differences in 

brain anatomy [18]. Then, we used AAL [19] to segment the 

volume into 126 regions of interests (ROIs). After throwing 

away the regions belong to the cerebellar, we got 90 regions 

for every subject [20].  

III. PROPOSED METHOD        

In this section, we proposed a VHFE method to mine inner 

region abnormalities in structural MRI images. The data 

processing flow chart is demonstrated in Figure1. Firstly, we 

preprocessed all the structural MRI images as described 

above. Then we picked all the voxels in each region and fed 

them into a matrix respectively. The ROIs were parcellated 

based on the AAL template and it results in there being 

different number of voxels in each region. We used the 

Kendall’s correlation coefficient to select the most irrelevant 

voxels between different groups of subjects as the feature of 

the first stage. Fifty voxels were selected from each region. 

Then all the voxels of each region make up the whole brain 

map. The brain map were then fed into CNN to learn the deep 

hidden feature inner or between subjects as the feature of the 

second stage. Finally, the result of a softmax classifier is used 

to evaluate the efficiency of the proposed framework. The 

schematic diagram is shown in Figure1.  

FIGURE 1. The proposed data processing flow chart. 

1) INNER-REGION FEATURE SELECTION 

After the preprocessing procedure, the data remained in the 

GM volume stands for the voxel intensity. Due to the AAL 

template we used to parcellate the GM into 90 ROIs. The 

number of voxels differ in each of these ROIs. Some contains 

only a few hundreds of voxels while some can be more than 

ten thousand. The original methods used to average the data in 

each ROIs and then fed them into an SVM classifier to make 

judgements. But here, we resliced all the voxels in each ROIs 

into a vector with the same rule, according to the scanning 

order and the row each voxel was in. That is, if there is γn 

voxels in the n-th ROIs, γn ∈ {γ1, γ2, γ3, … , γn}𝑛∈𝑁. N stands 

for the number of the voxels in each ROI. As the feature 

extracted in the first stage are used to make up the whole brain 

feature map, we chose the number of ten percent of  the voxels 

in the smallest ROI as the baseline for the number of features 

extracted from each ROI.  Finally, we used Pearson correlation, 

Kendall’s rank correlation and Spearman correlation to figure 

out 50 of the most irrelevant voxels in the ROIs to figure out 

the most irrelevant voxels in each ROI among groups.  For the 

n-th voxel, we also construct a feature matrix 

{Γ1, Γ2, Γ3, … , Γ𝑖}𝑖∈𝐼, where 𝑖 represents the number of subjects 

in each groups. We used Kendall’s rank correlation to pick out 

50 of the most irrelevant voxels in the ROIs. In statistics, the 

Kendall rank correlation coefficient, commonly referred to as 

Kendall's tau (τ) coefficient, is a statistic used to measure the 

association between two measured quantities. Comparing with 

the Pearson correlation coefficient which can only measures 

linear dependence relations, the Kendall’s correlation 

coefficient, is more suited for use in image processing where 

stationarity cannot usually be advocated. The Pearson 

correlation and Spearman correlation were also used to 

validate the assumption.  

We used a random forest (RF) regression framework to 

check the features we captured from each ROI in the first stage. 

First, the average values of each of the ROIs were put together 

for a new feature vector {δ1, δ2, … , δk, … , δ90}𝑘∈1,2,…,90. Then, 

the new vector was labeled and fed into a random forest (RF) 

regression framework to check out the effectiveness of the 

selected voxels. The result can be seen from Table 3 and Table 

4. The fusion of the top 50 most irrelevant voxels in the ROIs 

made up the whole brain map for each subjects. Then the brain 

map were labeled and then fed into the convolutional neural 

network to learn the deep hidden features of the subjects. 

2) BRAIN MAP FORMULATION AND CLASSIFICATION 

 

FIGURE 2.  The convolutional neural network. 
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CNN is a kind of deep, feed-forward neural network. In 
the past years, CNN has shown its superiority in feature 
learning especially for large dimensional data. As the 
traditional neural network, CNN is composed of the input 
layer, the output layer, convolutional layers and subsampling 
layers. Each layer contains different number of nodes with 
learnable weights and bias. Each neuron performs a dot 
between inputs and weights. The results of the operation is 
determined by different types of activation functions. The 
pooling layer here averaged the sampled data for 
dimensionality reduction. CNNs exploit spatially-local 
correlation by enforcing a local connectivity pattern between 
neurons of adjacent layers.  Weight sharing greatly reduces 
the number of weights used for training. In each convolution 
layer, the outputs of its previous layer are convolved with a 
learnable kernels. Then the feature map was formed by the 
activation function as the outputs. Generally, the formula can 
be described as 

𝑦𝜏
𝜄 = 𝑓(∑ 𝑦ℓ

𝜄−1 ∗ 𝓌ℓ𝜏
𝜄 + 𝑏𝜏

𝜄
ℓ∈𝑁𝜏

)，       (1) 

where 𝑁𝑗 represents the number of the input maps and f is the 

activation function. 

The pooling layer reduces the dimensionality of the inputs 
by a down-sampling operation. The subsampling layer is to 
divide the feature map of the output of the convolutional layer 
into several regions, each region is represented by the value 
of the region. More formally, 

                   𝑦𝑗
ℓ = 𝑓(𝛽𝑖

ℓ𝑑𝑜𝑤𝑛(𝑦𝑗
ℓ−1) + 𝑏𝑗

ℓ),         (2) 

where f is an activation function and 𝑑𝑜𝑤𝑛(·) represents 
the function of the sub-sampling. 

The backpropagation technique here uses a feedforward 
structure to propagate errors in the neural network in order to 
adapt the weights. Backpropagation is a method of achieving 
gradient descent in neural networks. The output layer error is 
defined as 

              𝛿𝑗
(ℓ)

= 𝑎𝑗
(ℓ)

− 𝑦𝑗,                          (3) 

where hidden layer error signal is written as  

     δ(𝑖) = (𝜃(𝑖))𝑇δ(𝑖+1) ∗ ∆𝑎(𝑖)                  (4) 

where 𝜃(𝑖) represents weights of layer 𝑖. The δ(𝑖) represents 
the back-propagated error signal, which is used to update the 

activation values in layer 𝑖 and  ∆𝑎(𝑖) represents the gradients 
of the activation function in layer 𝑖. 

The CNN we implemented in this article is shown in 

Figure 2 which included three convolutional and three sub-

sampling layers. The Linear Unit (Relu) activation function 

was adopted in each convolutional layer. After each pooling 

layer, we set fully connected layers behind the last pooling 

layer. A 64-bit 16GB RAM PC with a 8GB GTX1080 GPU 

was used in our test. We set the learning rate to 0.5 and 

the threshold we set for the loss function is 0.001. 

 

 

 

 

 

 

 

 

 

FIGURE 3. The features fetched by the first convolutional layer on 
classification of AD/NC in ADNI-1. 

FIGURE 4. The feature fetched by the second convolutional layer on 

classification of AD/NC in ADNI-1. 

FIGURE 5. The features fetched by the third convolutional layer on 

classification of AD/NC in ADNI-1. 
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IV.  RESULTS AND DISCUSSION 

In order to validate the proposed method in this article, we 

download data from the ADNI-1 and ADNI-2 dataset 

respectively. In ADNI-1 dataset, there are three categories of 

subject. So we separate them into three groups to do the binary 

classification: AD vs NC, AD vs MCI, MCI vs NC. In the 

ADNI-2 dataset, there are four categories of subjects. And 

then there should be six matched groups: NC vs EMCI, NC vs 

LMCI, NC vs AD, EMCI vs LMCI, EMCI vs AD, LMCI vs 

AD. In the experiment, the each dataset was randomly shuffled 

and then partitioned into two part. We randomly selected 20 

percent of each groups as testing data which were absolutely 

separated from the training data. In order to insure the 

robustness of the result, the cross-validation was applied. Each 

time, the rest of data was divided into 5-folds. Among them, 

one fold was taken as the validation data to make sure that the 

experiment is not locally optimal and the other data used for 

training. The final result is the average of ten repeated tests. 

A. CLASSIFICATION RESULTS 

Feature maps of each convolutional layer are shown in 

Figure 3, 4, 5. Table 3 and Table 4 shows the results of three 

different inputs based on Pearson correlation, Kendall 

correlation, Spearman correlation respectively and the results 

of the baseline on different groups. The column named 

“RF+mean” refers to the results of the baseline. From the 

Table 3 and Table 4 we can see that the most irrelevant voxels 

we selected based on three correlation coefficients provide a 

better result than the baseline. Specifically, the Kendall’s rank 

correlation increase 8% on classifying AD and MCI, more 

than 20% in classifying AD from NC, and almost 16% in 

classifying NC from MCI compared to the baseline. The 

Pearson correlation and Spearman correlation also performed 

a much higher classification result on ADNI-1. On ADNI-2, 

the Kendall’s rank correlation also increase the accuracy much 

more than other feature selection methods. Specially, it 

increases 10.5% (AD vs NC), 8% (AD vs EMCI), 6.5% (NC 

vs EMCI), 15.9% (NC vs LMCI) and 7% (EMCI vs LMCI) 

compared to the baseline. Even though Pearson correlation 

and Spearman correlation offer better performance than the 

original method, the Kendall’s rank correlation seems better in 

most instances. The receiver operating characteristic (ROC) 

curves for the classification of the features extracted by the 

Kendall’s rank correlation methods in different groups were 

shown in Fig 6. The true positive rate (TPR) stands for the 

proportion of positive instances identified by the classifier to 

all positive instances.  The false positive rate (FPR) stands for 

the proportion of all negative instances where the classifier 

mistakenly considers a positive class. The area under the curve 

(AUC) is 0.97 in classifying AD from NC, and we also got 0.9 

and 0.8 when identifying MCI from NC and AD respectively, 

which proves that the feature we extracted is positive. 
 

TABLE 3 

PERFORMANCE COMPARISON ON THREE DIFFERENT CLASSIFICATION TASKS WITH DIFFERENT FEATURE SELECTION METHODS IN ADNI-1 

ADNI1 RF + mean RF +Pearson RF + Kendall RF +Spearman RF +Pearson + Kendall + Spearman 

AD vs MCI 62.9±3.1 61.0±11.3 70.9±7.5 69.5±8.0 70.9±9.8 

AD vs NC 69.4±1.8 87.2±7.9 90.9±6.8 87.0±9.8 89.7±6.1 

NC vs MCI 59.4±1.9 77.2±11.8 76.5±11.8 81.1±8.1 75.3±8.9 

TABLE 4 
PERFORMANCE COMPARISON ON THREE DIFFERENT CLASSIFICATION TASKS WITH DIFFERENT FEATURE SELECTION METHODS IN ADNI-2 

 

ADNI2 RF + mean RF + Pearson RF  + Kendall RF + Spearman RF + Pearson + Kendall + Spearman 

AD vs NC 74.9±1.6 83.9±7.2 85.4±7.2 83.4±7.9 78.5±15.3 

AD vs LMCI 76.2±1.9 68.7±7.1 66.5±10.3 66.8±9.5 71.3±7.7 

AD vs EMCI 80.7±1.8 83.6±8.8 88.8±4.4 83.4±9.8 81.8±13.7 

NC vs EMCI 59.6±1.2 60.8±6.0 66.1±6.0 62.4±7.5 59.4±8.7 

NC vs LMCI 52.1±1.4 66.5±7.4 68.0±7.3 67.1±9.2 66.6±9.6 

EMCI vs LMCI 57.3±1.6 64.6±7.4 64.3±8.1 60.5±9.5 62.5±9.0 
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FIGURE 6.  Receiver Operating Characteristic (ROC) curves for RF + Kendall in classifying AD from NC on ADNI-1. 

 

The features we selected at the first stage were validated 

to be effective. So we fused all the regions together to 

construct the brain feature map. Then we used a convolutional 

neural network to learn the voxel-based deep hidden features 

inner and between each group. The results can be seen from 

Table 5 and Table 6. In Table 5, the column named “CNN + 

Raw” means that the input data was just preprocessed as 

described in session III. Then we resliced the three-

dimensional GM images into a series of two-dimensional 

images. Then these images were fed into the convolutional 

neuro network to learn deep hidden features as well. Specially, 

the number of subjects remained constant in all of these 

competing methods but, due to the different feature selection 

method, the number of images in the method lists in the 

column” CNN + Raw” is much more than the others. As a 

result, the computation time of the proposed method is almost 

57 seconds. However, it takes almost 20 minutes when put the 

resliced GM images in the CNN framework.  

As shown in Table 5, the proposed method obtains a result 

of 97.8% (AD vs MCI), 99.7% (AD vs NC), and 97.7% (NC 

vs MCI) with the Kendall’s rank correlation was done in the 

first phase. We can see that when the data were selected using 

the Spearman correlation at the first phase, we even got a 100% 

accuracy when classifying AD from NC. The confusion 

matrix of each group which processed by the Kendall’s rank 

correlation algorithm can be seen from Fig7. The first column 

in the first row and the second column in the second row stands 

for the number of Represent the number of subjects which 

were correctly classified. It means the accuracy is higher when 

it is getting yellow. Table 6 shows that the proposed method 

shows a stable advantage on ADNI-2. It enhanced the 

accuracies by 1.7% (AD vs NC), 2.66% (AD vs LMCI), 1.99% 

(AD vs EMCI), 4.16% (NC vs EMCI), 3.97% (NC vs LMCI) 

and 3.16% (EMCI vs LMCI) compared with the method we 

proposed in the previous article [18].

TABLE 5 
PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH DIFFERENT FEATURE SELECTION METHODS IN ADNI-1 

ADNI1 CNN + Raw (%) CNN + Pearson (%) CNN + Kendall (%) CNN + Spearman (%) 

AD vs MCI 93.89±4.40 96.00±2.90 97.80±1.30 98.60±0.02 

AD vs NC 95.44±0.40 99.50±0.80 99.70±0.70 100.00±0.00 

NC vs MCI 95.38±0.30 98.80±1.20 98.90±1.00 96.90±0.80 

 

TABLE 6 

PERFORMANCE COMPARISON OF THE PROPOSED METHOD WITH DIFFERENT FEATURE SELECTION METHODS ON ADNI-2 

ADNI2 CNN + Raw (%) CNN + Pearson (%) CNN + Kendall (%) CNN + Spearman (%) 

AD vs NC 96.91±0.01 99.40±1.10 98.60±2.90 98.30±0.50 

AD vs LMCI 97.14±0.01 97.40±0.70 99.80±0.50 98.60±0.50 

AD vs EMCI 97.81±0.00 100.00±0.00 99.80±0.50 99.50±0.80 

NC vs EMCI 95.44±0.08 99.00±0. 80 99.60±0.40 99.10±0.50 

NC vs LMCI 94.43±0.17 97.80±0. 50 98.40±0.30 99.30±0.60 

EMCI vs LMCI 94.84±0.03 96.70±0. 60 98.00±0.70 97.70±0.50 

 
TABLE 7 

CLASSIFICATION PERFORMANCE FOR DIFFERENT GROUPS ON ADNI-1 

ADNI1 Accuracy score (%) Precision score (%) Recall score (%) F1 score (%) 

AD vs MCI 97.2±2.1 96.1±2.8 98.4±2.2 97.2±2.0 

AD vs NC 99.4±1.5 98.8±2.8 100.0±0.0 99.4±1.4 

NC vs MCI 98.9±1.0 99.4±0.9 98.5±1.3 98.9±1.0 
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TABLE 8 

CLASSIFICATION PERFORMANCE FOR DIFFERENT GROUPS ON ADNI-2 

ADNI2 Accuracy score (%) Precision score (%) Recall score (%) F1 score (%) 

AD vs NC 98.6±0.5 100±0.0 97.2±1.0 98.6±0.5 

AD vs LMCI 99.7±0.7 99.7±1.0 99.7±1.0 99.7±0.7 

AD vs EMCI 100±0.0 100.0±0.0 100.0±0.0 100.0±0.0 

NC vs EMCI 99.7±0.3 99.9±0.2 99.5±0.5 99.7±0.3 

NC vs LMCI 98.5±0.5 99.0±0.4 98.0±0.9 98.5±0.5 

EMCI vs LMCI 98.0±0.6 98.9±0.01 97.2±0.8 98.0±0.6 

FIGURE 7.  The confusion matrixes with three binary classifications on ADNI-1. 

Table 7 and Table 8 record the performance of the proposed 

method on ADNI-1 and ADNI-2 respectively with the pre-

feature selection method of Kendall correlation. Each 

experiment was repeated ten times and the results here are the 

average value of ten tests. It is worth noting that, the proposed 

method showed an outstanding performance both in 

distinguishing MCI from NC and EMCI from NC. Table 8 

shows that our proposed method performed best on the three 

kind of binary classification on ADNI-1. Specially, we got an 

accuracy improvement of 12.55% compared to the state-of-

the-art methods in classifying MCI from NC. It is very 

important and meaningful for diagnosing MCI from NC at an 

early stage. Also, we got 4.5% and 6.95% improvement in 

classifying NC vs MCI and AD vs MCI respectively. 

 
TABLE 8. PERFORMANCE COMPARISON OF THE PROPOSED METHOD 

WITH THE STATE-OF-THE-ART METHODS ON ADNI-1 

ADNI1 AD vs MCI AD vs  NC NC vs MCI 

Chupin et al. [22] 

Ahmed et al. [23] 

Suk et al. [24] 
Khedher et al. [25] 

Dai et al. [26] 

73.48 

74.51 

88.98 
84.59 

85.92 

80.51 

86.40 

93.05 
88.96 

90.81 

71.94 

76.29 

83.67 
82.41 

81.92 

Liu et al. [27] 90.85 95.24 86.35 
Proposed method 97.80±1.30 99.70±0.70 98.90±1.00 

B. DISCUSSION AND LIMITATIONS 

Rigorous comparison and verification were done to verify 

the effectiveness of our proposed method: (1) At the first step, 

after the preprocessed data was segmented into GM, WM and 

CSF, the GM images were parcellated into 90 regions of 

interests (ROIs). We take the average of each ROIs as the 

baseline, which means that the data named “ROI-mean” 

stands for the one no feature selection was done. Then we 

picked out 50 most irrelevant voxels in each ROI, and take the 

average data of them to feed into our trained random forest 

model to judge the validation of the features. It should be 

emphasized that we parcellated the GM images based on the 

AAL template. That leads to the number of voxels in each ROI 

differs one from the other, so we take the average value of all 

the voxels as the baseline. To be contrast, we averaged the 

selected 50 most irrelevant voxels as well. Table 2 and Table 

3 detailed the advantages of the selected features. (2) To catch 

the most typical features, we calculated three different 

correlation coefficients between each group. The fused feature 

was extracted out at the same time. (3) Our ultimate objectives 

were to construct the whole brain map and extract the 

hierarchical features within and between the subjects. Table 4 

and Table 5 show the result of the proposed method with three 

different kinds of correlation coefficients. (4) Finally, we 

compared the proposed method with six state-of-the-art 

methods. 

Compared to the traditional ROIs-based methods [28], the 

proposed VHFE method can capture more subtle changes in 

each ROI. Not the same as the conventional voxels-based 

methods, a dimensionality reduction was done after a data 

driven distinguish feature learning [29] [30]. The first-level 

feature we extracted not only contains the voxel-level subtle 

differences between subjects, but also maintained the 

anatomically functional integrity with the ROIs-level 

dimensions [31] [32]. Besides, unlike the patch-level methods 

proposed by Suk and Shen etc., there is no need for 

registration in our VHFE method. Therefore, errors caused by 

registration of the test data based on the location of landmarks 

(a). AD vs MCI    (b). AD vs NC     (c). MCI vs NC    
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are avoided [11] [12]. The hierarchical feature extraction 

method we proposed can not only capture the local features 

in each ROI by the feature extraction method in the first stage. 

In the second stage, the brain feature map can also help learn 

the global distinct information among different groups. 

However, there is still much to be improved. First, the features 

we selected in the first stage only compared the relationship 

between groups, we can also take the inner-relationships in 

ROIs into consideration. Secondly, we did not take the 

complementarity between multimodal data into consideration 

and our future work should be try to fix on this point. Thirdly, 

we will try to test and refine our approach on multiple types of 

data to improve the universality of the approach. 

V.  CONCLUSION 

In this article, we proposed a VHFE method by two stage 

of procedure. In the first stage we selected the most irrelevant 

voxels in each ROIs to construct a feature vector. Then the 

feature vectors made up the brain feature map used for 

learning deep hidden features inner and between subjects. 

Specifically, we proposed to find the most informative voxels 

as the presentation of each ROI.  The error caused by matching 

the position of voxel in the test phase is avoided. In the second 

stage the CNN can help figure out the subtle changes in deep 

hidden levels. We selected two subsets of ADNI database to 

verify our proposed method. The results of the proposed 

method showed significantly better performance than those 

from the state-of-the-art methods. 
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