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Abstract Controllability and observability problems may

manifest themselves during the application of a check-

ing sequence in a test architecture where there are mul-

tiple remote testers. These problems often require the

use of external coordination message exchanges among

testers during testing. However, the use of coordination

messages requires the existence of an external network

that can increase the cost of testing and can be diffi-

cult to implement. In addition, the use of coordination

messages introduces delays and this can cause problems

where there are timing constraints. Thus, sometimes it is

desired to construct a checking sequence from the specifi-

cation of the system under test that will be free from con-
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trollability and observability problems without requir-

ing the use of external coordination message exchanges.

This paper gives conditions under which it is possible to

produce such a checking sequence, using multiple distin-

guishing sequences, and an algorithm that achieves this.

Keywords Testing · Checking sequence · distributed

test architecture · coordination problems · observability

problems

1 Introduction

The importance and high cost of software testing has led

to much interest in automated test generation. Among

various testing activities in software development that

benefited most from automated test generation is model

based testing [1,13,16] where a model of the software

under test is used for generating tests. A particular area

of application of model based testing is system level test-

ing of reactive systems where the required externally ob-

servable behavior of the system under test (SUT) is mod-

eled by a syntactically finite representation of all possible
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valid sequences of interactions of the system components

with their external environment. Within the context of

testing state-based systems, the externally observable

behavior of the SUT is typically expressed in terms of

a Finite State Machine (FSM) M .

Then the system testing of the SUT is carried out

by applying a test sequence, that has been generated

from M , at its interfaces with its environment. In some

cases it is possible to produce a checking sequence: a test

sequence that is guaranteed to determine whether the

SUT behaves as specified in the FSM M representing

its desired behavior [14,15,19,23,44]. A test or checking

sequence is applied within a given test architecture and

the resulting output sequence is checked against the FSM

M .

A multi-port FSM can be used to express the ex-

pected externally observable behavior of potential im-

plementations of a distributed system which can have

multiple interfaces, called ports. In a multi-port FSM,

each transition is labelled with an input from a port and

an output vector consisting of a (possibly empty) output

to each port. In system testing of a distributed system

N , a distributed test architecture can be used where a

tester is placed at each port of the SUT N , the testers

cannot communicate with one another and there is no

global clock.

During the application of a checking sequence to N

in a distributed test architecture, the use of multiple

testers introduces the possibility of coordination prob-

lems amongst remote testers (see, for example, [2,4,5,8,

11,12,17,24,36,37,41–43,45,47]). These potential prob-

lems are known as controllability and observability prob-

lems. These problems occur if a tester cannot determine

either when to apply a particular input to N , or whether

a particular output from N was generated in response to

a specific input, respectively. The controllability (syn-

chronization) problem occurs when the tester at a port

p is expected to send an input to N after N responds to

an input from the tester at some q 6= p, without send-

ing an output to p. For example, consider a distributed

test architecture in which there are remote testers at two

ports U and L. If the input of x at port U is expected to

lead to output y at U only and this is to be followed by

input x′ at L then the tester at L does not know when

to send x′ since it did not observe either x or y. The ob-

servability problem occurs when the tester at some port

p is expected to receive an output from N in response to

a given input and is unable to determine when to start

and stop waiting. Observability problems hamper the de-

tectability of output-shifting faults in N i.e., an output

associated with the current input is generated by N in

response to either some earlier input or some later input.

Let us suppose, for example, that in testing the input of

x at U is expected to lead to the output of yU at U and

yL at L, this is to be followed by input x′ at U , and this

should result in the output of y′
U at U . Then, the ex-

pected sequences of observations are seen by each tester

if instead the input of x leads to output of yU at U and
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then the input of x′ leads to output y′
U at U and yL at

L: the tester at U sees xyUx′y′
U and the tester at L sees

yL.

The use of the distributed test architecture can lead

to controllability and observability problems and so can

make test generation complex and reduce test effective-

ness. However, if the interfaces are physically distributed

then the alternative is to connect the testers through an

external network. The deployment of such a network can

make testing more expensive and the delays introduced

by the exchange of external coordination messages be-

tween testers can make testing take longer. In addition,

the exchange of such messages between testers can lead

to delays that mean that some tests with timing con-

straints cannot be implemented. For example, let us sup-

pose that we wish to follow input x at port pi by input x′

at port pj 6= pi and this is to be achieved by an external

coordination message being sent from the tester at pi to

the tester at pj after the input of x. If the external co-

ordination messages take time t to arrive and the input

of x′ must occur within time t′ of x with t′ < t then this

approach will not work. The timing issues can be partic-

ularly problematic if the SUT responds rapidly relative

to the network used for external coordination messages.

See [31] for a discussion of some timing issues that arise

when using external coordination messages. Naturally, if

we have access to the source code of the SUT, and poten-

tially can change this, there are other ways of overcoming

these problems.

This paper considers the problem of testing from an

FSM in the distributed test architecture where the focus

is system level testing. This problem has largely been

studied in the context of protocol conformance testing.

However, it is potentially relevant whenever testing a

deterministic state-based system that has physically dis-

tributed interfaces. If the system is implemented through

a set of state-based subsystems that interact, then there

is the potential to combine the FSM models of these sub-

systems to form a single FSM for system level testing.

However, if the focus of testing is unit level or integration

testing then Communicating FSM (CFSM) based models

can be employed to facilitate automated test generation

where interactions among the subsystems are taken into

consideration [9]. Naturally, distributed systems are of-

ten nondeterministic and it would thus be interesting to

extend the work to the problem of testing from a non-

deterministic FSM in this architecture. However, there

is the potential to adapt approaches, such as the one

given in this paper, to testing from a deterministic FSM

by using deterministic testing : test methods that make

a nondeterministic distributed system behave in a de-

terministic manner during testing by forcing a given se-

quence of interleavings to occur (see, for example, [18,

26,34,35]).

This paper makes the following contributions. It gives

a method for constructing checking sequences from multi-

port FSMs that can be applied in a distributed test archi-

tecture without encountering controllability and observ-
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ability problems and without using external coordination

messages among testers. First we show how a checking

sequence can be produced where there are controllabil-

ity problems but not observability problems. This is the

case, for example, when a global clock can be used to

timestamp the inputs and outputs and it is guaranteed

that all of the outputs produced in response to an in-

put are observed before the next input. We then show

how this can be extended to a checking sequence in the

case where there can be observability problems. Natu-

rally, since such checking sequences do not always exist,

the algorithms work under certain stated assumptions.

This is the first paper that shows how such checking

sequences can be produced without using a reliable reset

operation1. In this paper we rely on the existence of dis-

tinguishing sequences2 for state verification rather than

alternatives such as unique input/output sequences or a

characterization set. This choice was made because even

for single-port FSMs there is no known method for gen-

erating a polynomial size checking sequence using these

alternative approaches for state verification. Note that

1 A reliable reset is a function that is guaranteed to take

the implementation back to its initial state irrespective of

its current state. The SUT need not have a reliable reset

and even when it does the inclusion of resets can reduce test

effectiveness and may require human involvement and thus

greatly increase the cost of test execution [3,20,46]
2 Given an FSM M , an input sequence is a distinguishing

sequence for M if it leads to n different output sequence from

the n different states of M . Distinguishing sequences are for-

mally defined in Section 2.

some recent work has investigated the problem of check-

ing the output of transitions while avoiding controlla-

bility and observability problems but this previous work

assumes that each transition of the SUT has the correct

final state [5–7].

The rest of the paper is organized as follows: Section

2 introduces the terminology used in this paper. Sec-

tion 3 defines a property, of a set D of distinguishing

sequences, that must hold in order for us to be able to

use D to check the final state of each transition of the

multi-port FSM M . Section 4 then gives an algorithm

for generating a checking sequence that has no control-

lability problems. Section 5 introduces additional con-

ditions and shows how, under these conditions, we can

produce a checking sequence even if there can be observ-

ability problems. Finally Section 6 gives the concluding

remarks.

2 Preliminaries

2.1 Multi-port FSMs

A (deterministic) multi-port FSM M has m > 1 ports at

which it interacts with its environment. The m ports of

M are identified by integers in the set [1,m] = {1, . . . ,m}.

A multi-port FSM with m ports is defined by a tuple

(S,X, Y, δ, λ, s1) in which:

– S is the finite set of states of M ;

– s1 ∈ S is the initial state of M ;
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– X =
⋃m

i=1
Xi is the finite input alphabet of M , where

Xi is the input alphabet of port i, Xi ∩ Xj = ∅ for

all i, j ∈ [1,m], i 6= j;

– Y =
∏m

i=1
(Yi ∪ {−}) is the finite output alphabet of

M , where Yi is the output alphabet of port i, Yi∩Yj =

∅ for all i, j ∈ [1,m], i 6= j, and − means null output;

– δ is the transition function of type S × X → S; and

– λ is the output function of type S × X → Y .

This paper deals with multi-port FSMs and so a multi-

port FSM is called an FSM; an FSM with only one

port is called a single-port FSM. M denotes a multi-

port FSM that models the expected behaviour of the

SUT N = (U,X, Y, δN , λN , u1). A variable name has a

bar over it (for example, x̄) if this variable represents a

sequence and ε denotes the empty sequence. A sequence

can be represented by listing its elements. For example

abc represents the sequence with three elements: a then

b and then c.

Note that each y ∈ Y is a vector of outputs, i.e., y =

〈o1, o2, . . . , om〉 where oi ∈ Yi ∪{−} for i ∈ [1,m]. In the

following, p ∈ [1,m] is a port, x ∈ X is a general input,

and the label y[p, o] is used to denote an output vector

y of a transition where the output at port p is o. We use

y |p to denote the output at port p in y. It is possible

to extend δ and λ to input sequences in the following

way: δ(s, ε) = s, δ(s, xx̄) = δ(δ(s, x), x̄), λ(s, ε) = ε, and

λ(s, xx̄) = λ(s, x)λ(δ(s, x), x̄). A transition τ of an FSM

M is a triple (sj , sk, x/y), where sj , sk ∈ S, x ∈ X,

and y ∈ Y such that δ(sj , x) = sk, λ(sj , x) = y, and sj

and sk are the starting state and the ending state of τ ,

respectively. The input/output pair x/y is the label of τ .

A path ρ̄ = τ1 τ2 . . . τk (k ≥ 0) is a finite sequence of

transitions such that if k ≥ 2 then the ending state of τi is

the starting state of τi+1 for all i ∈ [1, k−1]. Path ρ̄ is said

to start at the starting state of τ1. When the ending state

of the last transition of path ρ̄1 is the starting state of

the first transition of path ρ̄2, we use ρ̄1ρ̄2 to denote the

concatenation of paths ρ̄1 and ρ̄2. The label of a path ρ̄ =

(s1, s2, x1/y1) (s2, s3, x2/y2) . . . (sk, sk+1, xk/yk) (k ≥ 1)

is the sequence of input/output pairs x1/y1x2/y2 . . .

xk/yk, which is called an input/output sequence. At times

we will want to reason about the state of the SUT af-

ter a prefix of an input/output sequence and in order

to assist with this we will consider an input/output se-

quence x1/y1x2/y2 . . . xk/yk to be a sequence of edges

(n1, n2, x1/y1) . . . (nk, nk+1, xk/yk) in which n1, . . . , nk+1

are called nodes. The input portion and output portion of

an input/output sequence x1/y1x2/y2 . . . xk/yk are the

input sequence x1x2 . . . xk and output sequence y1y2

. . . yk, respectively. The input sequence x1 . . . xk (or in-

put/output sequence x1/y1x2/y2 . . . xk/yk) is said to la-

bel ρ̄. Note that we call a sequence of input/output pairs

x1/y1x2/y2 . . . xk/yk, or x̄/ȳ (x̄ = x1 . . . xk and ȳ =

y1 . . . yk) or any combination of these an input/output

sequence.
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An FSM M is said to be globally minimal3 if none of

its states are globally equivalent4 (i.e., for all si, sj ∈ S,

si 6= sj , there exists an input sequence x̄ ∈ X∗ such

that λ(si, x̄) 6= λ(sj , x̄)). Any FSM can be converted

into an equivalent globally minimal FSM: this process is

equivalent to the minimization of a single-port FSM and

for an n state FSM with p inputs this can be achieved in

time of O(pn log n) [25]. Throughout this paper we thus

assume that any FSM considered is globally minimal.

In order to reason about test effectiveness it is nor-

mal to use a fault model: a set ΦM of FSMs such that we

believe that the SUT behaves like an unknown element

of ΦM [29]. The purpose of the fault model is to capture

the types of faults that it is believed can occur and to

therefore make it possible to reason about test effective-

ness. We use a standard fault model ΦM from protocol

conformance testing, which is the set of FSMs that have

the same input and output alphabets as M and no more

states than M . Input sequence x̄ is a checking sequence if

x̄ distinguishes M from every element of ΦM that is not

equivalent to M . In this paper we are concerned with the

problem of generating a checking sequence and thus ob-

taining a sequence that provides full fault coverage with

3 Normally such an FSM is said to be minimal. In this paper

the phrase globally minimal is used in order to distinguish

this from the notion of local minimality described in Section

2.4.
4 The term globally equivalent is used, rather than equiva-

lent, in order to distinguish this from the term locally equiv-

alent described in Section 2.4.

respect to the fault model. We will see that the notions

of equivalence of SUT N ∈ ΦM and M and distinguish-

ing N from M depends upon the test architecture used

and whether there can be observability problems.

There are several benefits to producing a checking

sequence rather than a test sequence that, for example,

includes subsequences that aim to check each transition

of M . First, we know that if the SUT passes a checking

sequence then either it is correct or our initial assump-

tion was incorrect: the SUT is not equivalent to a mem-

ber of the fault model. This gives information regarding

the types of faults that can be missed and provides some

guarantees. Second, there is experimental evidence that

checking sequences are more effective in distinguishing

between an FSM M and faulty FSMs [10]. Naturally,

there is scope for using a larger fault model, such as the

set of FSMs with the same input and output alphabets

as M and at most δ extra states for some predetermined

δ as it was shown in [33] but the use of such fault mod-

els in the problem studied in this paper is a topic for

future work. It would also be interesting to extend this

test method to the case where the externally observable

behavior of the system is modelled as a nondeterministic

FSM.

2.2 The distributed test architecture

An FSM M defines the set of expected global behaviours

of any potential implementation. Each expected global

behaviour is expressed as the label of a sequence of tran-
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SUT SUT

a) b)

Global
Tester

Upper Tester

Lower Tester

Fig. 1 Two test architectures: a) local; b) distributed

sitions from M . An expected global behaviour is called

a global input/output sequence.

Testing SUT N ∈ ΦM whose expected externally ob-

servable behaviour is defined by FSM M can be carried

out as a fault detection experiment [14,19] in a specific

test architecture. Two standardized architectures [28] are

shown in Figure 1 for a two-port SUT. The two ports, U

and L, represent the upper interface and lower interface

of the SUT respectively. The local architecture in Figure

1a) has a global tester that controls and observes both

interfaces of the SUT. Figure 1b) shows the distributed

test architecture where the lower interface and the up-

per interface of the SUT are controlled and observed by

separate testers. Each tester applies its own local view

constructed from a global input/output sequence for the

SUT. In the local view, a tester can’t observe the inputs

or outputs of the other testers.

In Figure 1b) there is no global tester. Instead, U and

L are two remote testers that are required to coordinate

the application of a global input/output sequence. How-

ever, they cannot directly communicate with one another

and there may be no global clock. This requirement can

lead to controllability and observability problems that

are defined below.

2.3 Controllability (synchronization) and observability

problems

Let us suppose that in testing input x at port U is ex-

pected to lead to output yU at U only and this is to

be followed by the input of x′ at L. Then we have a

controllability problem since the tester at L does not ob-

serve either the input or output from the previous tran-

sition and so does not know when to send input x′ to the

SUT. In general, given an FSM M and input/output se-

quence x1/y1x2/y2 . . . xk/yk of M , a controllability (syn-

chronization) problem occurs when, in the labels xi/yi

and xi+1/yi+1 of two consecutive transitions, there ex-

ists a port p ∈ [1,m] such that xi+1 ∈ Xp, xi 6∈ Xp,

and yi |p= −. If there is such a synchronization problem

then we cannot apply xi+1 after xi when testing in the

distributed test architecture since the tester at port p

cannot know when to apply xi+1. Two consecutive tran-

sitions τi and τi+1 whose labels are xi/yi and xi+1/yi+1,

form a synchronizable pair of transitions if τi+1 can fol-

low τi without causing a synchronization problem. Any

(sub)sequence of transitions in which every pair of con-

secutive transitions is synchronizable is called a syn-

chronizable transition (sub)sequence. An input/output

sequence is synchronizable if it is the label of a synchro-

nizable transition sequence. An FSM may have proper-
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ties that make it inherently untestable within the dis-

tributed test architecture without using external coordi-

nation messages. For example, there may be no synchro-

nizable input/output sequence that is the label of a path

that includes a particular transition τ , in which case we

cannot test transition τ without introducing a controlla-

bility problem. We thus make the following assumption

regarding M .

Assumption 1 For every pair τ, τ ′ of transitions of M

there is some synchronizable transition sequence ρ̄ =

τ1 . . . τk of M in which τ1 = τ and τk = τ ′.

Given transitions τ and τ ′ there are low order poly-

nomial algorithms for producing such a minimal length

transition sequence based on a directed graph in which

paths correspond to synchronizable transition sequences

(see, for example, [17]).

In the distributed test architecture each tester sees

only the behaviour at a single port. Suppose that a se-

quence of interactions has occurred. Then the tester at

each port sees only a portion of this: the parts that in-

volved that port. We call this the actual local behaviour.

The tester compares this with the expected local behaviour.

If z̄ is an input/output sequence then we use πp(z̄) to de-

note the corresponding sequence of inputs and outputs

at port p. The projection function πp can be defined by

the following in which z̄ is an input/output sequence and

x is an input.

πp(ε) = ε

πp((x/y[p,−])z̄) = πp(z̄) if x 6∈ Xp

πp((x/y[p,−])z̄) = xπp(z̄) if x ∈ Xp

πp((x/y[p, o])z̄) = oπp(z̄) if x 6∈ Xp

πp((x/y[p, o])z̄) = xoπp(z̄) if x ∈ Xp

Given a sequence τ1 . . . τk of transitions, τi = (si, si+1,

xi/yi), and port p, πp(τ1 . . . τk) denotes the sequence

πp(x1/y1 . . . xk/yk).

Suppose the distributed test architecture is being used

in testing SUT N ∈ ΦM against an FSM M where m = 2

and the ports of M are denoted U and L. Suppose also

that xx′ is to be input when M is in state s, x, x′ ∈ XU , x

is expected to trigger output (yU , yL) and x′ is expected

to trigger output (y′
U ,−). Then xyUx′y′

U should occur

at U and yL should be observed at L. This is the case if

(yU ,−) is produced in response to x and (y′
U , yL) is pro-

duced in response to x′. Since each tester only sees the

interactions at its port, neither tester can observe these

output faults5 in this subsequence — the two output

faults mask one another. This situation is represented in

Figure 2 in which the differences in the two sequences of

interactions cannot be observed by either tester. Natu-

rally, we want to use tests in which output faults cannot

mask one another in this way. Note that if x′ had been

from XL, this combination of faults would have been de-

5 An output fault is a fault in which a transition produces

the wrong output.
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Tester 1 Tester 2FSM Tester 1 Tester 2SUT

x x

x’x’

y
L

y
L y

U
y

U

y’
U

y’
U

Fig. 2 Two behaviours that look equivalent to each tester

tected by the tester at L since x′yL would have occurred

rather than yLx′.

The faults described above mask one another because

the correct value yL is observed at L, but due to the

wrong transition, and the tester at port L does not know

when to stop waiting for yL. This corresponds to the

notion of an undetectable forward output-shifting fault.

Definition 1 Let τ ρ̄τ ′ denote a synchronizable path with

τ = (si, sj , x/y) and τ ′ = (sj , sk, x′/y′). Suppose also

that for some q ∈ [1,m] we have that y |q= o 6= −,

y′ |q= −, and no transition in ρ̄ has output at q. Sup-

pose there are faults in which the output at p ∈ [1,m] is

correct for τ and τ ′ (for all p 6= q) and at q the output

in response to x is − and the output at q in response

to x′ is o. This combination of faults is called a forward

output-shifting fault [47]. It is an undetectable forward

output-shifting fault if x′ 6∈ Xq and no transition from ρ̄

has input at q; otherwise it is a detectable forward output-

shifting fault.

A similar situation occurs if output at L is expected

in response to x′ but not x and instead it was produced

in response to x.

Definition 2 Let τ ρ̄τ ′ denote a synchronizable path with

τ = (si, sj , x/y) and τ ′ = (sj , sk, x′/y′) and for some

q ∈ [1,m] we have that y |q= −, y′ |q= o 6= −, and no

transition in ρ̄ has output at q. Suppose there are faults

in which the output at p ∈ [1,m] is correct for τ and

τ ′ (for all p 6= q) and at q the output in response to

x is o and the output at q in response to x′ is −. This

combination of faults is called a backward output-shifting

fault [47]. It is an undetectable backward output-shifting

fault if x′ 6∈ Xq and no transition from ρ̄ has input at q;

otherwise it is a detectable backward output-shifting fault.

Definition 3 A fault is an output-shifting fault [36] if it

is either a forward output-shifting fault or a backward

output-shifting fault. An output-shifting fault is a de-

tectable output-shifting fault if it is either a detectable

forward output-shifting fault or a detectable backward

output-shifting fault; otherwise it is an undetectable output-

shifting fault.

Where output is shifted between two adjacent tran-

sitions, such output-shifting faults have been called 1-

output-shifting faults [2]. In this paper we consider the

general case and not just 1-output-shifting faults.

The observability problem manifests itself in a check-

ing sequence as an undetectable output-shifting fault.

The following, which is proved in [22], relates the no-
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tion of an output-shifting fault being detectable to the

definition of the projection πp.

Proposition 1 Given transitions τ and τ ′ of M such

that ττ ′ is synchronizable, an output-shifting fault in ττ ′,

which leads to the (faulty) transition sequence τ1τ
′
1 in

SUT N ∈ ΦM , is a detectable output-shifting fault if and

only if there is some port p ∈ [1,m] such that πp(ττ ′) 6=

πp(τ1τ
′
1).

2.4 Globally distinguishing and locally distinguishing

states

This subsection, which is based on [22], defines what it

means for an input sequence to distinguish two states in

the distributed test architecture.

If there is a global tester, input sequence x̄ distin-

guishes two states if the input of x̄ leads to different

output sequences when applied in these states. More for-

mally, x̄ globally distinguishes states si and sj of M if

and only if λ(si, x̄) 6= λ(sj , x̄). This corresponds to the

classical notion of distinguishing states of a single-port

FSM. States si and sj of M are globally equivalent if

no input sequence globally distinguishes them and two

FSMs are globally equivalent if their initial states are

globally equivalent. Input sequence x̄ is a distinguishing

sequence for M if for every pair (si, sj) of states of M ,

x̄ globally distinguishes si and sj .

In the distributed test architecture, if the testers can

access a global clock then they could record the times at

s

s

s1 2

3

x /(a ,b)1 1

x /(a ,-)1 1x /(a ,-)1 1

x /(a ,b)22

x /(a ,b)22

x /(a ,-)22

Fig. 3 The 2-port FSM M0

which inputs were applied and outputs observed. This

would allow the reconstruction of the global input/output

sequence if communication is synchronous or all outputs

in response to an input are observed before the next

input is sent (there is a slow environment). If the in-

put/output sequence can be reconstructed then there are

no observability problems and so global distinguishabil-

ity applies.

Consider the FSM M0 given in Figure 3 in which

x1, x2 ∈ XU , a1, a2 ∈ YU , and b ∈ YL. The input se-

quence x1x2 is a distinguishing sequence since it leads to

three different output sequences: (a1, b)(a2,−) from s1,

(a1,−)(a2, b) from s2, and (a1,−)(a2,−) from s3.

In M0, x1x2 globally distinguishes states s1 and s2.

However, neither tester observes a difference since for

each state the expected local behaviour at L is b and

the expected local behaviour at U is x1a1x2a2. In the

distributed test architecture, if there is no global clock

then x1x2 does not distinguish between s1 and s2 since it

is necessary to observe some different sequence of input
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and output values at one of the ports: there is an observ-

ability problem. Given state s and input sequence x̄, we

use γ(s, x̄) to denote the input/output sequence result-

ing from applying x̄ when M is in state s. This can be

recursively defined in the following manner: γ(s, ε) = ε;

γ(s, xx̄) = (x/λ(s, x))γ(δ(s, x), x̄). The function γN , for

the SUT N , can similarly be defined. If input sequence x̄

is applied when M is in state si the sequence πp(γ(si, x̄))

is observed at port p.

Definition 4 Input sequence x̄ locally distinguishes states

si and sj of M at port p ∈ [1,m] if x̄ labels a syn-

chronizable path from both si and sj and πp(γ(si, x̄)) 6=

πp(γ(sj , x̄)). Input sequence x̄ locally distinguishes states

si and sj of M if there exists a port p ∈ [1,m] such that

x̄ locally distinguishes si and sj at p.

The following is proved in [22].

Proposition 2 An input sequence may globally distin-

guish two states si and sj but not locally distinguish

them. Further, if x̄ ∈ X∗ locally distinguishes states si

and sj then x̄ globally distinguishes si and sj.

Where there can be observability problems and ex-

ternal coordination messages are not used, in order to

distinguish between states it is necessary to locally dis-

tinguish them. States si and sj of M are locally equiva-

lent if no input sequence locally distinguishes si and sj .

M is locally minimal if for every pair (si, sj) of states of

M , if si 6= sj then si and sj are locally distinguishable.

It is possible to extend the notion of a distinguishing

sequence to the distributed test architecture where there

can be observability problems and external coordination

messages are not used. Input sequence x̄ is a locally dis-

tinguishing sequence for M if for all si, sj ∈ S, si 6= sj ,

x̄ locally distinguishes si and sj .

The problem of deciding whether an FSM has a dis-

tinguishing sequence is PSPACE-complete [32]. Thus,

the problem of deciding whether an FSM has a locally

distinguishing sequence is PSPACE-hard.

2.5 The proposed approach

Most checking sequence generation algorithms are based

on a distinguishing sequence D̄. Typically, they produce

a set of subsequences and connect these subsequences in

order to produce a checking sequence. Some of the subse-

quences check that D̄ is a distinguishing sequence in the

SUT and so D̄ defines a bijection (one-to-one correspon-

dence) between the states of the model and the states of

the SUT. The bijection for a distinguishing sequence D̄

is defined by: state s of M corresponds to state u of N if

and only if the response of N to D̄ when in state u is the

same as the response of M to D̄ when in state s. Other

subsequences use D̄ to check the transitions of the SUT.

In order to check a transition (s, s′, x/y) we need to move

to a state of the SUT that corresponds to s, apply input

x, check that the SUT generates the output y and then

apply D̄ to check that the SUT is in the correct state

after the transition.
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This paper adapts this approach to the case where we

are testing in the distributed test architecture. Again, the

test generation algorithm produces a set of subsequences

that can be connected to form a checking sequence. Since

a transition t must be followed by input at a port that is

involved in t, we may require a set {D̄1, . . . , D̄r} of dis-

tinguishing sequences rather than a single distinguish-

ing sequence. Section 3 gives a sufficient condition under

which D̄1, . . . , D̄r can be used to check the final state

of every transition. It is thus not sufficient to check that

each D̄i is a distinguishing sequence in the SUT and thus

defines a bijection between the states of the SUT and the

states of the model: it is essential that the distinguishing

sequences define the same bijection. In Section 4, Algo-

rithm 1 shows how we can generate subsequences that

check that a single distinguishing sequence D̄1 is also a

distinguishing sequence in the SUT. Algorithm 2 shows

how additional subsequence can be produced that use D̄1

to check that D̄1, . . . , D̄r are distinguishing sequences of

the SUT that define the same bijection as D̄1. Algorithm

3 then shows how we can devise subsequences that check

a transition using D̄1, . . . , D̄r and finally Algorithm 4

simply involves forming a single checking sequence from

the subsequences returned by Algorithms 1, 2, and 3.

3 Using multiple distinguishing sequences

An input sequence D̄ is a (globally) distinguishing se-

quence for M if it produces n different output sequences

from the n different states of M . If these n different

output sequences are seen in response to D̄ in the SUT

N ∈ ΦM then since N has at most n states we know that

D̄ is also a distinguishing sequence for N . Where this is

the case, D̄ recognizes each state of N as a state of M .

Since we are testing in the distributed test architecture

we also require that for each state s of M the path from

s with label D̄/λ(s, D̄) is synchronizable. The following

adapts the definitions provided in [44] of what it means

to recognize a node in a path ρ̄ and to verify a transition

of M in the label (input/output sequence) Q̄ of ρ̄. The

base case is that the distinguishing sequence recognizes

its starting state. The recursive cases essentially say that

if an input sequence x̄ is repeated in Q and in the two

cases we know that the current state of the SUT must be

the same before x̄ is applied then the state of the SUT

must be the same after these two occurrences of x̄.

In order to prove that an input/output sequence z̄ de-

fines a checking sequence we will reason about the states

of the SUT reached by prefixes of z̄ and thus how the

nodes visited by z̄ correspond to states of M . This rea-

soning will be based on the use of distinguishing sequence

D̄ and the assumption that this defines a bijection be-

tween the states of the SUT and M : later we will see how

we can produce subsequences with the property that if

an SUT passes a test that contains these subsequences

then D̄ must define a bijection between the states of the

SUT and M .
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Definition 5 1. A node ni of ρ̄ is d-recognized in Q̄

by D̄ as state s of M if D̄/λ(s, D̄) is the label of a

subpath of Q̄ that starts at ni. This says that, since

we assume that D̄ defines a bijection between the

states of M and those of the SUT, if a node ni is

followed by a subpath labelled by D̄/λ(s, D̄) then ni

must correspond to state s.

2. Suppose that (nq, ni, T̄ ) and (nj , nk, T̄ ) are subpaths

of ρ̄ and D̄/λ(s, D̄) is a prefix of T̄ (and thus nq and

nj are d-recognized in Q̄ by D̄ as state s). Suppose

also that node nk is d-recognized by D̄ as state s′ of

M . Then ni is t-recognized in Q̄ by D̄ as s′. This says

that if we know that two nodes nq and nj correspond

to the same state, T̄ labels a path from nj to nk and

we know that nk corresponds to state s then if there

is a path with label T̄ from nq to ni then, since the

SUT is deterministic, ni must correspond to state s.

3. Suppose that (nq, ni, T̄ ) and (nj , nk, T̄ ) are subpaths

of ρ̄ such that nq and nj are either d-recognized or

t-recognized in Q̄ by D̄ as state s and nk is either

d-recognized or t-recognized in Q̄ by D̄ as state s′.

Then ni is t-recognized in Q̄ by D̄ as s′. This extends

the previous case to allow the nodes nq, nj , and nk

to be t-recognized rather than being d-recognized.

4. If node ni of ρ̄ is either d-recognized or t-recognized

in Q̄ by D̄ as state s then ni is recognized in Q̄ by D̄ as

state s. Where D̄ is clear we say that ni is recognized

in Q̄ as state s.

5. Transition τ = (sa, sb, x/y) of M is verified in Q̄ by

D̄ if there is a subpath (ni, ni+1, xi/yi) of ρ̄ such that

ni is recognized in Q̄ by D̄ as sa, ni+1 is recognized

in Q̄ by D̄ as sb, xi = x and yi = y.

Given a transition τ of M , we use P (τ) to denote the

set of ports that are involved in τ : the port that receives

the input of τ and each port that receives non-empty

output from τ . Transition τ can be followed by an input

at port p, without causing a synchronization problem,

if and only if p ∈ P (τ). Given an input sequence D̄,

inport(D̄) denotes the port whose tester sends the first

input from D̄.

A distinguishing sequence D̄ can only be used in or-

der to verify the ending state of a transition τ , with-

out causing a controllability problem, if it starts with

an input at a port from P (τ). Thus, it may be neces-

sary to use more than one distinguishing sequence, the

different distinguishing sequences starting with input at

different ports. Consider, for example, the 2-port FSM

M1 given in Figure 4 that has input alphabet defined by

XL = {a, c} and XU = {b} and output alphabet defined

by YL = {2, 3} and YU = {0, 1}. Then D̄1 = ba and

D̄2 = ab are locally distinguishing sequences M1, as can

be seen from Table 1.

Suppose we wish to use a set D = {D̄1, . . . , D̄r} of

distinguishing sequences to check the ending states of the

transitions of M . If Υ denotes the transitions of M then

D must satisfy the following.
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ss1 2

t4 = a/(1,3)

t5 = b/(0,2)

t9 = 
a/(1,3)

t3 = 
c/(-,2)

t6 = a/(0,2)

t10 = b/(0,2)

t8 = c/(0,2)

t7 = 
b/(1,3)

t2 = 
b/(0,3)

t1 = a/(1,2)

s4s3

Fig. 4 The 2-port FSM M1

State At U At L At U At L

for ba for ba for ab for ab

s1 b00 3a2 1b0 a23

s2 b01 2a2 1b0 a33

s3 b11 3a2 0b0 a22

s4 b00 2a2 1b0 a32

Table 1 The responses to ab and ba

Definition 6 The set D is complete for M if for every

transition τ ∈ Υ there exists some D̄ ∈ D such that

inport(D̄) ∈ P (τ).

Given a set K and a set A of subsets of K (A ⊆

P(K)), a set K ′ ⊆ K is a hitting set for A if every

set in A contains at least one element of K ′. Let in(D)

denote {inport(D̄)|D̄ ∈ D}. Further, let in(Υ ) denote

{P (τ)|τ ∈ Υ}. Then the set D is complete for M if and

only if for every A ∈ in(Υ ) there exists some p ∈ in(D)

such that p ∈ A.

Proposition 3 The set D is complete for M if and only

if in(D) is a hitting set for in(Υ ).

Suppose Z is a minimum size hitting set for in(Υ ).

Then, any set D of distinguishing sequences to be used

must have size at least |Z|. Thus it is desirable to use a

set D of distinguishing sequences with the property that

in(D) is a minimum size hitting set for in(Υ ). Note that

while the problem of finding a minimum size hitting set is

NP-complete [30], normally the number of ports will not

be large; in such cases it is practical to solve this prob-

lem. Throughout this paper we use D = {D̄1, . . . , D̄r} to

denote a complete set of distinguishing sequences to be

used in checking sequence generation.

4 Overcoming controllability problems

This section shows how, under certain conditions, a syn-

chronizable checking sequence can be produced without

the addition of external coordination message exchanges.

Under some situations there is no observability problem

in which case such a checking sequence is sufficient. An

example of such a situation is when there is a global

clock and a slow environment. This section is structured

in the following way. First, we show how we can generate

subsequences that verify that the given distinguishing se-

quences for M are also distinguishing sequences for the

SUT N = (U,X, Y, δN , λN , u1) ∈ ΦM . We then show
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how these subsequences can be used in the construction

of a checking sequence by including each transition τ in

a context in which we know that its starting state is rec-

ognized and τ is followed by a distinguishing sequence.

4.1 Verifying the distinguishing sequences

It might appear that, in order to verify that the elements

of D = {D̄1, . . . , D̄r} can be used to identify the states

of the SUT N ∈ ΦM , it is sufficient to use an input

sequence that should lead to the n different responses

from N to each distinguishing sequence in D. This would

demonstrate that each distinguishing sequence is also a

distinguishing sequence in the SUT and so each defines

a bijection between the states of M and the states of the

SUT.

While such an input sequence is capable of showing

that each element of D is a distinguishing sequence for

SUT N ∈ ΦM , it need not be able to demonstrate that

the elements of D recognize states of N in a consistent

manner; the bijection between states of M and N defined

by different distinguishing sequences may differ. For ex-

ample, there could exist states u and u′ of N , states s

and s′ of M , and D̄i, D̄j ∈ D such that:

1. N produces λ(s, D̄i) and λ(s′, D̄j) in response to D̄i

and D̄j respectively from state u; and

2. N produces λ(s′, D̄i) and λ(s, D̄j) in response to D̄i

and D̄j respectively from state u′.

ss1 2

a/0,b/0 a/1,b/1

c/1,d/1

c/1,d/1
ss3 4

a/0,b/1,d/1 a/1,b/0,d/1

c/1

c/1

Fig. 5 FSMs M ′ and M ′′

Consider, for example, the single-port FSMs M ′ and

M ′′ shown in Figure 5 and let us suppose that we are

testing an SUT that is equivalent to M ′′ against M ′.

Here it is clear that a and b are distinguishing sequences

of both M ′ and M ′′. Let us suppose that we test the

SUT with input sequence acadbcb. The SUT passes this

test because we observe that the output produced by

M ′′ in response to this input sequence is the expected

output sequence 0111011. Since the SUT passes this test

we must have that a and b are distinguishing sequences

for the SUT. However, under the distinguishing sequence

a we find that s3 corresponds to s1 and s4 corresponds

to s2 while under the distinguishing sequence b, s4 cor-

responds to s1 and s3 corresponds to s2. The two dis-

tinguishing sequences thus define different bijections be-

tween the states of M ′ and M ′′ even though each is a

distinguishing sequence for both FSMs.

In constructing a checking sequence on the basis of

multiple distinguishing sequences we use the distinguish-

ing sequences to verify the state transition structure of

N and thus require that they recognize the states of N

in a consistent manner.

Definition 7 Set D = {D̄1, . . . , D̄r} is a consistent set

of distinguishing sequences for N ∈ ΦM if:
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1. Each input sequence in D is a distinguishing sequence

for N ; and

2. All r elements of D recognize the states of N in a

consistent manner: i.e. if u is a state of N then there

exists a state s of M such that for all i ∈ [1, r],

λN (u, D̄i) = λ(s, D̄i).

Definition 8 State u of N ∈ ΦM is recognized as s by

D if D is a consistent set of distinguishing sequences for

N and u is recognized as state s of M by some D̄i ∈ D.

Given the set D we want to find an input sequence

x̄ with the property that if the SUT N ∈ ΦM produces

the same output sequence as M in response to x̄ then we

can conclude that D is a consistent set of distinguishing

sequences for N . If this can be done then we can use the

elements of D in the knowledge that if N produces the

same output sequence as M in response to x̄ then the

distinguishing sequences in D recognize the states of N

in a consistent manner.

Definition 9 Input sequence x̄ is said to verify D if

D is a consistent set of distinguishing sequences for ev-

ery FSM N ∈ ΦM for which we have that λN (u1, x̄) =

λ(s1, x̄).

The key point in this definition is that since we as-

sume that the SUT N is contained in ΦM , if x̄ verifies

D and we observe the input/output sequence x̄/λ(s1, x̄)

from the initial state of N then we know that D must

be a consistent set of distinguishing sequences for N .

Thus, if we start a test with x̄ then there are two pos-

sibilities: either we observe a failure or we observe the

input/output sequence x̄/λ(s1, x̄) and so can conclude

that D is a consistent set of distinguishing sequences for

N and so its elements can be used to check the ending

states of transitions of N .

Algorithm 1 produces a subsequence that, when in-

cluded in a path ρ̄ from s1, ensures that the input se-

quence x̄ that labels ρ̄ verifies {D̄1} for some D̄1 ∈ D.

Further subsequences, to verify the remaining elements

of D, are then produced in Algorithm 2 using a recursive

approach.

Let si denote the state δ(si, D̄1) of M reached from

si by the input of D̄1. In order to verify {D̄1} we produce

a subsequence using the following algorithm.

Algorithm 1 1. For each state si (1 ≤ i < n) define

a transfer sequence T̄ 1
i that labels a path of M from

si to si+1 such that D̄1/λ(si, D̄1)T̄
1
i is the label of

a synchronizable path from si to si+1 that may be

followed by input at port inport(D̄1) without causing

a synchronization problem.

2. Return the subsequence from s1 that has label D̄1/

λ(s1, D̄1)T̄
1
1 D̄1/λ(s2, D̄1)T̄

1
2 . . . D̄1/λ(sn, D̄1).

The subsequence returned by this process is denoted

ᾱ1. For example, the sequence ᾱ1 that is obtained by

applying Algorithm 1 to 2-port FSM M1 is formed by

the concatenation of the following subsequences: t2t6t9;

t5t1t2; t7t1t2t6; and t10t6.
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Recall that Assumption 1 states that for any pair τ, τ ′

of transitions there is a synchronizable path that starts

with τ and ends in τ ′.

Proposition 4 Given an FSM M and a distinguish-

ing sequence D̄1 for M , the subsequence ᾱ1 can be con-

structed using D̄1.

Proposition 5 The length of the sequence ᾱ1 produced

by Algorithm 1 is of O(n(n + |D̄1|)).

Proposition 6 If the label of ᾱ1 is the label of a path

in N ∈ ΦM from some state u of N then D̄1 is a distin-

guishing sequence for N .

Proof

This follows since N has at most n states and in ᾱ1

it produces n different responses to D̄1. �

Having produced a subsequence that verifies {D̄1},

we get the following definition of what it means to verify

that an element of D is a distinguishing sequence for N

and that it recognizes states of N in the same way as

D̄1. Essentially this says that we require that if the SUT

passes a test starting with input sequence x̄ then every

D̄i ∈ D defines the same bijection between the states of

the SUT and the states of M .

Definition 10 Sequence D̄i ∈ D, 1 < i ≤ r, is verified

relative to D̄1 by input sequence x̄ if the following hold:

1. The response of M to x̄ contains n different output

sequences produced in response to D̄i; and

2. Whenever an SUT N produces the expected output

sequence in response to x̄, for every u ∈ U of N such

that D̄1/λ(s, D̄1) labels a path from u (some state s

of M) we have that D̄i/λ(s, D̄i) labels a path from

u.

Proposition 7 If all the D̄i ∈ D are verified relative to

D̄1 by input sequence x̄ then x̄ verifies D.

Proof

This simply follows from the fact that if D̄i is verified

relative to D̄1 then D̄1 and D̄i must define the same

bijection between states of M and states of N . �

We now explain how subsequences can be generated

to verify the elements of D \ {D̄1} relative to D̄1. We

define this process in a recursive manner: we assume that

we have produced subsequences that verify D̄1, . . . , D̄i−1

relative to D̄1 and show how, on the basis of this, D̄i can

be verified relative to D̄1.

The algorithm for producing subsequences that ver-

ify some D̄i relative to D̄1 operates in the following way.

For each state sk we wish to apply D̄i after a path ρ̄

from M whose ending state is sk and whose starting

and ending states have been recognized using a distin-

guishing sequence already verified. We ensure that the

starting state of ρ̄ is recognized by beginning it with a

distinguishing sequence already verified. We ensure that

the ending state of ρ̄ has been recognized by including

ρ̄ followed by D̄j/λ(sk, D̄j) for some D̄j with j < i that

has already been verified. We add a further subsequence
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in the form of ρ̄ followed by D̄i/λ(sk, D̄i). Since D̄j has

already been verified relative to D̄1, we know that D̄i is

being applied in the state recognized as sk by D̄1. Note

that this procedure requires that we can follow ρ̄ with

either D̄i or D̄j and this places constraints on the ports

involved in the final transition of ρ̄.

We could apply this procedure for every state sk of

M . However, this is not necessary. Instead, it is sufficient

to apply this procedure for n − 1 states and also apply

D̄i in the remaining state: by observing an nth different

response to D̄i we show that D̄i is a distinguishing se-

quence for N and also, by a process of elimination, show

that it recognizes the states of N in a manner that is

consistent with D̄1.

Algorithm 2 1. For i = 2 to r do

2. Choose some subset Si ⊆ S with size at least n −

1 such that for every state sk ∈ Si there is some

transition τ i
sk

with ending state sk and 1 ≤ j < i

such that inport(D̄i), inport(D̄j) ∈ P (τ i
sk

). Here τ i
sk

is any transition that has ending state sk and can be

followed both by the distinguishing sequence D̄i and a

distinguishing sequence D̄j already considered.

3. For all sk ∈ Si, choose a state s and produce two syn-

chronizable paths from s with labels D̄a/λ(s, D̄a)T̄ i
k

D̄j/λ(sk, D̄j) and D̄a/λ(s, D̄a)T̄ i
kD̄i/λ(sk, D̄i) such

that

(a) T̄ i
k ends in τ i

sk
; and

(b) 1 ≤ a, j < i.

Here T̄ i
k is any input/output sequence that can follow

D̄a/λ(s, D̄a), for some D̄a already considered, and

ends in τ i
sk

.

Let us assume that these sequences label paths of the

SUT N and that the sequences produced in earlier it-

erations and Algorithm 1 are also paths of N . The

key point is that since D̄a has already been consid-

ered, we know that D̄a/λ(s, D̄a)T̄ i
kD̄j/λ(sk, D̄j) and

D̄a/λ(s, D̄a)T̄ i
kD̄i/λ(sk, D̄i) must be applied in the

same state of N if these are labels of paths in N . In

addition, the first of these sequences verifies the node

that follows D̄a/λ(s, D̄a)T̄ i
k and thus for the second

we know that D̄i is being applied in a state of N that

is recognized as sk by D̄1.

4. If |Si| < n then let {s} = S \ Si and generate a path

with label D̄i/λ(s, D̄i) starting at s.

5. end for

Using Algorithm 2 with S2 = {s2, s3, s4} to 2-port

FSM M1 yields t2t6t9t4t2 and t2t6t9t5t1 for s2, t5t1t2t6t10

and t5t1t2t7t1 for s3, t7t1t2t6t9t5 and t7t1t2t6t10t6 for s4,

t1t2 for s1.

We now show that the sequences produced by Algo-

rithms 1 and 2 verify D and then give a sufficient condi-

tion for us to be able to apply these algorithms6.

Proposition 8 Suppose that for input sequence x̄ we

have that x̄/λ(s1, x̄) contains the subsequence ᾱ1 pro-

duced by Algorithm 1 and also the set of subsequences

produced by Algorithm 2. Then x̄ verifies D.

6 The proof of Proposition 8 is in the Appendix.
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Proposition 9 Let d = max{|D̄1|, . . . , |D̄r|}. Then Al-

gorithm 2 returns O(nr) sequences whose total length is

of O(nrd).

The following gives a condition under which Algo-

rithms 1 and 2 can be applied.

Assumption 2 There is some known ordering D̄1, . . . , D̄r

of the elements of D such that for all 1 < i ≤ r there is

a subset Si ⊆ S of size at least n− 1 where for all s ∈ Si

there exists 1 ≤ j < i and a transition τ i
s of M with end-

ing state s such that inport(D̄i), inport(D̄j) ∈ P (τ i
s).

Proposition 10 If Assumption 2 holds with a given or-

dering D̄1, . . . , D̄r then Algorithms 1 and 2 produce sub-

sequences that verify the elements of D.

It is now possible to simplify this condition for the

case where there are two ports U and L.

Proposition 11 Suppose M has ports U and L. Algo-

rithms 1 and 2 produce subsequences that verify the ele-

ments of D if there exist some subset S ′ ⊆ S of size at

least n−1 such that for all s ∈ S ′ there exists a transition

τ of M that ends at s such that U,L ∈ P (τ).

4.2 Producing a checking sequence with no

coordination problems

We have seen how a set of subsequences that verify the

sequences in D can be produced. The next problem is to

produce subsequences that verify the transitions of SUT

N ∈ ΦM . These subsequences can be combined, with

those produced to verify D, to form a checking sequence.

Let τ = (s, s′, x/y) be a transition of M . Then τ is

verified by any synchronizable subsequence from a state

u of N recognized as state s that has input portion xD̄i

for some D̄i ∈ D. Since D is complete it is always pos-

sible to follow τ by some element of D. Thus, the only

remaining issue is how we can apply xD̄i in a state that

is recognized as s. The following shows how this can be

achieved.

Algorithm 3 1. Input a transition τ = (s, s′, x/y) of

M .

2. Produce two synchronizable transition sequences la-

belled by

(a) The input/output sequence D̄a/λ(si, D̄a)T̄τ D̄c/λ(s, D̄c)

from state si; and

(b) The input/output sequence D̄a/λ(si, D̄a)T̄τx/yD̄b/

λ(s′, D̄b) from state si

where D̄a/λ(si, D̄a)T̄τ labels a synchronizable path of

M from si to s and D̄a, D̄b, D̄c ∈ D.

The first of these sequences checks that D̄a/λ(si, D̄a)

T̄τ reaches the correct state of the SUT while the sec-

ond checks that the input of x in this state leads to

the expected state of the SUT.

3. Return these two synchronizable transition sequences.

Applying Algorithm 3 to all of the transitions of 2-

port FSM M1 yields the sequences in Table 2.
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Transition For D̄a/λ(si, D̄a) For D̄a/λ(si, D̄a)

τ = (s, s′, x/y) T̄ x/yD̄b/λ(s′, D̄b) T̄ D̄c/λ(s, D̄c)

t1 t9t5t1t1t2 t9t5t1t2

t2 t9t5t2t6t10 t9t5t1t2

t3 t9t5t3t9t5 t9t5t1t2

t4 t2t6t9t4t1t2 t2t6t9t5t1

t5 t2t6t9t5t1t2 t2t6t9t5t1

t6 t6t10t6t9t5 t6t10t6t10

t7 t5t1t2t7t1t2 t5t1t2t7t1

t8 t6t10t8t7t1 t6t10t6t10

t9 t10t6t9t4t2 t10t6t9t5

t10 t10t6t10t7t1 t10t6t9t5

Table 2 Sequences that test the transitions

Proposition 12 Suppose that x̄ is the input portion of

the label of a synchronizable path ρ̄ in M that verifies D

and contains the subsequences produced by Algorithm 3

when given τ = (s, s′, x/y) as input. If the label of ρ̄ is

the label of a path in N then N includes a transition from

the state recognized as s by D̄1 to the state recognized as

s′ by D̄1 that has input/output pair x/y.

Proof

This follows from Proposition 8 and the definition of

what it means for x̄ to verify D. �

Proposition 13 Let d = max{|D̄1|, . . . , |D̄r|}. Then the

application of Algorithm 3 to all of the transitions of

M returns O(n|X|) sequences whose total length is of

O(n|X|d).

Thus, the checking sequence generation algorithm pro-

ceeds in the following way.

Algorithm 4 1. Set R = ∅.

2. Generate a path ρ̄0 on the basis of Algorithm 1 and

add this to R.

3. Apply Algorithm 2 and add the resultant paths to R.

4. For every transition τ of M , apply Algorithm 3 with

τ and add the resultant paths to R.

5. Remove from R every path that is a proper subpath

of some other path in R.

6. Choose an (arbitrary) order for the elements of R to

get paths ρ̄1, . . . , ρ̄|R| such that if some element of R

starts at state s1 then ρ̄1 starts at s1.

7. Produce a synchronizable path ρ̄ = ρ̄′
1ρ̄1 . . . ρ̄′|R|ρ̄|R| of

M , where ρ̄′
1, . . . ρ̄

′
|R| are possibly empty paths of M .

If ρ̄′1 is non-empty then it must be chosen so that it

starts with a subpath with label D̄i/λ(s1, D̄i) for some

D̄i ∈ D.

8. Return the path ρ̄.

The application of Algorithm 4 to 2-port FSM M1

with the results accumulated earlier yields:

– Step 2: t2t6t9t5t1t2t7t1t2t6t10t6

– Step 3: t2t6t9t4t2, t2t6t9t5t1, t5t1t2t6t10, t5t1t2t7t1,

t7t1t2t6t9t5, t7t1t2t6t10t6, and t1t2. Here we under-

line a sequence if it is eliminated in Step 5.

– Step 4 : Include the sequences from Table 2.

– Step 5 : Remove from R the paths that are proper

subpaths of other paths in R. We remove the paths

that are underlined in Table 3 in addition to those

indicated above (Step 3).
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Transition For D̄a/λ(si, D̄a) For D̄a/λ(si, D̄a)

τ T̄x/yD̄b/λ(s′, D̄b) T̄ D̄c/λ(s, D̄c)

t1 t9t5t1t1t2 t9t5t1t2

t2 t9t5t2t6t10 t9t5t1t2

t3 t9t5t3t9t5 t9t5t1t2

t4 t2t6t9t4t1t2 t2t6t9t5t1

t5 t2t6t9t5t1t2 t2t6t9t5t1

t6 t6t10t6t9t5 t6t10t6t10

t7 t5t1t2t7t1t2 t5t1t2t7t1

t8 t6t10t8t7t1 t6t10t6t10

t9 t10t6t9t4t2 t10t6t9t5

t10 t10t6t10t7t1 t10t6t9t5

Table 3 The additional sequences

Steps 6, 7, and 8 : The sequences identified are then

combined to give a path ρ̄ given below where the ρ̄′
i,

that are added to connect the subsequences, are shown

in bold. For readability, the path ρ̄ is in several parts; the

entire path is formed by concatenating the subsequences

in the given order.

t2t6t9t5t1t2t7t1t2t6t10t6; t9t5t3t9t5; t2t6t9t4t2; t7t1t2t6t9t5;

t2t6t9t4t1t2 t6; t10t6t9t4t2; t6t10t6t9t5 t3; t9t5t1t1t2; t6t10t6t10;

t6t10t8t7t1 t3; t9t5t2t6t10 t6t9; t5t1t2t6t10; t6; t10t6t10t7t1.

The following shows that if there are no observability

problems then the input portion of the label of the path

ρ̄ returned by Algorithm 4 is a checking sequence.

Theorem 1 Let us suppose that x̄/ȳ is the label of the

path ρ̄ returned by Algorithm 4. If x̄/ȳ is the label of a

path from the initial state of SUT N ∈ ΦM then N is

globally equivalent to M .

Proof

This follows from Proposition 12. �

We can now state the complexity of the test genera-

tion process7.

Theorem 2 Let us suppose that x̄/ȳ is the label of the

path ρ̄ returned by Algorithm 4. Let d = max{|D̄1|, . . . ,

|D̄r|}. Then ρ̄ has length of O(n(n + d)(|X| + r))).

Observe that if we fix the number of ports, and thus

fix an upper bound on r, this gives the same complexity

as algorithms for producing a checking sequence from a

single-port FSM using a distinguishing sequence (see, for

example, [19,15,44,23]).

5 Overcoming observability problems

We have seen how, under certain conditions, it is possi-

ble to produce a checking sequence that has no control-

lability problems. This section describes an approach to

augmenting this checking sequence for the case where

there can be observability problems. First note that,

since there can be observability problems, in order to

distinguish states it is necessary to locally distinguish

them and so we assume that the set D contains locally

distinguishing sequences. Since the problem of checking

the output of the transitions without encountering ob-

servability problems has already been considered [5–7]

we concentrate on the problem of ensuring that the in-

put sequence checks the state transition structure of the

SUT.

7 The proof of Theorem 2 is contained in the Appendix.
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Suppose that an input sequence D̄ locally distinguishes

states s and s′ at port p and that, if D̄ is input when M

is in state s then the sequence z̄ is observed at p and if

D̄ is input when M is in state s′ then the sequence oz̄ is

observed at p for some o ∈ Yp. Suppose further that, in

testing, we follow a transition τ = (si, s, x/y) with input

D̄ and that y|p = o. Then, if the input of x in state si

instead leads to output y′ that differs from y only at p,

where it produces −, and moves to s′ then the expected

sequence oz̄ is seen at p. Thus D̄ has failed to detect

the state transfer fault: this has been masked by an out-

put fault. Naturally, similar problems can occur due to

incorrect output after the application of D̄.

If we consider the label z̄ of a synchronizable path ρ̄ of

M and the projection πp(z̄) observed at port p, this can

be represented as πp(z̄) = ō1x1ō2 . . . ōkxkōk+1 for some

ō1, . . . , ōk+1 ∈ Y ∗
p and x1, . . . , xk ∈ Xp. Each transition

in the path ρ̄ has (possibly null) output at p that falls

into one of the ōi and so for each transition in ρ̄ there

is a corresponding ōi. The output sequences ō1, . . . ōk+1

are separated by the inputs x1, . . . , xk at p and so there

cannot be undetectable output-shifting faults at p be-

tween two transitions whose corresponding subsequences

ōi and ōj are different (i 6= j). Naturally, there might be

undetectable output-shifting faults between two transi-

tions with the same corresponding subsequence ōi. This

observation inspires the following definition.

Definition 11 Locally distinguishing sequence D̄ = x1

. . . xk is resilient if for every pair s, s′ ∈ S, with s 6=

s′, there exists a port p and 1 ≤ i < j ≤ k, D̄ = x̄′
1

xix̄
′
2xj x̄

′
3 with xi, xj ∈ Xp and πp(γ(δ(s, x̄′

1), xix̄
′
2)) 6=

πp(γ(δ(s′, x̄′
1), xix̄

′
2)).

This says that for any pair of states, there must be a

port p such that the response to D̄i differs at p between

two inputs at p and thus this difference cannot be masked

by previous or following input at p8.

An important property of a resilient distinguishing

sequence D̄ is that for an input sequence that should

trigger the n responses to D̄ allowed by M we have that

if an SUT N ∈ ΦM passes this test we must have that

not only is D̄ a distinguishing sequence for N but it must

be a resilient distinguishing sequence for N .

Proposition 14 Suppose that ρ̄ is a path of M starting

at s1 that has input portion x̄, D̄ is a resilient locally

distinguishing sequence for M and ρ̄ contains subpaths

corresponding to the application of D̄ in each of the n

states of M . If x̄ does not locally distinguish M and N ∈

ΦM then D̄ is a resilient locally distinguishing sequence

for N .

Proposition 15 Let us suppose that D is a complete set

of resilient locally distinguishing sequences and x̄ is an

input sequence returned by Algorithm 4. If πp(γ(s1, x̄)) =

πp(γN (u1, x̄)) for all p ∈ [1,m] then D is a consistent set

of resilient locally distinguishing sequences for N .

Proof

8 The proof of Proposition 14 is in the Appendix.
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State At U At L At U At L

for abab for abab for baba for baba

s1 1b00b0 a23a22 b00b00 3a22a2

s2 1b00b0 a33a22 b01b00 2a23a2

s3 0b00b0 a22a22 b11b00 3a23a2

s4 1b01b0 a32a23 b00b00 2a22a2

Table 4 The responses to abab and baba

First note that by Proposition 14, if N ∈ ΦM and M

are not locally distinguished by x̄ then each element of D

is a resilient locally distinguishing sequence for N . The

result thus follows in a similar manner to Proposition 8.

�

Assumption 3 The elements of D are resilient locally

distinguishing sequences.

It is clear that a locally distinguishing sequence need

not be resilient. The set D given earlier for the 2-port

FSM M1 does not satisfy Assumption 3. However, as we

can see in Table 4, the sequences abab and baba do satisfy

Assumption 3.

Suppose that Algorithm 4 is applied using a set D

of resilient locally distinguishing sequences and returns

path ρ̄ whose label has input portion x̄. We define a

property of the SUT N ∈ ΦM and prove that this must

hold if x̄ does not locally distinguish N and M .

Definition 12 SUT N ∈ ΦM has the same transition

structure as M if there is a bijection f from the states

of N to the states of M such that:

1. f(u1) = s1.

2. If u is a state of N and there is a transition from u

to u′ in N with input x then M has a transition from

f(u) to f(u′) with input x.

The input sequence produced by Algorithm 4 checks

the transition structure of N 9.

Theorem 3 Suppose that Algorithm 4 is applied using

a set D of resilient locally distinguishing sequences and

returns path ρ̄ whose label has input portion x̄. If x̄ does

not locally distinguish SUT N ∈ ΦM from M then N has

the same transition structure as M .

It is now sufficient to add sequences that check the

output produced by each transition τ at each port p. The

following definition captures this requirement.

Definition 13 An input sequence x̄ checks the outputs

of M if N ∈ ΦM is globally equivalent to M whenever

the following hold

1. N has the same transition structure as M ; and

2. πp(γ(s1, x̄)) = πp(γN (u1, x̄)) for all p ∈ [1,m].

The following shows that even if there are observabil-

ity and controllability problems then we can augment the

sequences produced in Algorithm 4 with sequences that

check the output of M to form a checking sequence.

Theorem 4 If x̄ is an input sequence that checks the

output of M and starts with the label of a path of M pro-

duced by Algorithm 4 using resilient locally distinguish-

ing sequences then x̄ is a checking sequence that has no

controllability or observability problems.

9 The proof of Theorem 3 is contained in the Appendix



24

Proof

This result follows from Theorem 3 and Definition

13. �

6 Conclusions and Discussion

In the distributed test architecture a tester is placed at

each port of the SUT N . If the individual testers can-

not communicate with each other then the presence of

multiple testers introduces additional controllability and

observability problems. It is then important that any

checking sequence that we intend to use is free from such

problems.

This paper is the first to show how a single checking

sequence can be produced for a multi-port FSM without

the use of either a reliable reset operation or external

coordination messages. Since, in general, such a check-

ing sequence need not exist we introduce conditions to

be placed on the specification M under which our al-

gorithm returns checking sequences. If the distributed

test architecture is to be used then these could be seen

as testability conditions that might be designed into a

system.

This paper focused on the generation of checking

sequences since such sequences are guaranteed to pro-

vide full fault coverage under the assumption that the

SUT contains no extra states. Algorithms for generating

a checking sequence for a single-port FSM use distin-

guishing sequences, unique input/output sequences, or a

characterization set to verify states of the SUT. In this

paper we used distinguishing sequences since even for

single-port FSMs there is no checking sequence genera-

tion algorithm that uses the alternative approaches and

returns a checking sequence of length that is polynomial

in terms of the number of states.

First, we investigated the situation in which there are

no observability problems. This is the case, for example,

when there is a global clock and the SUT responds to

inputs sufficiently quickly so that the next input is not

applied until after all of the outputs from the previous

inputs have been observed. In such a case observability

problems can be overcome by the testers timestamping

the events they see and so there are no additional observ-

ability problems. We showed how multiple distinguishing

sequences can be used in forming a checking sequence

that does not suffer from controllability problems.

If there are observability problems then these can

lead to fault masking and thus to incorrect output not

being observed. We showed how the checking sequence

can be extended to create a checking sequence that does

not suffer from either controllability or observability prob-

lems.

This paper has shown how checking sequences can

be produced for multi-port FSMs. There remain four

main avenues for future work. There is the question as to

whether the conditions given in this paper, under which

checking sequences are produced, can be weakened. An-

other question is how to optimize the resultant check-
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ing sequence such that significantly shorter checking se-

quences can be constructed. This may be achieved by

solving an optimization problem posed considering the

following. First, the selection of the transition sequences

used to verify the distinguishing sequences. The second

issue is the selection of the subsets and the choice of

distinguishing sequences used in forming paths to verify

the distinguishing sequences. Similar choices are needed

in the generation of transition sequences to verify the

transitions and additional choices are required when con-

sidering potential observability problems. There is also

the issue of how we can produce a minimal length se-

quence that contains the necessary subsequences. There

is the issue of generating resilient locally distinguishing

sequences for which a possibly breadth-first search can

be used. There may also be scope in adding input to the

end of a locally distinguishing sequence in order to make

it resilient. Finally, distributed systems are often non-

deterministic and it would thus be interesting to extend

the approach to such systems, potentially by either using

methods such as deterministic testing (see, for example,

[18,26,34,35]) in order to ensure that the SUT is deter-

ministic in testing or by using methods from the area

of testing from nondeterministic FSMs (see, for example

[21,27,38–40]).
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Appendix

Proof of Proposition 8

By Proposition 7 it is sufficient to prove that for all

i ∈ [1, r], x̄ verifies D̄i relative to D̄1. Proof by induc-

tion on i: the base case with i = 1 follows immediately.

Inductive hypothesis: for i < h (h ≤ r), x̄ verifies D̄i

relative to D̄1. It is now sufficient to prove that x̄ verifies

D̄h relative to D̄1.

First observe that the subsequences include the in-

put/output sequence D̄h/λ(s, D̄h) for each state s of M

and thus, if contained in the label of a path of N , verify

that D̄h is a distinguishing sequence for N . Now consider

some state u of N that is recognized as state sk of M by

D̄1. There are two cases to consider.

1. sk ∈ Sh. Then we have two paths with labels D̄a/

λ(s, D̄a)T̄h
k D̄j/λ(sk, D̄j) and D̄a/λ(s, D̄a)T̄h

k D̄h/λ(sk, D̄h)

for some s ∈ S and D̄a and D̄j with 1 ≤ a, j < h.

By the inductive hypothesis, if these input/output

subsequences label paths of N then their input por-

tions are applied in a state u of N recognized as s

by D̄1 and the path from u whose label is the in-

put/output sequence D̄a/λ(s, D̄a)T̄h
k takes N to a

state uk recognized as sk by D̄j and thus by D̄1. Thus,

D̄h/λ(sk, D̄h) labels a path from uk as required.

2. sk 6∈ Sh. First note that every other state u of N is

recognized as some unique state s of M by both D̄h

and D̄1. The result follows from observing that there

is one remaining output sequence λ(sk, D̄h) produced

by N in response to D̄h; by a process of elimination

this can only occur at a state uk recognized as sk by

D̄1.

�

Proof of Theorem 2

By Proposition 9, Algorithm 2 returns O(nr) sequences

with total length of O(nrd). By Proposition 13, Algo-

rithm 3 returns O(n|X|) paths whose total length is of

O(n|X|d). Thus ρ̄ is produced by connecting O(nr +

n|X|) paths whose total length is of O(nrd + n|X|d).

Each path added to connect the paths in R has length of

O(n) and thus the total length of the paths added to con-

nect those in R is of O(n(nr +n|X|)). Thus ρ̄ has length

of O(n(nr+n|X|)+nrd+n|X|d) = O((n+d)(nr+n|X|).

�

Proof of Proposition 14

Let x̄1, . . . , x̄n denote prefixes of x̄ such that in ρ̄

each is followed by the input of D̄ and δ(s1, x̄α) = sα

(1 ≤ α ≤ n). Let uα denote the state δN (u1, x̄α) of N
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(1 ≤ α ≤ n). Consider arbitrary states uα and uβ with

1 ≤ α < β ≤ n.

Since D̄ = x1 . . . xk is a resilient locally distinguish-

ing sequence for M there exists port p and 1 ≤ i < j ≤ k,

D̄ = x̄′
1xix̄

′
2xj x̄

′
3 with xi, xj ∈ Xp and πp(γ(δ(sα, x̄′

1), xix̄
′
2))

6= πp(γ(δ(sβ , x̄′
1), xix̄

′
2)). Since M and N are not locally

distinguished by x̄, the response of N to D̄ in states uα

and uβ must include the substrings πp(γ(δ(sα, x̄′
1), xix̄

′
2))

and πp(γ(δ(sβ , x̄′
1), xix̄

′
2)) respectively after the prefix x̄′

1

of D̄. Further, these subsequences start with and are fol-

lowed by input at p. Thus, uα and uβ are locally distin-

guished by D̄ as required. By the definition of a locally

distinguishing sequence being resilient, since this holds

for every pair of distinct states of N , D̄ is a resilient

locally distinguishing sequence for N . �

Proof of Theorem 3

By Proposition 15, D is a consistent set of resilient

locally distinguishing sequences for N . Define a function

f from S to U by: given u ∈ U of N , f(u) = s if and

only if u is reached by some prefix x̄u of x̄ such that

δ(s1, x̄u) = s and x̄u is followed by an element of D in x̄.

Since N has no more states than M and D is a consis-

tent set of resilient locally distinguishing sequences for

both M and N , f is a bijection. Proof by contradiction:

suppose that x̄ does not locally distinguish N from M

and N does not have the same transition structure as

M .

Since x̄ does not locally distinguish N from M and

x̄ starts with some D̄i ∈ D, f(u1) = s1. Thus, since N

does not have the same transition structure as M , there

is a state u of N and a transition from u to u′ in N with

input x such that M does not have a transition from

f(u) to f(u′) with input x. Let s = f(u), s′ = f(u′), and

s′′ = δ(s, x) (s′ 6= s′′).

Applying x̄ to M produces a synchronizable transi-

tion sequence that includes subsequences defined by:

1. The input/output sequence D̄a/λ(si, D̄a)T̄ x/yD̄b/λ(s′′, D̄b)

from state si; and

2. The input/output sequence D̄a/λ(si, D̄a)T̄ D̄c/λ(s, D̄c)

from state si

for some output y and state si of M such that D̄a/λ(si, D̄a)T̄

labels a path from si to s. Since the distinguishing se-

quences in D are resilient and x̄ does not locally distin-

guish M and N , in N the sequence D̄a/λ(si, D̄a)T̄ labels

a path from the state ui of N with f(ui) = si to u. Fur-

ther, since D̄a/λ(si, D̄a)T̄ x/yD̄b/λ(s′′, D̄b) labels a path

in N , D̄a/λ(si, D̄a)T̄ x/y goes from ui to the state u′′ of

N with f(u′′) = s′′. Thus, if N receives input x when

in state u it moves to state u′′. Since N is deterministic,

u′ = u′′ and so s′ = s′′. This provides a contradiction as

required. �


