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Abstract In this paper, the Dirichlet boundary value problem for the second or-
der stationary diffusion elliptic partial differential equation with variable coefficient
is considered in unbounded (exterior) two dimensional domain. Using an appro-
priate parametrix (Levi function), this problem is reduced to some direct segregated
Boundary-Domain Integral Equations (BDIEs). We investigate the properties of cor-
responding parametrix-based integral volume and layer potentials in some weighted
Sobolev spaces, as well as the unique sovability of BDIEs and their equivalence to
the original BVP.

1 Basic Notations and Function Spaces

Let Ω = Ω+ be an unbounded open domain in R2 such that the complement
Ω− := R2 \Ω is bounded open domain. Let the boundary ∂Ω = ∂Ω− be closed
and infinitely smooth curve. The space of infinitely differentiable functions having
compact support in Ω is denotes by D(Ω) and its dual space, the space of distri-
butions, by D ′(Ω), while D(Ω̄) is the set of restrictions on Ω̄ of functions from
D(R2). The spaces Hs(Ω) , Hs(∂Ω) denote the Sobolev (Bessel potential) spaces.

We shall consider the following second order partial differential equation, with
variable coefficient

Au(x) :=
2

∑
i=1

∂

∂xi

(
a(x)

∂u(x)
∂xi

)
= f (x) x ∈Ω , (1)
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where u is unknown function; f (x) and a(x)> a0 > 0 are given functions in Ω .
We will further use the weighted Sobolev spaces. Let

ρ2(x) := (1+ |x|2)1/2 ln(2+ |x|2). (2)

For any real β , we denote by L2(ρ
β

2 ;Ω) the weighted Lebesgue space (see, e.g., [7])
consisting of all measurable functions g(x) on Ω such that gρ

β

2 ∈ L2(Ω), i.e.,

‖g‖2
L2(ρ

β

2 ;Ω)
=
∫

Ω

∣∣∣g(x)ρβ

2 (x)
∣∣∣2 dx < ∞.

The space L2(ρ
β

2 ;Ω), equipped with the norm ‖ · ‖
L2(ρ

β

2 ;Ω)
and appropriate inner

product, is a Hilbert space.
The weighted Sobolev space H 1(Ω) is defined by

H 1(Ω) :=
{

g ∈ L2(ρ
−1
2 ;Ω) : ∇g ∈ L2(Ω)

}
, (3)

and for its norm we have ‖g‖2
H 1(Ω)

:= ‖g‖2
L2(ρ

−1
2 ;Ω)

+‖∇g‖2
L2(Ω), while |g|2

H 1(Ω)
:=

∑
2
i=1
∫

Ω
| ∂g

∂xi
|2dx = ‖∇g‖2

L2(Ω) is the square of the semi-norm. The space D(R2) is
dense in H 1(R2), see e.g., [1, Theorem 7.2]. This implies that the dual space of
H 1(R2), denoted by H −1(R2), is a space of distributions. Using the corresponding
property for the space H1(Ω), one can prove that D(Ω̄) is dense in H 1(Ω). The
trace operator γ+ on ∂Ω defined on functions from H 1(Ω), satisfies the usual trace
theorems. This allows to define in particular the subspace

H 1
0 (Ω) =

{
g ∈H 1(Ω) : γ

+g = 0
}
.

It can be proved that D(Ω) is dense in H 1
0 (Ω) and therefore, its dual space is a

space of distributions. Let us denote by H̃ 1(Ω) a completion of D(Ω) in H 1(R2),
and H̃ −1(Ω) := [H 1(Ω)]′, H −1(Ω) := [H̃ 1(Ω)]′ are the corresponding dual
spaces. The inclusion L2(ρ2;Ω) ⊂H −1(Ω) holds and a distribution f in the dual
space H̃ −1(Ω) has the form f = ∑

2
i=1

∂gi
∂xi

+ f0, where gi ∈ L2(R2) and is zero
outside Ω , f0 ∈ L2(ρ2;Ω), cf. e.g., [12, Eq. (2.5.129)]. This implies that D(Ω) is
dense in H̃ −1(Ω) and D(R2) is dense in H −1(R2).

From Definition (3) we obtain the following assertion.

Lemma 1. The space H 1(Ω) contains constant functions.

Lemma 1 implies that, the space of real constants, R, is a closed subspace of
H 1(Ω). Thus we can define the quotient space H 1(Ω)/R, which is a Banach
space, and its norm is given by ‖u + R‖H 1(Ω)/R = infc∈R ‖u + c‖H 1(Ω). The

dual space
(
H 1(Ω)/R

)′ is identified with H̃ −1(Ω) ⊥ R, i.e.,
(
H 1(Ω)/R

)′
=

H̃ −1(Ω)⊥R since they are isometrically isomorphic (see e.g., [8, Lemma 2.12(ii)]).

Similarly,
(
H̃ 1(Ω)/R

)′
= H −1(Ω)⊥ R.
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The following Poincaré-type inequalities hold (cf. [2, Theorems 1.1 and 1.2]).

Theorem 1. (i) The semi-norm | · |H 1(Ω) defined on H 1(Ω)/R is a norm equiva-
lent to the quotient norm, i.e., there exist positive constants c1,C1 such that

c1|v|H 1(Ω) ≤ ‖v‖H 1(Ω)/R ≤C1|v|H 1(Ω).

(ii) Moreover, the semi-norm | · |H 1(Ω) is a norm on H 1
0 (Ω) equivalent to the norm

‖ · ‖H 1(Ω), i.e., there exist positive constants c2,C2 such that

c2|v|H 1(Ω) ≤ ‖v‖H 1
0 (Ω) ≤C2|v|H 1(Ω).

For u ∈H 1(Ω) and the coefficient a(x)∈ L∞(Ω), PDE (1) is well defined in the
distributional sense as 〈Au,v〉Ω := −〈a∇u,∇v〉Ω = −E (u,v), for any v ∈ D(Ω),
where E (u,v) :=

∫
Ω

E(u,v)(x)dx, E(u,v)(x) := ∇v(x) ·a(x)∇u(x). Unless stated
otherwise we henceforth assume that there are some constants a0,a1 such that

a ∈ L∞(R2) and 0 < a0 < a(x)< a1 < ∞ for a.e x ∈ R2. (4)

To obtain boundary-domain integral equations, we will also always consider the
coefficient a such that

a ∈C1(R2) and ρ2∇a ∈ L∞(R2). (5)

If u ∈ H1(Ω), then u ∈ H 1(Ω), from the trace theorem it follows that, γ+u ∈
H

1
2 (∂Ω), where γ+ = γ

+
∂Ω

is the trace operator on ∂Ω from the exterior domain
Ω+.

For the operator A, similar to [4] for the three dimensional case, we introduce the
space, H 1,0(Ω ;A) := {g ∈H 1(Ω) : Ag ∈ L2(ρ2;Ω)}, where the norm is given by
its square, ‖g‖2

H 1,0(Ω ;A) := ‖g‖2
H 1(Ω)

+‖Ag‖2
L2(ρ2;Ω). For u∈H 1,0(Ω ;A), as in the

3D case, [4], we define the canonical co-normal derivative T+u∈H−
1
2 (∂Ω) similar

to, for example in [5, Lemma 3.2] and [8, Lemma 4.3] as

〈T+u,ω〉∂Ω :=
∫

Ω

[(γ+−1ω)Au+E(u,γ+−1ω)]dx ∀ω ∈ H
1
2 (∂Ω), (6)

where γ
+
−1 : H

1
2 (∂Ω)→H 1(Ω) is a bounded right inverse to the trace operator

γ+ : H 1(Ω) → H
1
2 (∂Ω), and 〈·, ·〉∂Ω denotes the duality brackets between the

spaces H−
1
2 (∂Ω) and H

1
2 (∂Ω) which extends the usual L2(∂Ω) scalar product.

The operator T+ : H 1,0(Ω ;A)→ H−
1
2 (∂Ω) is continuous and gives the contin-

uous extension to H 1,0(Ω ;A) of the classical co-normal derivative operator a ∂

∂n ,
where ∂

∂n = γ+∇ ·n and n = n+ is normal vector on ∂Ω directed outward the exte-
rior domain Ω .

Similar to the proofs available in [5, Lemma 3.4] (see also [10] for the spaces
Hs,t(Ω ;A)), one can prove that for u ∈H 1,0(Ω ;A) the first Green identity
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〈T+u,γ+v〉∂Ω =
∫

Ω

[vAu+E(u,v)]dx ∀v ∈H 1(Ω) (7)

holds true. Then, for any functions u,v ∈H 1,0(Ω ;A) we have the second Green
identity, ∫

Ω

[vAu−uAv]dx = 〈T+u,γ+v〉∂Ω −〈T+v,γ+u〉∂Ω . (8)

Remark 1. If a satisfies condition (4) and the second condition in (5), then ‖ga‖H 1(Ω)≤
C1‖g‖H 1(Ω),‖g 1

a‖H 1(Ω)≤C2‖g‖H 1(Ω), where the constant C1 and C2 are indepen-
dent of g ∈H 1(Ω), this means, a and 1/a are multipliers in the space H 1(Ω).

Let us introduce the following subspaces

L2(ρ2;Ω)⊥ R := { f ∈ L2(ρ2;Ω) : 〈 f ,1〉Ω = 0}
H 1,0⊥(Ω ;A) := {g ∈H 1(Ω) : Ag ∈ L2(ρ2;Ω)⊥ R},

H
− 1

2∗ (∂Ω) :=
{

ψ ∈ H−
1
2 (∂Ω) : 〈ψ,1〉

∂Ω
= 0
}
.

Employing the first Green identity (7) with v = 1, we arrive at the following asser-
tion.

Lemma 2. If u ∈H 1,0⊥(Ω ;A) then T+u ∈ H
− 1

2∗ (∂Ω).

2 Dirichlet BVP in Exterior Domain

Given f ∈ L2(ρ2;Ω) and ϕ0 ∈H
1
2 (∂Ω), find a function u ∈H 1,0(Ω ;A) such that:

Au = f in Ω , (9)
γ
+u = ϕ0 on ∂Ω . (10)

Let us denote by AD = [A,γ+]T : H 1,0(Ω ;A)→ L2(ρ2;Ω)×H
1
2 (∂Ω), the left-

hand side operator, which is evidently continuous. Similar to the proof in [4] for the
three-dimensional case, one can prove the following assertion in the 2D case.

Theorem 2. Under conditions (4), the Dirichlet problem (9)-(10) is uniquely solv-
able and its solution can be written as u = A −1

D ( f ,ϕ0)
T , where the operator

A −1
D : L2(ρ2;Ω)×H

1
2 (∂Ω)→H 1,0(Ω) is continuous.

3 Parametrix-Based Potentials in Exterior Domain

A function P(x,y) is a parametrix (Levi function) for the operator A if AxP(x,y) =
δ (x−y)+R(x,y), where δ is the Dirac-delta distribution, while R(x,y) is a remain-
der possessing at most a weak (integrable) singularity at x = y. In particular, see e.g.,
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[9] the function

P(x,y) =
ln |x− y|
2πa(y)

, x,y ∈ R2, (11)

is a parametrix for the operator A and the corresponding remainder is given by

R(x,y) =
2

∑
i=1

xi− yi

2πa(y)|x− y|2
∂a(x)

∂xi
, x,y ∈ R2. (12)

Let u ∈ D(Ω̄). For any fixed y ∈ Ω , let Bε(y) be an open ball centered at y
with a sufficiently small radius ε > 0, and let Br(0) be an open ball centered at
the origin with a radius r large enough to contain ∂Ω and the support of u, put
Ωε := (Ω ∩Br(0)) \Bε(y), we have R(·,y) ∈ L2(ρ2;Ωε) and P(·,y) ∈H 1,0(Ωε).
Applying the second Green identity (8) in Ωε with v=P(y, ·) and taking usual limits
as ε → 0, cf. [11], we get the third Green identity in Ωr := Ω ∩Br(0),

u+Ru−V (T+u)+W (γ+u) = PAu (13)

for u ∈D(Ω̄). Here,

Pg(y) :=
∫

Ω

P(x,y)g(x)dx, Rg(y) :=
∫

Ω

R(x,y)g(x)dx, y ∈ R2, (14)

are, respectively, the parametrix-based Newtonian and remainder potentials, while

V g(y) :=−
∫

∂Ω

P(x,y)g(x)dSx, Wg(y) :=−
∫

∂Ω

[TxP(x,y)]g(x)dSx, x ∈R2 \∂Ω ,

(15)
are the parametrix-based single layer and double layer potentials. Deducing (13) we
took into account that u≡ 0 in Ω \Br(0)⊂Ω \suppu. Since no term in (13) depends
on r if r is sufficiently large, we obtain that (13) is valid in the whole domain Ω for
any u ∈D(Ω̄).

From definitions (11)-(12) and (14)-(15) one can obtain representations of the
parametrix-based potential operators in terms of their counterparts for a = 1 (i.e.,
associated with the Laplace operator ∆ ), cf. [3, 4],

Pg =
1
a
P∆ g, Rg =−1

a

2

∑
j=1

∂ j[P∆ (g∂ ja)], V g =
1
a

V∆ g, Wg =
1
a

W∆ (ag). (16)

The Newtonian and the remainder potential operators given by (14) for Ω =R2 will
be denoted as P and R, respectively, and the relations similar to (16) hold for them
as well.

In addition to conditions (4) and (5) on the coefficient a, we will sometimes also
need the condition

ρ
2
2 ∆a ∈ L∞(R2). (17)
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Employing that the corresponding mapping properties hold true for the potentials
associated with the Laplace operator ∆ , cf. eg. Section 8 in [13] and references
therein, relations (16) lead to the following assertion.

Theorem 3. The following operators are continuous under conditions (5).

P : H −1(R2)⊥ R→H 1(R2), (18)

P : H̃ −1(Ω)⊥ R→H 1(R2), (19)
R : L2(w;R2)→H 1(R2), (20)

V : H
− 1

2∗ (∂Ω)→H 1(Ω), (21)

W : H
1
2 (∂Ω)→H 1(Ω), (22)

while the following operators are continuous under conditions (5) and (17).

P : L2(ρ2;Ω)⊥ R→H 1,0(R2;A), (23)
R : H 1(Ω)→H 1,0(Ω ;A), (24)

V : H
− 1

2∗ (∂Ω)→H 1,0(Ω ;A), (25)

W : H
1
2 (∂Ω)→H 1,0(Ω ;A). (26)

Similar to [10, Theorem 3.12] one can prove that D(Ω̄) is dense in H 1,0(Ω ;A)
and in H 1,0⊥(Ω ;A). Then Theorem 3 and Lemma 2 imply the following assertion.

Corollary 1. The third Green identity (13) holds true for any u ∈H 1,0⊥(Ω ;A).

The boundary integral (pseudo-differential) operators of the direct values and of
the co-normal derivatives of the single and double layer potentials are defined by

V g(y) := −
∫
Γ

P(x,y)g(x)dsx, W g(y) :=−
∫
Γ

TxP(x,y)g(x)dsx y ∈ Γ ,

W ′g(y) := −
∫
Γ

TyP(x,y)g(x)dsx L ±g(y) := T±y Wg(y) y ∈ Γ .

Applying the trace and co-normal derivative operators to the third Green identity
(13), and using the jump relations for the potential operators we obtain for u ∈
H 1,0⊥(Ω ;A),

1
2

γ
+u+ γ

+Ru−V T+u+W γ
+u = γ

+PAu on ∂Ω , (27)

1
2

T+u+T+Ru−W ′T+u+L +
γ
+u = T+PAu on ∂Ω . (28)

Conditions (5) are assumed to hold for (27) and conditions (5) and (17) for (28).
For some functions f , Ψ and Φ let us consider a more general indirect integral

relation associated with equation (13).
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u+Ru−VΨ +WΦ = P f in Ω . (29)

Lemma 3. Let u ∈H 1,0⊥(Ω ;A), f ∈ L2(ρ2;Ω) ⊥ R , Ψ ∈ H
− 1

2∗ (∂Ω), and Φ ∈
H

1
2 (∂Ω) satisfy equation (29) and let conditions (5), (17) hold. Then, u is a solution

of the equation
Au = f in Ω , (30)

while
V (Ψ −T+u)−W (Φ− γ

+u) = 0, in Ω . (31)

Proof. Since u ∈H 1,0⊥(Ω ;A), we can write the third Green identity (13) for the
function u. Then subtracting (29) from it, we obtain

−VΨ
∗+WΦ

∗ = P[Au− f ] in Ω , (32)

where Ψ ∗ := T+u−Ψ and Φ∗ := γ+u−Φ . Multiplying equality (32) by a(y) we
get

−V∆Ψ
∗+W∆ (aΦ

∗) = P∆ [Au− f ] in Ω .

Applying the Laplace operator ∆ to the last equation and taking into consideration
that both functions in the left-hand side are harmonic potentials, while the right-hand
side function is the classical Newtonian potential, we arrive at Eq. (30). Substituting
(30) back into (32) leads to (31). ut

Lemma 4. Let conditions (5) and (17) hold.

(i) If Ψ ∗ ∈ H
− 1

2∗ (∂Ω) and VΨ ∗ = 0 in Ω , then Ψ ∗ = 0.
(ii) If Φ∗ ∈ H

1
2 (∂Ω) and WΦ∗(y) = 0 in Ω , then Φ∗(x) = C/a(x), where C is a

constant.

Proof. The proof of item (i) coincides with the proof of its counterpart for interior
domains in ([6]), while the proof of item (ii) is similar to the proof for the 3D case
in [4, Lemma 4.2]. ut

4 BDIEs for Exterior Dirichlet BVP

To reduce the variable-coefficient Dirichlet BVP (9)-(10) to a segregated boundary-
domain integral equation systems, let us denote the unknown conormal derivative
as ψ := T+u ∈ H−

1
2 (∂Ω) and further consider ψ as formally independent of u.

For a given function f in L2(ρ2;Ω) ⊥ R, assume that the function u satisfies
the PDE Au = f in Ω . Then by substituting the Dirichlet condition into the third
Green identity (13) and either into its trace (27) or into its co-normal derivative
(28) on ∂Ω , we can reduce the BVP (9)-(10) to two different systems of Boundary-
Domain Integral Equations for the unknown functions u ∈ H 1(Ω ;A) and ψ :=
T+u ∈ H−

1
2 (∂Ω).
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BDIE system (D1) obtained under conditions (5) from the third Green’s identity
(13) and its trace equation (27) is

u+Ru−V ψ = F0 in Ω ,

γ
+Ru−V ψ = γ

+F0−ϕ0 on ∂Ω ,

where
F0 := P f −Wϕ0 in Ω . (33)

The system can be written in a matrix form as D1U = F 1, where

U := [u,ψ]t ∈H 1,0(Ω ;A)×H−
1
2 (∂Ω),

and

D1 :=
[

I +R −V
γ+R −V

]
, F 1 =

[
F0

γ+F0−ϕ0

]
. (34)

From the mapping properties of W and P in Theorem 3, we get the inclusion
F0 ∈ H 1,0(Ω ;A), and the trace theorem implies γ+F0 ∈ H

1
2 (∂Ω). Therefore,

F 1 ∈H 1(Ω)×H
1
2 (∂Ω).

BDIE system (D2) obtained under conditions (5) and (17) form the third Green’s
identity (13) and its co-normal derivative equation (28) is

u+Ru−V ψ = F0 in Ω ,

1
2

ψ +T+Ru−W ′
ψ = T+F0 on ∂Ω ,

where F0 is given by (33). In a matrix form it can be written as D2U = F 2, where

D2 =

[
I +R −V
T+R 1

2 I−W ′

]
, F 2 =

[
F0

T+F0

]
.

Note that the operator D2 : H 1,0(Ω ;A)×H
− 1

2∗ (∂Ω)→H 1,0(Ω ;A)×H−
1
2 (∂Ω)

is bounded.

5 Equivalence and Uniqueness Theorems

Theorem 4. Let ϕ0 ∈ H
1
2 (∂Ω), f ∈ L2(ρ2;Ω) ⊥ R, and conditions (5) and (17)

hold.

(i) If some u ∈H 1,0⊥(Ω ;A) solves the BVP (9)-(10), then the pair (u,ψ), where

ψ = T+u ∈ H
− 1

2∗ (∂Ω), (35)



Boundary-Domain Integral Equations in 2D 9

solves BDIE systems (D1) and (D2).

(ii) If a pair (u,ψ) ∈ H 1,0⊥(Ω ;A)×H
− 1

2∗ (∂Ω) solves BDIE system (D1), then
u solves BDIE system (D2) and BVP (9)-(10), this solution is unique, and ψ

satisfies (35).

Proof. (i) Setting ψ := T+u and recalling how BDIE system (D1) and (D2) were
constructed, we obtain that the couple (u,ψ) solves them.

(ii) Let now a pair (u,ψ) ∈H 1,0⊥(Ω ;A)×H
− 1

2∗ (∂Ω) solves system (D1). Due
to the first equation in the BDIE systems, the hypotheses of Lemma 3 are satisfied
implying that u solves PDE (9) in Ω and

V (ψ−T+u)−W (ϕ0− γ
+u) = 0 in Ω . (36)

Taking the trace of the first equation in (D1) and subtracting the second equation
from it, we get γ+u = ϕ0 on ∂Ω . Thus, the Dirichlet boundary condition is satisfied,
and using this in (36), we obtain V (ψ−T+u) = 0 in Ω . Lemma 4 (i) then implies
ψ = T+u.

The uniqueness of the BDIE system follows from the fact that the correspond-
ing homogeneous BDIE systems can be associated with the homogeneous Dirichlet
problem, which has only the trivial solution. Then the previous paragraph implies
that the homogeneous BDIE system also have only the trivial solutions. ut

Theorem 5. Let ϕ0 ∈ H
1
2 (∂Ω), f ∈ L2(ρ2;Ω) ⊥ R, and conditions (5) and (17)

hold.

(i) Homogeneous BDIE system (D2) admits only one linearly independent solution

(u0,ψ0) ∈H 1,0⊥(Ω ;A)×H
− 1

2∗ (∂Ω), where u0 is the solution of the Dirichlet
BVP

Au0 = 0 in Ω , (37)

γ
+u0 =

1
a(x)

on ∂Ω , (38)

while
ψ

0 = T+u0 on ∂Ω . (39)

(ii) The non-homogeneous BDIE system (D2) is solvable, and any of its solutions

(u,ψ) ∈H 1,0⊥(Ω ;A)×H
− 1

2∗ (∂Ω) can be represented as

u = ũ+Cu0 in Ω , (40)

where ũ solves BVP (9)-(10) and C is a constant, while

ψ = T+ũ+Cψ
0 on ∂Ω . (41)

Proof. Problem (37)-(38) is uniquely solvable in H 1,0⊥(Ω ;A) by Theorem 2. Con-
sequently, the third Green identity (13) is applicable to u0, leading to
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u0 +Ru0−V ψ
0 = 0 in Ω . (42)

Taking the co-normal derivative of (42) and substituting (39) again, we arrive at

1
2

ψ
0 +T+Ru0−W ′

ψ
0 = 0 on ∂Ω . (43)

Equation (42) and (43) means that the pair (u0,ψ0) solves the homogeneous BDIE
system (D2).

To prove item (ii), we first remark that the solvability of non-homogeneous sys-
tem (D2) follows from the solvability of the BVP (9)-(10) in H 1,0⊥(Ω ;A) and the
deduction of system (D2).

Let now a pair (u,ψ)T ∈H 1,0⊥(Ω)×H
− 1

2∗ (∂Ω) solves BDIE system (D2). Due
to the first equation in the BDIE systems, Lemma 3 implies that u solves PDE (9)
in Ω and relation (36) holds. Taking the co-normal derivative of the first equation in
(D2) on ∂Ω and subtract it from the second equation in (D2), we obtain ψ = T+u
on ∂Ω . Then inserting this in (36) gives W (ϕ0− γ+u) = 0, in Ω , and Lemma 4(ii)
implies

γ
+u = ϕ0 +C/a(x) on ∂Ω , (44)

where C is a constant. Thus, u satisfies the Dirichlet condition (44) instead of (10).
Introducing the notation ũ by (40) in (44) and taking into account (37)-(38) prove
the claim of item (ii). ut
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