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Recursive Filtering for Time-Varying Systems
with Random Access Protocol

Lei Zou, Zidong Wang, Qing-Long Han and Donghua Zhou

Abstract—This paper is concerned with the recursive filtering
problem for a class of networked linear time-varying systems
subject to the scheduling of the Random Access Protocol (RAP).
The communication between the sensors nodes and the remote
filter is implemented via a shared network. For the purpose
of preventing the data from collisions, only one sensor node
is allowed to get access to the network at each time instant.
The transmission order of sensor nodes is orchestrated by
the RAP scheduling, under which the selected nodes obtaining
access to the network could be characterized by a sequence of
independent and identically-distributed (i.i.d) variables. The aim
of the addressed filtering problem is to design a recursive filter
such that the filtering error covariance could be minimized by
properly designing the filter gain at each time instant. The desired
filter gain is calculated recursively by solving two Riccati-like
difference equations. Furthermore, the boundedness issue of the
corresponding filtering error covariance is investigated. Sufficient
conditions are obtained to ensure the lower and upper bounds of
the filtering error covariance. Two illustrative examples are given
to demonstrate the correctness and effectiveness of our developed
recursive filtering approach.

Index Terms—Recursive filtering; Random access protocol;
Networked systems; Time-varying systems; Uniform bounded-
ness.

I. INTRODUCTION

The past decades have witnessed tremendous interest in
the research of networked systems. Networked systems are
dynamical systems in which the signal transmission among
different system components is implemented over the shared
communication networks. Such networked-based communica-
tion technology enjoys many advantages including low cost,
simple installation, reduced system wiring and high reliability.
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Accordingly, networked systems have found successful appli-
cations in a broad range of fields including environmental
monitoring, industrial automation, smart grids and distribut-
ed/mobile communications. Nevertheless, the utilization of
networks has also led to certain complicated network-induced
effects which could largely jeopardize the system performance.
Such networked-induced effects include the communication
delays [2], missing measurements [9], [10], [16], signal quan-
tization [8] and channel fading effects [5]. So far, a great
deal of research results have been reported in the literature
concerning the analysis and synthesis issues for networked
systems, such as the stability analysis [11], controller design
[15], [23], parameter identification [3], state estimation [2] and
fault diagnosis [13].

Among various research results of networked systems,
filtering/state estimation is one of the mostly investigated
problems. Filtering problem is a fundamental yet hot topic in
control and signal processing communities. By now, different
filtering problems with networked-induced effects have gained
considerable research interest. On the other hand, it is worth
noting that almost all systems in practical applications have
certain time-varying parameters due to a variety of reasons
including temperature fluctuation, operation point shifting and
graduate aging of system components. As such, it is of great
importance to study the recursive filtering problems for time-
varying systems. Typical recursive filtering schemes include
the Kalman filtering [20], [21], extended Kalman filtering
[9], [10] and set-membership filtering [27], [29], [30]. Up to
now, significant research efforts have been devoted towards
the recursive filtering problems for time-varying networked
systems subject to various networked-induced effects, see [2],
[17], [18], [32] and the references therein.

An implicit assumption for most existing filtering results
on networked systems is that all the sensor nodes (connect-
ed to the network) could simultaneously get access to the
communication channel and subsequently transmit data. Such
an assumption, unfortunately, is fairly unrealistic in many
engineering practice due to the fact that simultaneous multiple
access over a shared communication channel would lead to
inevitable data collisions. For the purpose of “protecting”
transmissions from data collisions, various communication
protocols have been developed to orchestrate the transmission
order of network nodes. The widely employed communication
protocols in practice include, but are not limited to, the Round-
Robin protocol [25], [34], the Try-Once-Discard protocol [7],
[33], and the Random Access Protocol (RAP) [24], [35].
Among these communication protocols, the RAP has been
a preferred one in industry. For example, the well-known
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carrier-sense multiple access (CSMA) protocol belongs to the
RAP category. It is worth mentioning that, for control/filtering
problems with protocol scheduling, the utilization of the
communication protocol would give rise to some specific
protocol-induced constraints which, in turn, has an impact on
the control/filtering performance. Up to now, the analysis and
synthesis problems of networked systems subject to various
communication protocols have begun to stir some initial
research interest, see e.g. [6], [14], [26], [31]. Unfortunately,
to the best of the authors’ knowledge, the recursive filtering
problem for networked systems subject to RAP scheduling has
not been fully investigated despite its clear engineering insight
in both control and communication areas, and this gives rise
to the main motivation of the current study.

Summarizing the above discussions, in this paper, we aim to
deal with the recursive filtering problem for networked time-
varying systems subject to the RAP scheduling. This is a non-
trivial problem because of two challenges identified as follows:
1) how to design a recursive filter for networked time-varying
systems subject to the RAP scheduling? 2) how to deal with
the boundedness analysis issue of the filtering error covariance
for the networked time-varying systems? It is, therefore, the
main purpose of this paper to offer satisfactory answers to
the two questions. The primary contributions of this paper
are highlighted as follows. 1) The recursive filtering problem
is, for the first time, investigated for networked time-varying
systems with the RAP scheduling. 2) The design procedure of
the filter gain is implemented in a recursive manner which is
suitable for online applications. 3) Sufficient conditions are
obtained for the proposed recursive filtering approach under
which the filtering error covariance is bounded.

Notations: The notation used here is fairly standard except
where otherwise stated. Rn and R

n×m denote, respectively,
the n dimensional Euclidean space and set of all n × m

real matrices. The notation X ≥ Y (X > Y ), where X

and Y are real symmetric matrices, means that X − Y is
positive semi-definite (positive definite). Prob{·} means the
occurrence probability of the event “·”. E{x} and E{x|y} will,
respectively, denote the expectation of the stochastic variable
x and expectation of x conditional on y. 0 represents the zero
matrix of compatible dimension. The n-dimensional identity
matrix is denoted as In or simply I , if no confusion is caused.
The shorthand diag{· · · } stands for a block-diagonal matrix.
‖x‖ refers to the Euclidean norm of a vector x. ‖A‖ denotes
the spectral norm of the matrix A. MT ∈ R

n×m represent
the transpose of the matrix M ∈ R

m×n. The Kronecker delta
function δ(a) is a binary function that equals 1 if a = 0 and
equals 0 otherwise.

II. PROBLEM FORMULATION AND
PRELIMINARIES

A. The Random Access Protocol
Consider a networked system with N nodes (labeled as

{1, 2, · · · , N}) where nodes transmit their data via a shared
communication network. In order to prevent the data from
collisions during transmission, only one sensor node is per-
mitted to send data via the communication network at each
transmission instant. According to such a network access

constraint, various scheduling protocols have been utilized to
orchestrate the transmission order of nodes. In this paper, the
Random Access Protocol (RAP) is employed to schedule the
data transmissions.

Let ξ(k) ∈ {1, 2, · · · , N} be the selected node obtaining
access to the communication network at time instant k. As
shown in [24], {ξ(k)}k≥0 could be regarded as a sequence
of random variables due to the scheduling behavior of the
RAP, in which all the random variables are assumed to be
mutually independent. The occurrence probability of ξ(k) = i

(∀i ∈ {1, 2, · · · , N}) is given by

Prob{ξ(k) = i} = pi (1)

where pi > 0 (i ∈ {1, 2, · · · , N}) is the occurrence proba-
bility for the node i to be selected to transmit data via the
communication network and

∑N

i=1 pi = 1.
Remark 1: The so-called Random Access Protocol (RAP)

is also known as the Stochastic Communication Protocol,
which has been first studied in [24] for continuous-time
systems and [7] for discrete-time systems. The RAP is a
frequently used scheduling protocol to resolve the network
access constraint especially in wireless communications. The
well-known carrier-sense multiple access (CSMA) protocol is
a good example of various RAPs used in industry. Generally
speaking, there are two different stochastic processes charac-
terizing the scheduling behavior of the RAP. The first one
is the independent and identically-distributed (i.i.d) sequence
of random variables [24], and the other one is the discrete-
time Markov chain [7]. In [24], for a V-link networked control
system, the matrices {Qi}i≥0 have been assumed to be i.i.d
random matrices taking values in a finite set. It has been
observed from [24], such an i.i.d model could describe the
scheduling behavior of the p-persistent CSMA protocol, which
is a typical RAP. In this paper, we adopt the i.i.d sequence of
random variables to model the RAP scheduling behavior.

B. The System Model and Communication Model
The plant under consideration is a linear time-varying

system described by the following state-space model:
{

xk+1 = Akxk +Bkωk

yk = Ckxk + νk
(2)

where xk ∈ R
nx and yk ∈ R

ny denote, respectively, the
system state and the measurement output before transmitted
through the communication network. ωk ∈ R

nω and νk ∈ R
nν

represent the process and measurement noises, respectively.
The parameters Ak, Bk and Ck are real-valued time-varying
matrices of appropriate dimensions.

The initial state x0, the process noise ωk and the mea-
surement noise νk are mutually uncorrelated and have the
following statistical properties:

E{ωk} = E{νk} = 0, E{x0} = x̄0, E
{

ωkω
T
k

}

= Qk,

E
{

(x0 − x̄0)(x0 − x̄0)
T
}

= P0|0, E
{

νkν
T
k

}

= Rk

(3)

where P0|0 > 0, Qk > 0 and Rk > 0 are known matrices
with appropriate dimensions.

We are now ready to introduce the signal transmission over
the communication network. Without loss of generality, it is
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assumed that sensors of the system are grouped into N sensor
nodes according to their spatial distribution. As such, for
technical analysis, the measurement output before transmitted
can be rewritten as yk =

[

yT1,k yT2,k · · · yTN,k

]T
where

yi,k (i ∈ {1, 2, · · · , N}) is the measurement of the i-th sensor
node before transmitted.

The communication between the sensors and the remote
filter is scheduled by the RAP. For the sake of examin-
ing the influence of communication protocols, let ξ(k) ∈
{1, 2, · · · , N} be the selected sensor node obtaining access
to the communication network at time instant k. As shown in
subsection II-A, ξ(k) ∈ {1, 2, · · · , N} could be modeled as
a sequence of random variables. Assume that ξ(k) (k ∈ N

+)
is independent of all noise signals. Denote the measurement
output after transmitted through the network by

ȳk ,
[

ȳT1,k ȳT2,k · · · ȳTN,k

]T
∈ R

ny .

Then, the updating rule of ȳi,k (k ∈ N
+, i ∈ {1, 2, · · · , N})

subject to the RAP scheduling is set to be

ȳi,k =

{

yi,k, if i = ξ(k), k ≥ 0
0, otherwise.

(4)

According to the updating rule (4), it can be seen that
{

ȳk = Φξ(k)yk, if k ≥ 0
ȳk = 0, otherwise

(5)

where Φξ(k) = diag{δ(ξ(k)−1)I, δ(ξ(k)−2)I, · · · , δ(ξ(k)−
N)I} (1 ≤ i ≤ N ) and δ(·) ∈ {0, 1} is the Kronecker delta
function.

C. The Recursive Filter
In this paper, we shall adopt the Kalman-type filtering

approach to design a recursive filter for the linear time-varying
system (2) subject to the RAP scheduling described by (5). The
recursive filter is given as follows:
{

x̂k+1|k = Akx̂k|k

x̂k+1|k+1 = x̂k+1|k +Kk+1

(

ȳk+1 − Φξ(k+1)Ck+1x̂k+1|k

)

(6)

where x̂k|k is the estimate of xk at time instant k with x̂0|0 =
x̄0, x̂k+1|k is the one-step prediction at time instant k, and
Kk+1 is the filter gain to be determined.

The schematic diagram of the filtering system considered
in this paper is shown in Fig. 1. The objective of this paper
is to design a recursive filter of the structure (6) such that,
for all possible realizations of the random sequence ξ(k), the
filtering error covariance (i.e. E

{

(xk+1 − x̂k+1|k+1)(xk+1 −
x̂k+1|k+1)

T
}

) can be derived recursively and subsequently
minimized.

Fig. 1: Schematic structure for the plant and the filter over a network (with
the RAP scheduling)

Remark 2: Due to the RAP scheduling behavior, the filtering
performance is largely affected by the stochastic parameter

matrix Φξ(k). The main difficulty of this paper would be the
handling of such a stochastic parameter matrix in design of
the time-varying filter parameter Kk+1 and the analysis on
the boundedness issue of the filtering error covariance. It can
be observed that the filter gain Kk+1 should be calculated
recursively based on the filtering error covariance Pk|k, and
therefore the boundedness of the filtering error covariance is
very important to ensure the non-divergence of the filtering
algorithm. Moreover, the boundedness of filtering error co-
variance often serves as an indispensable prerequisite to the
boundedness guarantee of the filtering error in mean square.
Note that, the problem studied in this paper is distinct from the
filtering issue with the sensor scheduling strategy. The protocol
scheduling behavior is determined by the network agreements
which are generated according to certain standards (e.g. IEEE
802 standards). Hence, the scheduling behavior could not be
designed for the filtering task in this paper. On the other
hand, the sensor scheduling (as shown in [22], [28]) could
be regarded as the “design variable”. Hence, for the filtering
problem with sensor scheduling, the filtering performance is
related to the sensor selection strategy. In this paper, we
focus our attention on the recursive filtering problems with
RAP scheduling, in which the protocol scheduling behavior is
modeled by the i.i.d sequence of random variables.

III. MAIN RESULTS

In this section, we aim to establish a unified framework
to deal with the addressed recursive filtering problem under
the RAP scheduling. Before proceeding further, we recall
the following lemma which will be used in the subsequent
developments.

Lemma 1: (Jensens inequality) [19] Let vector xi ∈ R
n

(i = 0, 1, · · · ,m) and scalar constant ai > 0 (i = 0, 1, · · · ,m)
be given. The following inequality

f

(

1

M

m
∑

i=1

aixi

)

≤
1

M

m
∑

i=1

aif(xi) (7)

holds for convex function f : Rn → R
n where M =

∑m

i=1 ai.
Lemma 2: For matrices M , N , X and P with appropriate

dimensions, the following equations hold:

∂tr{MXN}

∂X
=MTNT ,

∂tr{MXTN}

∂X
= NM,

∂tr{MXNXTL}

∂X
=MTLTXNT + LMXN.

A. Design of the filter gain
Let us denote the one-step prediction error as ek+1|k =

xk+1 − x̂k+1|k and the filtering error as ek+1|k+1 = xk+1 −
x̂k+1|k+1. Subtracting (6) from (2), we have

ek+1|k = Akek|k +Bkωk. (8)

Similarly, the filtering error can be written as:

ek+1|k+1 =
(

I −Kk+1Φξ(k+1)Ck+1

)

ek+1|k

−Kk+1Φξ(k+1)νk+1. (9)
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In light of (8) and (9), the covariance for the one-step pre-
diction error and filtering error are calculated in the following
theorem.

Theorem 1: Consider the filtering error dynamics sys-
tem given by (9). The one-step prediction error covariance
Pk+1|k , E{ek+1|ke

T
k+1|k} and the filtering error covariance

Pk+1|k+1 , E{ek+1|k+1e
T
k+1|k+1} (with the initial condition

P0|0) are given by the following difference equations

Pk+1|k =AkPk|kA
T
k +BkQkB

T
k , (10)

Pk+1|k+1 =

N
∑

i=1

piKi,k+1Pk+1|kK
T
i,k+1

+

N
∑

i=1

piKk+1ΦiRk+1ΦiK
T
k+1. (11)

where Ki,k+1 = I − Kk+1ΦiCk+1. Moreover, the trace of
the filtering error covariance Pk+1|k+1 is minimized by the
following filter gain:

Kk+1 = Pk+1|kC
T
k+1Φ̄

( N
∑

i=1

piΦiRk+1Φi

)−1

(12)

in which Rk+1 = Ck+1Pk+1|kC
T
k+1 + Rk+1 and Φ̄ =

diag{p1I, p2I, · · · , pNI}.
Proof: First, it is easy to conclude from (8) that the one-

step prediction error covariance Pk+1|k satisfies

Pk+1|k = AkPk|kA
T
k +BkQkB

T
k . (13)

Next, let us consider the filtering error covariance Pk+1|k+1.
Noting (9), we have

Pk+1|k+1 = E{ek+1|k+1e
T
k+1|k+1}

=E
{

Kξ(k+1),k+1ek+1|ke
T
k+1|kK

T
ξ(k+1),k+1

+Kk+1Φξ(k+1)νk+1ν
T
k+1Φ

T
ξ(k+1)K

T
k+1

}

. (14)

On the other hand, it can be seen from the definition of Φξ(k+1)

that

Φξ(k+1) =

N
∑

i=1

δ(ξ(k + 1)− i)Φi. (15)

Since

δ(ξ(k + 1)− i)δ(ξ(k + 1)− j) =

{

0, i 6= j

δ(ξ(k + 1)− i), i = j

and E{δ(ξ(k + 1)− i)} =
∑N

j=1 pjδ(j − i) = pi, we have

E
{

Kξ(k+1),k+1ek+1|ke
T
k+1|kK

T
ξ(k+1),k+1

}

=E

{

(

I −Kk+1

N
∑

i=1

δ(ξ(k + 1)− i)ΦiCk+1

)

ek+1|ke
T
k+1|k

(

I

−Kk+1

N
∑

i=1

δ(ξ(k + 1)− i)ΦiCk+1

)T

}

=Pk+1|k − E

{ N
∑

i=1

δ(ξ(k + 1)− i)Kk+1ΦiCk+1ek+1|k

× eTk+1|k

}

− E

{ N
∑

i=1

δ(ξ(k + 1)− i)ek+1|ke
T
k+1|kC

T
k+1

× ΦiK
T
k+1

}

+ E

{ N
∑

i=1

δ(ξ(k + 1)− i)Kk+1ΦiCk+1

× ek+1|ke
T
k+1|kC

T
k+1ΦiK

T
k+1

}

=

N
∑

i=1

pi
(

I −Kk+1ΦiCk+1

)

Pk+1|k

(

I −Kk+1ΦiCk+1

)T
.

(16)

Similarly, we have

E
{

Kk+1Φξ(k+1)νk+1ν
T
k+1Φ

T
ξ(k+1)K

T
k+1

}

=E

{ N
∑

i=1

piKk+1ΦiRk+1ΦiK
T
k+1

}

. (17)

Substituting the inequalities (16)-(17) into (14) yields

Pk+1|k+1 =

N
∑

i=1

piKi,k+1Pk+1|kK
T
i,k+1

+

N
∑

i=1

piKk+1ΦiRk+1ΦiK
T
k+1

Next, let us show that the filter gain given by (12) is
optimal in the sense that it minimizes the trace of the filtering
error covariance Pk+1|k+1. Taking the partial derivative of
tr{Pk+1|k+1} with respect to Kk+1 and letting the derivative
be zero, we have

∂tr{Pk+1|k+1}

∂Kk+1
= − 2

N
∑

i=1

pi

(

Ki,k+1Pk+1|kC
T
k+1Φi

)

+ 2Kk+1

N
∑

i=1

pi
(

ΦiRk+1Φi

)

= 0. (18)

Based on the above equation, the optimal filter gain Kk+1 can
be determined as

Kk+1 = Pk+1|kC
T
k+1Φ̄

( N
∑

i=1

piΦiRk+1Φi

)−1

(19)

which is identical to (12). This completes the proof.
Remark 3: So far, we have completed the design issue

of the recursive filter for time-varying systems with the
RAP scheduling. By using Lemma 1, it is easy to see
that

∑N

i=1 piΦiRk+1Φi ≥ (
∑N

i=1 piΦi)Rk+1(
∑N

i=1 piΦi) =
Φ̄Rk+1Φ̄ > 0. As such, it can be concluded that the matrix
∑N

i=1 piΦi

(

Ck+1Pk+1|kC
T
k+1 +Rk+1

)

Φi is nonsingular. The
computation of Kk+1 is carried out by solving two discrete-
time Riccati-like difference equations, which are suitable for
online implementation.

Remark 4: In our proposed filter design, the information
of ξ(k + 1) is adopted in the structure of the recursive filter
(as shown in (6)). The filter gain matrix Kk+1 is calculated
by minimizing the trace of the filtering error covariance
Pk+1|k+1. According to the definition of Pk+1|k+1 (which
is given in Theorem 1), the filter gain matrix is derived
recursively in the sense of probability. Obviously, it is of
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both theoretical significance and practical importance for filter
design to minimize tr{Pk+1|k+1}. Another valuable strategy
for the recursive filter design is to minimize the conditional
covariance matrix E{ek+1|k+1e

T
k+1|k+1|ξ(k + 1)}, in which

the filter gain Kk+1 could be computed based on the exact
value of ξ(k+1). Such a filtering strategy is one of our future
research topics.

B. Boundedness analysis of the filtering error covariance
In this subsection, let us consider the boundedness of the

filtering error covariance Pk+1|k+1. Throughout the rest of the
paper, the following assumptions are made.

Assumption 1: Let Φ̄ = diag{p1I, p2I, · · · , pNI}. There
exist real numbers q, q̄, r̄ and r, such that the following
matrix inequalities are satisfied for every k ≥ 0 and i ∈
{1, 2, · · · .N}:

qI ≤ BkQkB
T
k ≤ q̄I, ΦiRkΦi ≤ r̄I, Φ̄RkΦ̄ ≥ rI,

CT
k Ck ≤ c̄I, CkC

T
k ≤ ĉI, aI ≤ AkA

T
k ≤ āI.

Theorem 2: Under Assumption 1, there exists a positive
constant ε such that the error covariance Pk|k of the recursive
filtering for systems (2) satisfies

Pk|k ≥ εI (20)

for every k > 0 with the lower bound ε given as follows:

ε =
(

q−1 + r−1p̄2c̄
)−1

. (21)

where p̄ = maxi=1,2,··· ,N{pi}.
Proof: Considering (11) and (12), we have

Pk+1|k+1 =Pk+1|k − Pk+1|kC
T
k+1Φ̄

( N
∑

i=1

piΦiRk+1Φi

)−1

× Φ̄Ck+1Pk+1|k

=Pk+1|k − Pk+1|kC
T
k+1Φ̄

(

Ξk+1 + Φ̄Ck+1Pk+1|k

× CT
k+1Φ̄

)−1

Φ̄Ck+1Pk+1|k

=
(

P−1
k+1|k + CT

k+1Φ̄Ξ
−1
k+1Φ̄Ck+1

)−1
(22)

where Ξk+1 =
∑N

i=1 pi
(

Φ̃iCk+1Pk+1|kC
T
k+1Φ̃i+ΦiRk+1Φi

)

and Φ̃i = Φi − Φ̄.
Noting that Ξk+1 >

∑N

i=1 piΦiRk+1Φi ≥ Φ̄Rk+1Φ̄, it
follows from (22) that

Pk+1|k+1 ≥

(

P−1
k+1|k + CT

k+1Φ̄
(

Φ̄Rk+1Φ̄
)−1

Φ̄Ck+1

)−1

.

(23)

On the other hand, it is easy to see that

Pk+1|k ≥BkQkB
T
k ≥ qI. (24)

Subsequently, by considering (23) and (24), we have

P−1
k+1|k+1 ≤ q−1I + CT

k+1Φ̄
(

Φ̄Rk+1Φ̄
)−1

Φ̄Ck+1

≤ q−1I + r−1CT
k+1Φ̄Φ̄Ck+1 ≤

(

q−1 + r−1p̄2c̄
)

I (25)

which implies that Pk|k ≥ εI for every k > 0. The proof is
complete.

Theorem 2 provides a uniform lower bound of the filtering
error covariance for the recursive filtering. Next, we shall study
the upper bound of the filtering error covariance.

Theorem 3: Under the Assumption 1, there exists an upper
bound µk such that the filtering error covariance Pk|k satisfies

Pk|k ≤ µkI, k ≥ 0 (26)

where µk = µ0ā
k + q̄

∑k−1
i=0 ā

i and µ0 = λmax{P0|0}.
Proof: The proof of this theorem is performed by math-

ematical induction, which is divided into two steps, namely,
the initial step and the inductive step.

Initial step. For k = 0, it can be immediately known from
the definition of µ0 that

P0|0 ≤ λmax{P0|0}I = µ0I. (27)

Inductive step. Now that the assertion of this theorem is
true for t = 0. Next, given that the assertion is true for t = k

(i.e. Pt|t ≤ µtI), we aim to show that the same assertion is
true for t = k + 1 (i.e. Pt+1|t+1 ≤ µt+1I). Obviously, it
follows from (22) that

P−1
k+1|k+1 = P−1

k+1|k + CT
k+1Φ̄Ξ

−1
k+1Φ̄Ck+1 (28)

where Ξk+1 =
∑N

i=1 pi
(

Φ̃iCk+1Pk+1|kC
T
k+1Φ̃i+ΦiRk+1Φi

)

and Φ̃i = Φi − Φ̄. Then, it is easy to see that

Pk+1|k+1 ≤ Pk+1|k = AkPk|kA
T
k +BkQkB

T
k

≤ µkAkA
T
k +BkQkB

T
k ≤ āµk + q̄I

= µ0ā
k+1 + q̄

k
∑

i=0

āi , µk+1. (29)

Hence, by the induction, it can be concluded that the assertion
of this theorem is true for k ≥ 0. The proof is complete.

Remark 5: By now, we have derived an upper bound
function of the error covariance matrix for our developed
recursive filtering algorithm. Obviously, the upper bound ā

has an important impact on our derived upper bound function
µk. It can be found that the derived upper bound function µk

is divergent if ā ≥ 1. When ā < 1, the derived upper bound
function would converge to a fixed value.

The following proposition gives a uniform upper bound of
µk when ā < 1.

Proposition 1: Under Assumption 1, if ā < 1, then the
upper bound of the error covariance matrix µk is exponentially
bounded with the uniform upper bound µ0ā+

q̄
1−ā

for k > 0.
Proof: The proof is straightforward and is therefore

omitted for the conciseness.
In the case of ā ≥ 1, the following theorem gives a sufficient

condition to guarantee the boundedness of the error covariance
matrix.

Theorem 4: Let Assumption 1 hold. Suppose that there exist
two positive scalars σ > 0 and m > 0 such that the following
inequalities

k+1
∑

i=k−m+1

(

γ
i
φT (i, k + 1)CT

i Φ̄
(

σāĉ(1− p)2I +Θi

)−1
Φ̄

×Ciφ(i, k + 1)

)

≥ σ−1I, k ≥ m− 1 (30)
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µk ≤ σ, 0 ≤ k < m− 1 (31)

hold for all k ≥ 0, where

p = min
i=1,2,··· ,N

{pi}, Φ̃j = Φj − Φ̄, φ(k + 1, k + 1) = I,

φ(i, k + 1) = A−1
i A−1

i+1 · · ·A
−1
k , µ0 = λmax{P0|0},

Φ̄ = diag{p1I, p2I, · · · , pNI}, µk = µ0ā
k + q̄

k−1
∑

i=0

āi,

Θi =

N
∑

j=1

pj
(

Φ̃jCiBi−1Qi−1B
T
i−1C

T
i Φ̃j +ΦjRiΦj

)

,

γ
i
= (1 + q̄a−1ε−1)i−k−1.

Then, the error covariance satisfies Pk|k ≤ σI for k ≥ 0.
Proof: The proof of this theorem is performed by math-

ematical induction as follows.
Initial step: Obviously, by employing Theorem 3 and (31),

we have Pi|i ≤ µiI ≤ σI for 0 ≤ i < m− 1.
Inductive step: We know that the assertion of this theorem

(i.e. Pi|i ≤ σI) is true for i < m − 1. Next, given that the
assertion is true for i = k, we aim to show that the same
assertion is true for i = k + 1. Since the assertion is true for
i = k (i.e. Pk|k ≤ σI), it follows from (10) that

Pk+1|k = AkPk|kA
T
k +BkQkB

T
k ≤ σāI +BkQkB

T
k . (32)

On the other hand, according to the results proposed in
Theorem 2, we have

Pk+1|k = AkPk|kA
T
k +BkQkB

T
k

= Ak

(

Pk|k +A−1
k BkQkB

T
k A

−T
k

)

AT
k

≤ Ak

(

Pk|k + q̄a−1ε−1Pk|k

)

AT
k

= (1 + q̄a−1ε−1)AkPk|kA
T
k . (33)

Furthermore, it can be derived from (22) that

P−1
k+1|k+1 =P−1

k+1|k + CT
k+1Φ̄

( N
∑

i=1

pi
(

ΦiRk+1Φi

+ Φ̃iCk+1Pk+1|kC
T
k+1Φ̃i

)

)−1

Φ̄Ck+1. (34)

Then, by substituting the inequalities (32) and (33) into (34),
we have

P−1
k+1|k+1

≥P−1
k+1|k + CT

k+1Φ̄
(

σāĉ(1 − p)2I +Θk+1

)−1
Φ̄Ck+1

≥ (1 + q̄a−1ε−1)−1A−T
k P−1

k|kA
−1
k + CT

k+1Φ̄
(

σāĉ(1− p)2I

+Θk+1

)−1
Φ̄Ck+1 ≥ · · ·

≥

k+1
∑

i=k−m+1

(1 + q̄a−1ε−1)i−k−1φT (i, k + 1)CT
i Φ̄

(

σāĉ(1

− p)2I +Θi

)−1
Φ̄Ciφ(i, k + 1) + (1 + q̄a−1ε−1)−m−1

× φT (k −m, k + 1)P−1
k−m|k−m

φ(k −m, k + 1)

≥
k+1
∑

i=k−m+1

γ
i
φT (i, k + 1)CT

i Φ̄
(

σāĉ(1− p)2I +Θi

)−1

× Φ̄Ciφ(i, k + 1) ≥ σ−1I, (35)

which results in

Pk+1|k+1 ≤ σI. (36)

Hence, by induction, it can be concluded that the assertion of
this theorem is true for k ≥ 0. The proof is complete.

Remark 6: The derived inequality (30) in Theorem 4 is
of the form similar to the uniform observability condition
[4]. Considering the time-varying matrices Ak and Ck, the
pair [Ck, Ak] is said to be uniformly observable if there
exist a positive integer 0 < m < ∞ and constants ǭ, ǫ
with 0 < ǫ ≤ ǭ < ∞ such that the condition ǭI ≥
∑k+1

i=k−m+1

(

~ψT (i, k + 1)CT
i Ci

~ψ(i, k + 1)
)

≥ ǫI holds

for all k ≥ m − 1, where ~ψ(k + 1, k + 1) = I and
~ψ(i, k + 1) = A−1

i A−1
i+1 · · ·A

−1
k . Obviously, when the sensor

nodes of the plant could simultaneously get access to the
network and transmit signals, the inequality (30) reduces
to the well-known uniform observability condition based on
Assumption 1. So far, we have investigated the recursive
filtering problems for linear time-varying systems subject to
the RAP protocol scheduling. It can be observed from the
filter design that all the important factors contributing to the
system complexity are reflected in the main results. These
factors include 1) the time-varying system parameters; 2) the
noise information (characterized by Qk and Rk); 3) the initial
condition of the system (i.e. P0|0); and 4) the information
about the RAP scheduling (determined by (1)).

Remark 7: It is worth pointing out that, the recursive filter-
ing technology developed in this paper is not a global optimal
filtering scheme. The main purpose of this paper is to develop
the recursive filtering scheme with a verifiable boundedness
condition of the filtering error covariance matrix rather than
design the optimal state estimation technology. If we adopt
the well-known Kalman filtering to deal with the filtering
problem of the linear time-varying system (2) subject to the
RAP scheduling, the observability Gramian matrix would be
related to the scheduling matrices in a sliding time-window
with fixed finite length. Hence, it is quite difficult to verify the
corresponding uniform observability condition. Nevertheless,
the observability-like condition proposed in Theorem 4 is
verifiable. In other words, for the problem considered in this
paper, our developed filtering scheme possesses the advantage
that the non-divergent of the filtering algorithm is verifiable
compared with the Kalman filtering.

Remark 8: The main results of this paper can be regarded as
the analysis and synthesis for the linear time-varying system
with a random parameter ξ(k). Such an issue has so far attract-
ed considerable attention due to its clear engineering insight.
Typical examples include the research results shown in [1],
[12], which concern the design problems of LQG controllers
for linear systems with random parameters. Compared with
the results in [1], [12], the effects on the system dynamics
induced by the random parameter ξ(k) in this paper is more
complex, which in turn increases the difficulty on the filter
design. Moreover, we have analyzed the effects on the filtering
performance induced by ξ(k) (i.e. the boundedness analysis
issue proposed in Section III-B).
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IV. ILLUSTRATIVE EXAMPLES

Example 1: Consider a linear time-varying system (2) with
the following system parameters:

Ak =





0.2 sin(0.05πk) 0.5 0.5
0.6 0.8 0.7
0.1 −0.1 0.5



 , Qk = 0.16I,

Bk =





0.1 cos(0.05πk) 0.1 0.2
0.2 0.1 −0.1
0.1 −0.1 0.3



 ,

Ck =

[

0.5 0.7 −0.6
−0.2 −0.3 0.4

]

, Rk = 0.09I, P0|0 = 6.25I.

The sensors of this system are grouped into two sensor nodes
and the occurrence probability about the RAP scheduling is
taken to be:

{

Prob{ξ(k) = 1} = 0.4

Prob{ξ(k) = 1} = 0.6

Then, by constructing the correspond filter and applying
Theorem 1, the values of {Kk}k>0 are derived as follows:

TABLE I: The values of {Kk}k>0

k 1 2 3 · · ·

Kk

[ 0.582 −1.476
1.059 −2.645
0.216 0.545

]

[

0.561 −2.229
1.055 −4.201
0.156 −0.435

] [

0.534 −1.522
1.025 −2.967
0.068 −0.119

]

· · ·

Set the simulation run length to be 300. Based on the derived
filter gain matrices, numerical simulation results are given
in Fig. 2 concerning the state trajectories of x(1)k and x̂

(1)
k|k

under the RAP scheduling. The corresponding figures for x(2)k

and x(3)k are deleted to save space. All the simulation results
confirm that the filtering performance is well achieved.
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Fig. 2: The state trajectories of x(1)
k

and x̂
(1)
k|k under the RAP

scheduling

Example 2: In this example, we shall verify correctness of
the uniform lower bound and uniform upper bound derived in
this paper a second-order system:

{

xk+1 =
[

1.01 0.02
−0.02 1.02

]

xk +
[

0.48
0.46

]

ωk

yk = (0.95 + 0.05 sin(k))
[

1.66 0
0 1.68

]

xk + νk

with the covariance matrix P0|0 = 10.24I , Qk = 6.25I and
Rk = 4I . The sensors are grouped into two nodes and the
corresponding occurrence probability is selected as p1 = p2 =
0.5. Moreover, it is easy to verify that q = 1.3225, q̄ = 1.44,
r̄ = 4, r = 1, c̄ = ĉ = 2.8224, a = 1.0205 and ā = 1.0408.
Obviously, such a system is an unstable system. By employing
Theorem 2, we obtain the uniform lower bound of the filtering
error covariance (i.e. Pk|k ≥ 0.6841I). On the other hand,
considering the inequality (30) with σ = 20 and m = 2, we
have

̟(k) ,σ

k+1
∑

i=k−m+1

γ
i
φT (i, k + 1)CT

i Φ̄
(

σāĉ(1 − p)2I

+Θi

)−1
Φ̄Ciφ(i, k + 1)

= (0.95 + 0.05 sin(k + 1))diag{0.039, 0.04}+ (0.95

+ 0.05 sin(k))diag{0.0125, 0.0126}+ (0.95

+ 0.05 sin(k − 1))diag{0.004, 0.0039}

>diag{0.0500, 0.0508} ≥ σ−1I.

Furthermore, it is easy to check that µ0 = 10.24 and µ1 =
12.0978, which means that the inequality (31) is satisfied.
Then, it can be derived that the Pk|k ≤ 20I in virtue of
Theorem 4. The results are shown in Figs. 3-4. The simulation
results have confirmed our theoretical analysis on the uniform
lower bound and the uniform upper bound of the filtering
covariance Pk|k .
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Fig. 3: The state trajectories of the plant and the filter under the
RAP scheduling

V. CONCLUSION

In this paper, the recursive filtering problem has been
addressed for a class of linear time-varying systems subject to
the scheduling of the so-called random access protocol (RAP).
The scheduling behavior of the RAP has been modeled by
the independent and identically-distributed (i.i.d) sequence of
random variables with known occurrence probabilities. The
corresponding recursive filter has been presented to generate
the state estimates and the filter gain has been calculated
recursively to guarantee a minimized upper bound on the
filtering error covariance.
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Fig. 4: The trace of Pk|k and the their corresponding bounds
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[24] M. Tabbara and D. Nešić, “Input-output stability of networked control
systems with stochastic protocols and channels”, IEEE Transactions on
Automatic Control, vol. 53, no. 5, pp. 1160-1175, Jun. 2008.

[25] V. Ugrinovskii and E. Fridman, “A Round-Robin type protocol for
distributed estimation with H∞ consensus”, Systems & Control Letters,
vol. 69, pp. 103-110, Jul. 2014.

[26] L. Wang and G. Guo, “Control with a random access protocol and packet
dropouts”, International Journal of Systems Science, vol. 47, no. 11,
pp. 2700-2708, Aug. 2016.

[27] G. Wei, S. Liu, Y. Song and Y. Liu, “Probability-guaranteed set-
membership filtering for systems with incomplete measurements”, Au-
tomatica, vol. 60, pp. 12-16, Oct. 2015.

[28] J. Wu, Q.-S. Jia, K. H. Johansson and L. Shi, “Event-based sensor
data scheduling: trade-off between communication rate and estimation
quality”, IEEE Transactions on Automatic Control, vol. 58, no. 4,
pp. 1041-1046, Apr. 2013.

[29] F. Yang and Y. Li, “Set-membership filtering for systems with sensor
saturation”, Automatica, vol. 45, no. 8, pp. 1896-1902, Aug. 2009.

[30] F. Yang and Y. Li, “Set-membership filtering for discrete-time systems
with nonlinear equality constraints”, IEEE Transactions on Automatic
Control, vol. 54, no. 10, pp. 2480-2486, Oct. 2009.

[31] W. Zhang, L. Yu and G. Feng, Optimal linear estimation for networked
systems with communication constraints, Automatica, vol. 47, no. 9,
pp. 1992-2000, Sep. 2011.

[32] X. Zheng and H. Fang, “Recursive state estimation for discrete-time
nonlinear systems with event-triggered data transmission, norm-bounded
uncertainties and multiple missing measurements”, International Journal
of Robust and Nonlinear Control, vol. 26, no. 17, pp. 3673-3695,
Nov. 2016.

[33] L. Zou, Z. Wang, and H. Gao, “Set-membership filtering for time-
varying systems with mixed time-delays under round-robin and weighted
try-once-discard protocols”, Automatica, vol. 74, pp. 341-348, Jan. 2016.

[34] L. Zou, Z. Wang, H. Gao, and X. Liu, “State estimation for discrete-
time dynamical networks with time-varying delays and stochastic dis-
turbances under the Round-Robin protocol”, IEEE Transactions on
Neural Networks and Learning Systems, vol. 28, no. 5, pp. 1139-1151,
May 2017.

[35] L. Zou, Z. Wang, J. Hu and H. Gao, “On H∞ finite-horizon filter-
ing under stochastic protocol: dealing with high-rate communication
networks”, IEEE Transactions on Automatic Control, vol. 62, no. 9,
pp. 4884-4890, Sep. 2017.


