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Protocol-Based State Estimation for Delayed
Markovian Jumping Neural Networks

Jiahui Li, Hongli Dong∗, Zidong Wang and Weidong Zhang

Abstract—This paper is concerned with the state esti-
mation problem for a class of Markovian jumping neu-
ral networks (MJNNs) with sensor nonlinearities, mode-
dependent time delays and stochastic disturbances subject
to the Round-Robin (RR) scheduling mechanism. The
system parameters experience switches among finite modes
according to a Markov chain. As an equal allocation
scheme, the RR communication protocol is introduced for
efficient usage of limited bandwidth and energy saving. The
update matrix method is adopted to deal with the periodic
time-delays resulting from the RR protocol. The objective
of the addressed problem is to construct a state estimator
for the MJNNs such that the dynamics of the estimation
error is exponentially ultimately bounded in the mean
square with a certain upper bound. Sufficient conditions
are established for the existence of the desired state estima-
tor by resorting to a combination of the Lyapunov stability
theory and the stochastic analysis technique. Furthermore,
the estimator gain matrices are characterized in terms of
the solution to a convex optimization problem. Finally, a
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numerical simulation example is exploited to demonstrate
the effectiveness of the proposed estimator design strategy.

Index Terms—Markovian jumping neural networks,
exponentially ultimately bounded estimator, Round-Robin
protocol, sensor nonlinearities, mode-dependent time de-
lays.

I. INTRODUCTION

For decades, due to their extraordinary capabilities
in parallel information processing, adaptable data pro-
cessing and dynamical learning as well as imitation, the
artificial neural networks (ANNs) have been extensively
applied in a variety of subject areas such as brain
science, cognitive science and computer science. The
successful applications of ANNs are largely reliant on
the dynamical behaviors (e.g. convergence and stability)
of the ANNs and, accordingly, the dynamics analysis
issues for ANNs have become a hot topic of research
attracting an ever-increasing interest with many interest-
ing results reported in the literature, see e.g., [7], [25],
[32], [40], [50], [53]–[56] and the references therein. On
the other hand, time delays inevitably occur in hardware
implementation of the ANNs for a number of reasons
including inherent restriction on physical devices during
information transmission and limited processing speeds
among the units of networks. It is well known that
time delays, if not adequately handled, might lead to
performance degradation of the underlying system or
even undesirable behaviors such as oscillation or even
instability. As such, dynamical behaviors of delayed
ANNs have been thoroughly investigated in the past few
years. For example, delay-dependent criteria have been
established in [16], [36], [58] to estimate the neuron
states of a class of delayed neural networks through the
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available output measurements. In [22], [46] and [21],
[42], some attempts have been made on analyzing, re-
spectively, the stability and synchronization issues of the
time-delayed neural networks. In [29], the robust l2-l∞
state estimation problem has been discussed for uncertain
Markovian jump neutral systems with distributed delays.
Moreover, the dissipativity and passivity analysis issues
with various types of delays have been considered in [15]
and [27].

In reality, the structures and parameters of actual
systems might be changeable because of internal com-
ponent failures, system maintenances, sudden changes in
external environment, coupled subsystems variations and
modifications of the operating point of a linearized model
for a nonlinear system. In many cases, such changes can
be modeled by system switches between different struc-
tures and, among different switching systems, the so-
called Markovian jumping systems have drawn consid-
erable attention owing to their clear engineering insights
[3], [4]. When it comes to recurrent neural networks
(RNNs), it has been revealed in [43] that the switching
between different RNN models can be governed by
a Markovian chain. So far, the study on time-delay
neural networks with Markovian jumping parameters has
stirred much attention and fruitful results have been
presented in the literature, see e.g. [5], [6], [17], [24],
[34], [39]–[41], [47], [48]. Among others, in [34], the
linear matrix inequality technique has been applied to
ensure the existence of the required state estimator for
the discrete-time neural networks subject to Markovian
jumping parameters and mode-dependent delays. The
mean-square asymptotic stability problem has been dealt
with in [39] for Markovian jumping generalized neural
networks with interval time-varying delays. Furthermore,
for a class of Markovian-jumping-type delayed neural
networks, a non-fragile state estimator has been designed
in [17] in order to guarantee the stability of the overall
estimation error dynamics. More recently, the result on
decentralized event-triggered synchronization has been
published in [40] for Markovian jumping neutral-type
neural networks with mixed delays.

Over the past few decades, the state estimation is-
sue has been serving as a central topic of research

in signal processing and control engineering, and con-
siderable attention has been devoted to this issue for
different kinds of networked systems, see e.g. [8], [9],
[11], [14], [23], [26], [28]. As for ANNs, it is of
particular significance to access the information about
neuron states so as to accomplish specific tasks such
as approximation and optimization. Unfortunately, it is
often the case in practice that only partial information
of the neuron states is available through the network
outputs due probably to the large scale of the network
and the limited resource allocated to state observations.
Accordingly, there appears to be a practical need to
accurately estimate the neuron states via available but
possibly noisy/imperfect output measurements, and the
resulting state estimation problem has therefore received
a great deal of research interest, see [13], [18], [30], [49],
[57]. Moreover, in engineering practice, the sensors are
often subject to nonlinear disturbances for many reasons
such as harsh environments and channel noises, and
the sensor nonlinearity has been extensively studied for
both control and estimation problems. In the context of
RNNs, an initial study has been carried out in [51] for
the state estimation problem of delayed neural networks
subject to randomly occurring sensor nonlinearity, and
a Luenberger-type state estimator has been proposed in
[48] for a class of coupled Markovian neural networks
with the phenomenon of sensor nonlinearity.

Although much effort has been made on the state
estimation problem for ANNs, little attention has been
paid on the constrained communication issue between
the network output and the possible remote estimator
when implementing ANNs in a networked environment.
Due to the large scale of ANNs, the amount of mea-
surement outputs from a large number of sensors might
bring much burden that surpasses the capacity of the
transmission network with limited capacity, and it makes
practical sense to mitigate the communication burden by
resorting to certain communication protocols. In indus-
try, a frequently used communication protocol is the so-
called Round-Robin (RR) protocol that serves as a kind
of equal resource allocation scheme. The RR protocol
grants each sensor an equivalent right to access the data
transmission service. From the methodological point of
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view, there are generally two approaches to handling
the RR protocol, with one to transform the RR-induced
effects into accumulated delays and another one to reflect
such effects by periodic switches. For instance, in [59],
the accumulated-delay method has been utilized to deal
with the RR-protocol-based estimator design problem
for a class of nonlinear dynamical networks. In [1], a
switched controller structure has been adopted for the
design of decentralized observer-based output-feedback
controllers under the RR protocol. So far, the state
estimation for ANNs under RR protocol has received
some initial research attention in [35]. Different from
the existing result, the Markovian jumping parameters
and sensor nonlinearities have been taken into account in
this paper and the methods proposed can ensure that the
augmented system is exponentially ultimately bounded.

Motivated by the above discussion, the aim of this
paper is to deal with the state estimation problem for
a class of MJNNs under the RR protocol. We are
interested in designing a state estimator such that, in the
simultaneous presence of Markovian jumping parameter-
s, sensor nonlinearities, mode-dependent time delays and
stochastic disturbances, the estimation error dynamics is
exponentially ultimately bounded in the mean square.
An update matrix approach is proposed to tackle the
complexities caused by the combinational use of the RR
protocol and the zero-order holders (ZOHs). By virtue of
the Lyapunov stability theory and the stochastic analysis
technique, the exponential boundedness of the estimation
error dynamics is investigated. Furthermore, the desired
estimator parameters are acquired through a convex
optimization problem that can be efficiently settled via
the standard Matlab software. The main contributions
of this paper are highlighted as follows: 1) the state
estimation problem is, for the first time, investigated for
a class of Markovian jumping neural networks under
the RR protocol; 2) a comprehensive system model
is proposed to account for the phenomena of Marko-
vian jumping parameters, sensor nonlinearities, mode-
dependent time delays and stochastic disturbances; and
3) a combination of Lyapunov-Krasovskii functional,
stochastic analysis technique and update matrix method
is employed to establish the existence condition of the

exponentially ultimately bounded estimator.

Notation: Throughout this paper, for a matrix M , MT

and M−1 denote its transpose and inverse, respectively.
Rn means the n dimensional Euclidean space and Rn×m

is the set of all n×m real matrices. Z (Z+,Z−) denote
the set of all integers (nonnegative integers, negative
integers). I and 0 denote the identity matrix and zero
matrix, respectively. The notation P > 0 means that P
is a real, symmetric and positive definite matrix. E{x}
and E{x|y} represent, respectively, the expectation of
a random variable x and the expectation of x condi-
tional on y. ∥x∥ stands for the Euclidean norm of a
vector x. In symmetric block matrices, the shorthand
diag{A1, A2, . . . , An} represents a block diagonal ma-
trix with diagonal blocks being the matrices A1, . . . , An,
and the symbol ∗ denotes an ellipsis for terms induced
by symmetry. If M is a symmetric matrix, λmax(M)

and λmin(M) show the maximum eigenvalue and the
minimum eigenvalue of M . mod(a, b) represents the
unique nonnegative remainder on division of the integer
a by the positive integer b. δ(a) is a binary function
which equals to 1 for a = 0, and equals to 0 for
a ̸= 0. The symbol ⊗ denotes the Kronecker product.
1n = [1, 1, . . . , 1]T ∈ Rn. Matrices without explicitly
stated dimensions are supposed to be compatible for
matrix operations.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this paper, our effort is devoted to the design of a
state estimator for a class of MJNNs through the avail-
able but possibly noisy/imperfect output measurements.
As shown in Figure 1, the outputs of the MJNNs are
transmitted to the estimator via a communication channel
with limited bandwidth.

Communication Channel  

with Round-Robin 

Protocol

Fig. 1: State estimation under Round-Robin protocol.
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A. Model Establishment

Consider a class of discrete-time MJNNs described by
the following model:




x(k + 1) = C(r(k))x(k) + B(r(k))f(x(k))

+ A(r(k))f(x(k − τ(r(k)))) + ω(k)

y(k) = D(r(k))x(k) + E(r(k))g(x(k))
(1)

with initial conditions

x(k) = ψ(k), ∀k ∈ Z−,

where x(k) = [x1(k) · · · xn(k)]T ∈ Rn is the neural
state vector; f(x(k)) = [f1(x1(k)) · · · fn(xn(k))]T :

Rn → Rn represents the nonlinear activation func-
tion; C(r(k)) = diag{C1(r(k)), C2(r(k)), . . . , Cn(r(k))}
is a diagonal matrix with Cȷ(r(k)) (ȷ = 1, 2, . . . , n)

being positive scalars; B(r(k)) = [but(r(k))]n×n,
A(r(k)) = [aut(r(k))]n×n are, respectively, the connec-
tion weight matrix and the delayed connection weight
matrix; D(r(k)) and E(r(k)) are known constant matri-
ces with compatible dimensions; τ(r(k)) is the mode-
dependent time delay and satisfy τ ≤ τ(r(k)) ≤ τ̄

with τ and τ̄ being two positive scalars; y(k) =

[y1(k) · · · ym(k)]T ∈ Rm represents the measure-
ment output; g(x(k)) : Rn → Rm denotes the sensor
nonlinearity; ω(k) is a Gaussian white noise with

E{ω(k)} = 0

E{ωT (k)ω(k)} = υ2

E{ωT (i)ω(j)} = 0 (i ̸= j)

where υ is a known positive scalar.
The Markov chain r(k) (k ≥ 0) takes values in a finite

state space S = {1, 2, . . . , s} with transition probability
matrix Θ = [θij ]s×s given by

Prob{r(k + 1) = j|r(k) = i} = θij , ∀i, j ∈ S

where θij ≥ 0 (i, j ∈ S) is the transition probability
from i to j and

∑s
j=1 θij = 1, ∀i ∈ S.

For notational simplicity, in the sequel, for each pos-
sible r(k) = i (i ∈ S), a matrix Z(r(k)) will be denoted
by Zi. For example, D(r(k)) is denoted by Di, D̄(r(k))

by D̄i, etc.
Assumption 1: For the known constant matrices H1,

H2, G1 and G2, the activation function f(x(k)) and the

nonlinear function g(x(k)) satisfy the following sector-
bounded conditions

[f(x(k)) − H1x(k)]
T [f(x(k)) − H2x(k)] ≤ 0, (2)

[g(x(k)) − G1x(k)]
T [g(x(k)) − G2x(k)] ≤ 0. (3)

Remark 1: Traditionally, the activation functions are
required to satisfy the Lipschitz condition [19], [44]. As
a more general description, the sector-bounded condition
is capable of representing the activation functions in a
more precise way. In fact, the sector-bounded condition
has already been employed in dynamics analysis prob-
lems for RNNs, see e.g. [33], [52]. In particular, the
assumption is less restricted than the Lipschitz condition,
and a less conservative result has been achieved in [52].

B. Round-Robin Protocol Description

Consider the measurement outputs of a MJNN with m
sensors labeled as {1, 2, . . . ,m}. Under the scheduling
of the RR protocol, for sensors transmitting their data
to the estimator via a shared communication channel,
only one sensor is allowed to access the channel at each
transmission instant k. A sensor ζ(k) ∈ {1, 2, . . . ,m}
having the privilege to utilize the communication re-
source is determined as follows. Based on the scheduling
rule of the RR protocol, the value of ζ(k) satisfies
ζ(k + m) = ζ(k) for all k ∈ Z+ and ζ(k) = k

for k ∈ {1, 2, . . . ,m}. In other words, ζ(k) can be
calculated as

ζ(k) = mod(k − 1,m) + 1. (4)

Let ȳq(k) (q ∈ {1, 2, . . . ,m}) denote the received
measurement from the qth sensor. With the help of the
zero-order holders, the update of ȳq(k) can be expressed
by

ȳq(k) =

{
yq(k), if mod(k − q,m) = 0 and k > 0

ȳq(k − 1), otherwise
(5)

which means that the received measurements in ZOHs
will be updated periodically.

Letting Ξζ(k) , diag{δ(ζ(k) − 1), δ(ζ(k) − 2), . . . ,

δ(ζ(k) −m)} be the update matrix, the actually received
outputs can be described as follows:

ȳ(k) = Ξζ(k)y(k) + (I − Ξζ(k))ȳ(k − 1) (6)
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where

ȳ(k) = [ȳ1(k) ȳ2(k) · · · ȳm(k)]T . (7)

Defining x̄(k) , [xT (k) ȳT (k − 1)]T , system (1)
with the RR protocol scheduling can be reformulated
as





x̄(k + 1) = C̄i,ζ(k)x̄(k) + B̄if̄(x̄(k)) + Āif̄(x̄(k − τi))

+ Ēi,ζ(k)ḡ(x̄(k)) + ω̄(k),

ȳ(k) = D̄i,ζ(k)x̄(k) + Ẽi,ζ(k)ḡ(x̄(k))
(8)

where

C̄i,ζ(k) =

[
Ci 0

Ξζ(k)Di I − Ξζ(k)

]
, B̄i = diag{Bi, 0},

Āi = diag{Ai, 0}, Ēi,ζ(k) =

[
0 0

Ξζ(k)Ei 0

]
,

D̄i,ζ(k) =
[

Ξζ(k)Di I − Ξζ(k)

]
,

Ẽi,ζ(k) =
[

Ξζ(k)Ei 0
]
, ω̄(k) =

[
ω(k)

0

]
,

f̄(x̄(k)) = 12 ⊗ f(x(k)), ḡ(x̄(k)) = 12 ⊗ g(x(k)).

Remark 2: In this paper, ZOHs have been employed
to hold the value for the sensors which are not selected
to transmit data. That is to say, although only one node
has access to the limited communication resource at each
transmission instant, the introduction of the ZOHs makes
it possible to fully utilize the received measurements for
the benefit of an accurate state estimation.

C. The State Estimator

The purpose of this paper is to design an effective
estimator to estimate the neuron states based on the
received output measurements ȳ(k). As such, the state
estimator for the dynamic system (8) is constructed as
follows :

x̂(k + 1) = C̄i,ζ(k)x̂(k) + B̄if̄(x̂(k)) + Āif̄(x̂(k − τi))

+ Ēi,ζ(k)ḡ(x̂(k)) + Ki,ζ(k)

(
ȳ(k)

− D̄i,ζ(k)x̂(k) − Ẽi,ζ(k)ḡ(x̂(k))
)

(9)
where x̂(k) ∈ Rm+n is the estimate of x̄(k) and Ki,ζ(k)

is the gain matrices to be designed.

Denoting e(k) , x̄(k) − x̂(k) as the estimation error
and combing (8) with (9), one obtains the following
estimation error dynamics:

e(k + 1) =
(
C̄i,ζ(k) − Ki,ζ(k)D̄i,ζ(k)

)
e(k) + B̄i

(
f̄(x̄(k))

− f̄(x̂(k))
)

+ Āi

(
f̄(x̄(k − τi))

− f̄(x̂(k − τi))
)

+
(
Ēi,ζ(k) − Ki,ζ(k)Ẽi,ζ(k)

)

×
(
ḡ(x̄(k)) − ḡ(x̂(k))

)
+ ω̄(k).

(10)

For simplicity, we introduce the following notations:

ℑ(k) =
[
x̄T (k) eT (k)

]T
,

f̃(ℑ(k)) =
[
f̄T (x̄(k)) f̄T (x̄(k)) − f̄T (x̂(k))

]T
,

g̃(ℑ(k)) =
[
ḡT (x̄(k)) ḡT (x̄(k)) − ḡT (x̂(k))

]T
.

Then, taking system (8) and the estimation error (10)
into consideration, an augmented system model is given
as follows:

ℑ(k + 1) = Ci,ζ(k)ℑ(k) +Bif̃(ℑ(k)) +Aif̃(ℑ(k − τi))

+ Ei,ζ(k)g̃(ℑ(k)) +W (k)

(11)

where

Ci,ζ(k) = diag{C̄i,ζ(k), C̄i,ζ(k) − Ki,ζ(k)D̄i,ζ(k)},
Bi = diag{B̄i, B̄i}, Ai = diag{Āi, Āi},

Ei,ζ(k) = diag{Ēi,ζ(k), Ēi,ζ(k) − Ki,ζ(k)Ẽi,ζ(k)},

W (k) =
[
ω̄T (k) ω̄T (k)

]T
.

Remark 3: Comparing with the existing results, such
as [52], which has investigated the state estimation
problem for a class of MJNNs with mixed time-delays,
this paper has taken the constrained communication issue
between the network output and the possible remote
estimator into account. In order to alleviate the data
transmission burden resulting from the limited capacity
of the transmission network, the RR protocol is adopted
to grant each sensor an equivalent right to access the data
transmission service. The theoretical result can provide
a basis of the practical applications.

Definition 1: [45] The augmented system (11) is said
to be exponentially ultimately bounded in the mean
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square if there exist constants α ∈ [0, 1), β > 0 and
ε > 0 such that

E{∥ℑ(k)∥2|ℑ(0)} ≤ αkβ + ε

where α is the decay rate and ε is an upper bound of
E{∥ℑ(k)∥2}. In this case, (9) is called an exponentially
ultimately bounded estimator of the MJNNs (1).

The objective of this paper is twofold:
R1) Under the RR communication protocol, establish

the existence condition of the exponentially ultimately
bounded estimator (9);

R2) Derive the explicit expression of the estimator
gain matrices Ki,ζ(k) and provide a specific ultimate
upper bound of the estimation error.

III. MAIN RESULTS

Lemma 1 (Schur Complement [2]): Given constant
matrices ℜ1, ℜ2, ℜ3 where ℜ1 = ℜT

1 and ℜ2 = ℜT
2 > 0,

then ℜ1 + ℜT
3 ℜ−1

2 ℜ3 < 0 if and only if
[

ℜ1 ℜT
3

ℜ3 −ℜ2

]
< 0 or

[
−ℜ2 ℜ3

ℜT
3 ℜ1

]
< 0. (12)

A. Exponentially Ultimate Boundedness

In this subsection, a sufficient condition is proposed
to guarantee the ultimate boundedness of the dynamics
of the estimation error (11) in the mean square.

Theorem 1: Under Assumption 1, let the estimator
gain matrices Ki,ζ(k) be given. For all i ∈ S, the aug-
mented system (11) is exponentially ultimately bounded
in the mean square if there exist positive definite matrices
P1i,ζ(k) > 0, P1i,ζ(k+1) > 0 and Q > 0, a scalar
0 < κ < 1 as well as a set of positive constant scalars
ρ1i, ρ2i and ρ3i satisfying

[
Γi,ζ(k) ∗
Σi,ζ(k) −P̄−1

i,ζ(k+1)

]
< 0 (13)

where

Γi,ζ(k) =

[
Γ1 ∗
0 Γ2

]
, Γ1 =

[
Γ11 ∗
Γ21 Γ22

]
,

Γ2 =




κσλmax(Q) ∗ ∗
0

. . . ∗
0 0 κσλmax(Q)


 ,

Γ11 =




Γ̂i,ζ(k) ∗ ∗
0 −ρ2i

I⊗(H1H2+HT
2 HT

1 )
2 ∗

ρ1i
I⊗(H1+H2)

2 0 Γ̌i


 ,

Γ21 =

[
0 ρ2i

I⊗(H1+H2)
2 0

ρ3i
I⊗(G1+G2)

2 0 0

]
,

Γ22 =

[
−Q − ρ2iI ∗

0 −ρ3iI

]
,

Γ̂i,ζ(k) = −Pi,ζ(k) − ρ1i
I ⊗ (H1H2 + HT

2 HT
1 )

2

− ρ3i
I ⊗ (G1G2 + GT

2 GT
1 )

2
+ κλmax(Pi,ζ(k))I,

Γ̌i = σQ − ρ1iI, Pi,ζ(k) = diag{P1i,ζ(k),P1i,ζ(k)},
P̄i,ζ(k+1) = diag{P̄1i,ζ(k+1), P̄1i,ζ(k+1)},

P̄1i,ζ(k+1) =

s∑

j=1

θijP1j,ζ(k+1),

Σi,ζ(k) =

[
Ci,ζ(k) 0 Bi Ai Ei,ζ(k) 0 · · · 0︸ ︷︷ ︸

τ̄

]
,

σ = (1 − θ)(τ̄ − τ) + 1, θ = min{θii|i ∈ S}.

Proof: Construct the following Lyapunov-
Krasovskii functional candidate for system (11):

V(ℑ(k), i, ζ(k)) = V1(ℑ(k), i, ζ(k)) + V2(ℑ(k), i, ζ(k))

(14)
where

V1(ℑ(k), i, ζ(k)) =ℑT (k)Pi,ζ(k)ℑ(k),

V2(ℑ(k), i, ζ(k)) =

k−1∑

d=k−τi

f̃T (ℑ(d))Qf̃(ℑ(d)) + (1 − θ)

×
τ−1∑

m=τ

k−1∑

d=k−m

f̃T (ℑ(d))Qf̃(ℑ(d)).

For i, j ∈ S, we have

E{V1(ℑ(k + 1), j, ζ(k + 1))|ℑ(k), i, ζ(k)}
− V1(ℑ(k), i, ζ(k))

=
[
Ci,ζ(k)ℑ(k) +Bif̃(ℑ(k)) +Aif̃(ℑ(k − τi))

+ Ei,ζ(k)g̃(ℑ(k))
]T

P̄i,ζ(k+1)

[
Ci,ζ(k)ℑ(k)

+Bif̃(ℑ(k)) +Aif̃(ℑ(k − τi)) + Ei,ζ(k)g̃(ℑ(k))
]

− ℑT (k)Pi,ζ(k)ℑ(k) + E
{
W T (k)P̄i,ζ(k+1)W (k)

}

(15)
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and

E{V2(ℑ(k + 1), j, ζ(k + 1))|ℑ(k), i, ζ(k)}
− V2(ℑ(k), i, ζ(k))

=

s∑

j=1

θij

k∑

d=k+1−τj

f̃T (ℑ(d))Qf̃(ℑ(d))

+ (1 − θ)

τ−1∑

m=τ

k∑

d=k+1−m

f̃T (ℑ(d))Qf̃(ℑ(d))

−
k−1∑

d=k−τi

f̃T (ℑ(d))Qf̃(ℑ(d))

− (1 − θ)

τ−1∑

m=τ

k−1∑

d=k−m

f̃T (ℑ(d))Qf̃(ℑ(d))

=θii

(
k∑

d=k+1−τi

f̃T (ℑ(d))Qf̃(ℑ(d))

−
k−1∑

d=k−τi

f̃T (ℑ(d))Qf̃(ℑ(d))

)

+ (1 − θ)(τ − τ)f̃T (ℑ(k))Qf̃(ℑ(k))

+

s∑

j=1,j ̸=i

θij




k∑

d=k+1−τj

f̃T (ℑ(d))Qf̃(ℑ(d))

−
k−1∑

d=k−τi

f̃T (ℑ(d))Qf̃(ℑ(d))

)

− (1 − θ)

k−τ∑

d=k−τ+1

f̃T (ℑ(d))Qf̃(ℑ(d))

=σf̃T (ℑ(k))Qf̃(ℑ(k)) − f̃T (ℑ(k − τi))Qf̃(ℑ(k − τi))

+

s∑

j=1,j ̸=i

θij

(
k−1∑

d=k+1−τj

f̃T (ℑ(d))Qf̃(ℑ(d))

−
k−1∑

d=k+1−τi

f̃T (ℑ(d))Qf̃(ℑ(d))

)

− (1 − θ)

k−τ∑

d=k−τ+1

f̃T (ℑ(d))Qf̃(ℑ(d))

≤σf̃T (ℑ(k))Qf̃(ℑ(k)) − f̃T (ℑ(k − τi))Qf̃(ℑ(k − τi)).

(16)

Next, it can be derived from (15)-(16) that

E{V(ℑ(k + 1), j, ζ(k + 1))|ℑ(k), i, ζ(k)}
− V(ℑ(k), i, ζ(k))

≤
[
Ci,ζ(k)ℑ(k) +Bif̃(ℑ(k)) +Aif̃(ℑ(k − τi))

+ Ei,ζ(k)g̃(ℑ(k))
]T

P̄i,ζ(k+1)

[
Ci,ζ(k)ℑ(k)

+Bif̃(ℑ(k)) +Aif̃(ℑ(k − τi)) + Ei,ζ(k)g̃(ℑ(k))
]

− ℑT (k)Pi,ζ(k)ℑ(k) − f̃T (ℑ(k − τi))Qf̃(ℑ(k − τi))

+ σf̃T (ℑ(k))Qf̃(ℑ(k)) + E
{
W T (k)P̄i,ζ(k+1)W (k)

}
.

(17)

In terms of the constraints (2) and (3), it is easy to verify
that

ρ1i

[
f̃(ℑ(k)) − (I ⊗ H1)ℑ(k)

]T

× [f̃(ℑ(k)) − (I ⊗ H2)ℑ(k)
]

≤ 0,

ρ2i

[
f̃(ℑ(k − τi)) − (I ⊗ H1)ℑ(k − τi)

]T

×
[
f̃(ℑ(k − τi)) − (I ⊗ H2)ℑ(k − τi)

]
≤ 0,

ρ3i

[
g̃(ℑ(k)) − (I ⊗ G1)ℑ(k)

]T

×
[
g̃(ℑ(k)) − (I ⊗ G2)ℑ(k)

]
≤ 0.

(18)

According to the definition of V(ℑ(k), i, ζ(k)), the fol-
lowing inequality is true:

κ

[
λmax(Pi,ζ(k))∥ℑ(k)∥2 + σλmax(Q)

k−1∑

d=k−τ̄

∥f̃(ℑ(d))∥2

]

− κV(ℑ(k), i, ζ(k)) ≥ 0.

(19)

Then, it follows from (17)-(19) that

E{V(ℑ(k + 1), j, ζ(k + 1))|ℑ(k), i, ζ(k)}
− V(ℑ(k), i, ζ(k))

≤
[
Ci,ζ(k)ℑ(k) +Bif̃(ℑ(k)) +Aif̃(ℑ(k − τi))

+ Ei,ζ(k)g̃(ℑ(k))
]T

P̄i,ζ(k+1)

[
Ci,ζ(k)ℑ(k)

+Bif̃(ℑ(k)) +Aif̃(ℑ(k − τi)) + Ei,ζ(k)g̃(ℑ(k))
]

− ℑT (k)Pi,ζ(k)ℑ(k) − f̃T (ℑ(k − τi))Qf̃(ℑ(k − τi))

+ σf̃T (ℑ(k))Qf̃(ℑ(k)) + E
{
W T (k)P̄i,ζ(k+1)W (k)

}

−
(
ρ1if̃

T (ℑ(k))f̃(ℑ(k)) − ρ1iℑT (k)(I ⊗ (H1 + H2))
T

× f̃(ℑ(k)) + ρ1iℑT (k)
I ⊗ (H1H2 + HT

2 HT
1 )

2
ℑ(k)

)

−
(
ρ2if̃

T (ℑ(k − τi))f̃(ℑ(k − τi)) − ρ2iℑT (k − τi)

× (I ⊗ (H1 + H2))
T f̃(ℑ(k − τi)) + ρ2iℑT (k − τi)

× I ⊗ (H1H2 + HT
2 HT

1 )

2
ℑ(k − τi)

)
−
(
ρ3ig̃

T (ℑ(k))
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× g̃(ℑ(k)) − ρ3iℑT (k)(I ⊗ (G1 + G2))
T g̃(ℑ(k))

+ ρ3iℑT (k)
I ⊗ (G1G2 + GT

2 GT
1 )

2
ℑ(k)

)

+

(
κ
[
λmax(Pi,ζ(k))∥ℑ(k)∥2 + σλmax(Q)

×
k−1∑

d=k−τ̄

∥f̃(ℑ(d))∥2
]

− κV(ℑ(k), i, ζ(k))

)

=ΛT (k, i)Γ̃i,ζ(k)Λ(k, i) + E
{
W T (k)P̄i,ζ(k+1)W (k)

}

− κV(ℑ(k), i, ζ(k))

(20)

where

Γ̃i,ζ(k) = ΣT
i,ζ(k)P̄i,ζ(k+1) Σi,ζ(k) + Γi,ζ(k),

Λ(k, i) =
[

ℑT (k) ℑT (k − τi) f̃T (ℑ(k))

f̃T (ℑ(k − τi)) g̃T (ℑ(k)) f̆T (ℑ(k))
]T
,

f̆(ℑ(k)) =
[
f̃T (ℑ(k − τ̄)) · · · f̃T (ℑ(k − 1))

]T
.

Moreover, it is straightforward to see that

E
{
W T (k)P̄i,ζ(k+1)W (k)

}

≤ λmax(P̄i,ζ(k+1))E
{
W T (k)W (k)

}

= 2υ2λmax
(
P̄i,ζ(k+1)

)
.

By using the Schur Complement Lemma, it can be
inferred from (13) that

ΣT
i,ζ(k)P̄i,ζ(k+1)Σi,ζ(k) + Γi,ζ(k) < 0

which implies

E{V(ℑ(k + 1), j, ζ(k + 1))|ℑ(k), i, ζ(k)}
− V(ℑ(k), i, ζ(k))

≤ 2υ2λmax
(
P̄i,ζ(k+1)

)
− κV(ℑ(k), i, ζ(k)).

For any scalar µ > 0, one has

µk+1E{V(ℑ(k + 1), j, ζ(k + 1))|ℑ(k), i, ζ(k)}
− µkV(ℑ(k), i, ζ(k))

= µk+1
(
E{V(ℑ(k + 1), j, ζ(k + 1))|ℑ(k), i, ζ(k)}

− V(ℑ(k), i, ζ(k))
)

+ µk(µ− 1)V(ℑ(k), i, ζ(k))

≤ µk+1
(
2υ2λmax

(
P̄i,ζ(k+1)

)
− κV(ℑ(k), i, ζ(k))

)

+ µk(µ− 1)V(ℑ(k), i, ζ(k))

= µk(µ− µκ− 1)V(ℑ(k), i, ζ(k))

+ 2µk+1υ2λmax
(
P̄i,ζ(k+1)

)
.

(21)

By applying the law of total expectation, it can be
derived from (21) that

µk+1E{V(ℑ(k + 1), j, ζ(k + 1))}
− µkE{V(ℑ(k), i, ζ(k))}

≤ µk(µ− µκ− 1)E{V(ℑ(k), i, ζ(k))}
+ 2µk+1υ2λmax

(
P̄i,ζ(k+1)

)
.

(22)

Letting µ = 1
1−κ and summing up both sides of the

inequality (22) from 0 to ι−1 with respect to k, we have

µιE{V(ℑ(ι), r(ι), ζ(ι))} − E{V(ℑ(0), r(0), ζ(0))}

≤ 2µ(1 − µι)

1 − µ
υ2λmax

(
P̄i,ζ(k+1)

)
,

which further indicates

E{V(ℑ(ι), r(ι), ζ(ι))}

≤ µ−ι
(
E{V(ℑ(0), r(0), ζ(0))} +

2µ

1 − µ
υ2λmax

(
P̄i,ζ(k+1)

))

+
2µ

µ− 1
υ2λmax

(
P̄i,ζ(k+1)

)

= (1 − κ)ι
(
E{V(ℑ(0), r(0), ζ(0))} − 2

κ
υ2λmax

(
P̄i,ζ(k+1)

))

+
2

κ
υ2λmax

(
P̄i,ζ(k+1)

)
.

Noticing the fact that E{V(ℑ(ι), r(ι), ζ(ι))} ≥
λmin

(
Pi,ζ(k)

)
E{∥ℑ(ι)∥2}, we immediately arrive at

E{∥ℑ(ι)∥2} ≤ Π

λmin
(
Pi,ζ(k)

)

= αιβ + ε

(23)

where

Π=(1 − κ)ι

(
E{V(ℑ(0), r(0), ζ(0))}−2

κ
υ2λmax

(
P̄i,ζ(k+1)

))

+
2

κ
υ2λmax

(
P̄i,ζ(k+1)

)
,

α =(1 − κ), ε =
2
κυ

2λmax
(
P̄i,ζ(k+1)

)

λmin
(
Pi,ζ(k)

) ,

β =
E{V(ℑ(0), r(0), ζ(0))} − 2

κυ
2λmax

(
P̄i,ζ(k+1)

)

λmin
(
Pi,ζ(k)

) .

Therefore, the augmented system (11) is exponentially
ultimately bounded in the mean square and the proof is
now complete.
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B. Design of the State Estimator

After establishing the existence condition of the state
estimator (9) in the previous subsection, we are now in
a position to deal with the estimator design issue.

Theorem 2: For all i ∈ S, there exists an exponen-
tially ultimately bounded estimator (9) for the MJNNs
(1) if there exist positive definite matrices P1i,ζ(k) > 0,
P1i,ζ(k+1) > 0, Q > 0 and Xi,ζ(k), scalars γ, ϱ and
0 < κ < 1, a set of positive constant scalars ρ1i, ρ2i

and ρ3i such that the following linear matrix inequalities
(LMIs) hold:




Ωi,ζ(k) ∗ ∗
Σ̆i,ζ(k) −P̄i,ζ(k+1) ∗

Υ 0 −I


 < 0, (24)

Q < ϱI, (25)

Pi,ζ(k) < γI (26)

where

Ωi,ζ(k) =

[
Ω1 ∗
0 Ω2

]
, Ω1 =

[
Ω11 ∗
Γ21 Γ22

]
,

Ω11 =




Ω̂i,ζ(k) ∗ ∗
0 −ρ2i

I⊗(H1H2+HT
2 HT

1 )
2 ∗

ρ1i
I⊗(H1+H2)

2 0 Γ̌i


 ,

Ω2 =




ςI − I ∗ ∗
0

. . . ∗
0 0 ςI − I


 , δ = κγ, ς = σκϱ,

Ω̂i,ζ(k) = −Pi,ζ(k) − ρ1i
I ⊗ (H1H2 + HT

2 HT
1 )

2

− ρ3i
I ⊗ (G1G2 + GT

2 GT
1 )

2
+ δI,

Σ̆i,ζ(k) =
[
C⃗i,ζ(k) 0 P̄i,ζ(k+1)Bi P̄i,ζ(k+1)Ai

E⃗i,ζ(k) 0 · · · 0︸ ︷︷ ︸
τ̄

]
,

C⃗i,ζ(k) = diag{P̄1i,ζ(k+1)C̄i,ζ(k), P̄1i,ζ(k+1)C̄i,ζ(k)

− Xi,ζ(k)D̄i,ζ(k)},
E⃗i,ζ(k) = diag{P̄1i,ζ(k+1)Ēi,ζ(k), P̄1i,ζ(k+1)Ēi,ζ(k)

− Xi,ζ(k)Ẽi,ζ(k)},

Υ =

[
0 0 0 0 0 I · · · I︸ ︷︷ ︸

τ̄

]
.

and the other relevant parameters are defined as those in
Theorem 1. Moreover, the gain matrices of the estimator

(9) are given as:

Ki,ζ(k) = P̄−1
1i,ζ(k+1)Xi,ζ(k). (27)

Proof: According to (19), (25) and (26), it can be
inferred that

κ

[
γ∥ℑ(k)∥2 + ϱσ

k−1∑

d=k−τ̄

∥f̃(ℑ(d))∥2

]

− κV(ℑ(k), i, ζ(k)) ≥ 0.

(28)

Therefore, from Theorem 1, it can be easily derived that
[

Ω1 ∗
Ω3 Ω

′
2

]
< 0 (29)

where

Ω
′

2 =




ςI ∗ ∗ ∗
0

. . . ∗ ∗
0 0 ςI ∗
0 0 0 −P̄−1

i,ζ(k+1)



,

Ω3 =




0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Ci,ζ(k) 0 Bi Ai Ei,ζ(k)


 .

Pre- and post-multiplying the inequality (29) by
diag{I, I, I, I, I, I, . . . , I, P̄i,ζ(k+1)}, one has

[
Ω̌i,ζ(k) ∗

P̄i,ζ(k+1)Σi,ζ(k) −P̄i,ζ(k+1)

]
< 0 (30)

where

Ω̌i,ζ(k) =

[
Ω1 ∗
0 Ω

′′
2

]
, Ω

′′

2 =




ςI ∗ ∗
0

. . . ∗
0 0 ςI


 .

By Lemma 1, it can be deduced from (30) that



Ωi,ζ(k) ∗ ∗
P̄i,ζ(k+1)Σi,ζ(k) −P̄i,ζ(k+1) ∗

Υ 0 −I


 < 0. (31)

Letting Xi,ζ(k) = P̄1i,ζ(k+1)Ki,ζ(k), it is easy to see that
(31) is equivalent to (24) and the proof is now complete.

Remark 4: In comparison with the results in [17]
without the RR protocol, a distinguished feature of our
results is the specific form of the estimator gain matrices.
More concretely, it is not difficult to see from (27)
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that the estimator parameter is not only determined by
i (i.e. the mode at transmission instant k) but also
by ζ(k + 1) (i.e. the selected transmission node at
transmission instant k+1), which means that the impact
of the introduced RR protocol is completely reflected in
the expression of the estimator parameter.

Remark 5: In Theorems 1 and 2, the existence condi-
tion for the exponentially ultimately bounded estimator
and the gain matrices Ki,ζ(k) have been given. It is
observed that the main results involve all information
including the periodic scheduling scheme (i.e. RR pro-
tocol), the Markovian jumping parameters, the mode-
dependent time delays, the sensor nonlinearities and the
stochastic disturbances. By using an equal allocation
scheme, the designed state estimator is able to alleviate
the data transmission congestion over finite communica-
tion resource.

IV. NUMERICAL EXAMPLE

In this section, we consider a two-neuron two-mode
neural network (1) with the following system parameters:

τ(1) = 1, τ(2) = 5, C(1) = diag{−0.64,−0.50},
C(2) = diag{−0.64,−0.32}, B(1) = diag{0.30, 0.46},
B(2) = diag{0.75,−0.34}, A(1) = diag{−0.58, 0.50},

A(2) = diag{−0.48, 0.68}, D(1) =

[
−4.00 0.30

−0.32 −0.20

]
,

D(2) =

[
−3.80 −0.28

−0.45 −0.20,

]
, E(1) =

[
0.61 0.45

0.21 0.39

]
,

E(2) =

[
0.60 −0.20

0.54 0.40

]
.

The constant matrices are given as follows:

H1 =

[
−0.63 0.54

0.51 0.58

]
, H2 =

[
−0.54 0.56

0.46 0.40

]
,

G1 =

[
−0.35 0.34

−0.35 0.57

]
, G2 =

[
0.40 0.43

0.32 0.48

]
.

The activation functions and nonlinear function are
chosen as

f(x(k)) =

[
−0.5sin(x1(k)) + sin(0.02x2(k))

0.5sin(x2(k))

]
,

g(x(k)) =

[
−0.32sin(x1(k)) + 0.25sin(x2(k))

0.43sin(x2(k))

]
.

Suppose that m = 2, that is, there are two sensors to
transmit the measurement outputs. The initial condition
of system (1) is chosen as ψ(0) = [0.34 − 0.65]T .

By solving a set of LMIs (24)-(26), we obtain the
feasible solutions as follows (for space consideration,
only parts of the solutions are listed here):

κ = 0.5, γ = 420.95, ϱ = 323.48, ρ1(1) = 437.14,

ρ2(1) = 166.87, ρ3(1) = 230.96, ρ1(2) = 448.74,

ρ2(2) = 160.14, ρ3(2) = 234.10.

The state estimator gains are obtained as shown in
Table I. The simulation results are shown in Figs. 2-
6. Figure 2 presents the evolution of Markovian chain.
Under the Markovian chain depicted in Figure 2, the
true states and their estimations are shown in Figs. 3-4.
Figs. 5-6 represent the response of the estimation error.
Moreover, from Table I, we can easily see that there
are four groups of solutions derived. The simulation has
verified that the proposed state estimation strategy is
indeed effective.
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Fig. 2: Modes evolution.

V. CONCLUSIONS

In this paper, the state estimator has been designed
for a class of MJNNs under the RR protocol with
sensor nonlinearities, mode-dependent time delays and
stochastic disturbances. For the purpose of easing the
communication burden between the MJNNs and the state
estimator, the RR protocol has been applied to allocate
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TABLE I: Exponentially ultimately bounded state estimator parameters.

ζ(k), i P1i,ζ(k) P1i,ζ(k+1) Ki,ζ(k)

ζ(k) = 1, i = 1




100.48 8.66 4.53 5.66

8.66 33.49 6.79 5.23

4.53 6.79 22.08 3.05

5.66 5.23 3.05 197.10







0 0 6.29 0

0 9.25 2.65 0

6.29 2.65 0 −42.10

0 0 −42.10 −28.63







0.10 −0.20

0.10 −0.21

−0.31 0

0.01 0.39




ζ(k) = 1, i = 2




173.58 −7.77 24.36 2.84

−7.77 197.45 19.93 2.88

24.36 19.93 157.65 −5.60

2.84 2.88 −5.60 185.24







22.02 34.92 14.33 15.25

34.92 99.75 41.27 55.58

14.33 41.27 746.65 22.13

15.25 55.58 22.13 83.94







−0.12 −0.44

−0.09 −0.02

0.35 1.26

−0.09 −0.54




ζ(k) = 2, i = 1




173.14 13.30 4.69 4.32

13.30 39.70 12.56 10.87

4.69 12.56 41.94 3.51

4.32 10.87 3.51 175.42







59.39 16.23 11.02 12.70

16.23 93.04 38.60 37.51

11.02 38.60 39.29 17.36

12.70 37.51 17.36 26.39







−0.04 0.01

0.08 −0.22

0 0.51

−0.11 0.01




ζ(k) = 2, i = 2




178.52 −14.69 −0.10 0.20

−14.69 185.82 −3.04 −0.18

−0.10 −3.04 166.72 −5.74

0.20 −0.18 −5.74 173.33







27.98 469.43 0 −84.05

469.43 0 0 −24.56

0 0 0 0

−84.05 −24.56 0 −42.22







−0.02 0

0 0

0.02 0

0 0
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Fig. 3: x1(k) and its estimate x̂1(k).

the limited communication resource. By means of the
Lyapunov stability theory, stochastic analysis technique
and the update matrix method, a sufficient condition
has been presented for the exponential boundedness of
the error dynamics. By solving a convex optimization
problem via the standard Matlab software, the desired
state estimator has been derived and a simulation ex-
ample has been utilized to demonstrate the effectiveness
of the proposed state estimation scheme. Finally, it is
worth pointing out that it is possible to generalize our
main results to other complex systems, such as the
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Fig. 4: x2(k) and its estimate x̂2(k).

multi-agent systems with any communication protocol
(e.g. Round-Robin protocol, Stochastic Communication
protocol, Weighted Try-Once-Discard protocol, etc.), and
some related results will be reported in future. More-
over, in order to reflect the reality more closely, other
factors can be considered in the state estimation issues
for MJNNs with time delays and sensor nonlinearities
under RR protocol in the future. For example, it would
be interesting to consider network attacks, incomplete
measurements such as quantization and sensor saturation,
estimator gain variations and event-triggered scheme
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Fig. 5: Estimation error e1(k).
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Fig. 6: Estimation error e2(k).

which have been investigated in [10], [12].
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