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Abstract 14 

Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns between 15 

N2O emissions and online operational variables (dissolved oxygen and nitrogen component concentrations, 16 

temperature and influent flow-rate) during biological nitrogen removal from wastewater. The system under 17 

study was a full-scale reactor, for which hourly sensor data were available. The 15-month long monitoring 18 

campaign was divided into 10 sub-periods based on the profile of N2O emissions, using Binary Segmentation. 19 

The dependencies between operating variables and N2O emissions fluctuated according to Spearman’s rank 20 

correlation. The correlation between N2O emissions and nitrite concentrations ranged between 0.51-0.78. 21 

Correlation > 0.7 between N2O emissions and nitrate concentrations was observed at sub-periods with average 22 

temperature lower than 12 °C. Hierarchical k-means clustering and principal component analysis linked N2O 23 

emission peaks with precipitation events and ammonium concentrations higher than 2 mg/L, especially in sub-24 

periods characterized by low N2O fluxes. Additionally, the highest ranges of measured N2O fluxes belonged 25 

to clusters corresponding with NO3-N concentration less than 1 mg/L in the upstream plug-flow reactor 26 

(middle of oxic zone), indicating slow nitrification rates. The results showed that the range of N2O emissions 27 

partially depend on the prior behavior of the system. The principal component analysis validated the findings 28 

from the clustering analysis and showed that ammonium, nitrate, nitrite and temperature explained a 29 

considerable percentage of the variance in the system for the majority of the sub-periods. The applied 30 

statistical methods, linked the different ranges of emissions with the system variables, provided insights on the 31 

effect of operating conditions on N2O emissions in each sub-period and can be integrated into N2O emissions 32 

data processing at wastewater treatment plants.  33 
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Abbreviations 

AOR: Ammonia oxidation rate 

CH4: Methane 

CO2: Carbon dioxide 

DO: Dissolved oxygen 

GHG: Greenhouse gas 

N2O: Nitrous oxide 

NH4-N: Ammonium nitrogen 

NO2-N: Nitrite nitrogen 

NO3-N: Nitrate nitrogen 

PC: Principal component 

PCA: Principal component analysis 

PLS: Partial least squares  

TN: Total nitrogen 

WWTP: Wastewater treatment plant 
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1. Introduction 34 

The increasing demand to reduce the carbon footprint of municipal wastewater treatment plants (WWTPs) by 35 

reducing greenhouse gas (GHG) emissions and energy consumption, is posing new challenges for the water 36 

industry (Flores-Alsina et al., 2014). The climate change pressures prompt the quantification and 37 

minimization of GHG emissions generated in WWTPs (Haas et al., 2014). Three main sources of GHG 38 

emissions prevail in WWTPs (Monteith et al., 2005; Mannina et al., 2016): (i) the direct emissions mainly 39 

linked to biological processes, (ii) the indirect internal emissions generated by the use of imported energy to 40 

the plants, and (iii) the indirect external emissions associated with the sources that are controlled outside the 41 

WWTPs (e.g. chemicals production, disposal of sewage sludge, transportation). The GHGs emitted into the 42 

atmosphere from biological wastewater treatment processes are carbon dioxide (CO2), methane (CH4) and 43 

nitrous oxide (N2O) (Kampschreur et al., 2009b).  44 

With the potential contribution of 265 times more than CO2 for a 100-year time horizon to global warming 45 

(IPCC, 2013), N2O is a potent GHG and the most significant contributor to ozone depletion (Ravishankara et 46 

al., 2009). WWTPs are significant generators of N2O and are responsible for 3.1% of the N2O emissions in 47 

Europe (EEA Report, 2017). N2O is generated mainly during the autotrophic nitrification and heterotrophic 48 

denitrification (Kampschreur et al., 2008) and can contribute up to 78% (Daelman et al., 2013) of the footprint 49 

of a WWTP’s operation. Recent studies have focused on the understanding, quantification, control and 50 

minimization of N2O emissions (Aboobakar et al., 2013; Mampaey et al., 2016; Pan et al., 2016). However, 51 

several studies have resulted in contradicting findings on the influence of operating and environmental 52 

variables on N2O generation (Liu et al., 2016; Massara et al., 2017). For instance, several studies have 53 

reported increasing N2O emissions with decreasing DO concentrations during nitrification (Kampschreur et 54 

al., 2009b). However, Rodriguez-Caballero et al. (2014) found that N2O emission profiles in a full-scale 55 

biological reactor did not change even for DO variations higher than 1.5 mg/L. The latter, was attributed to the 56 

high nitrification efficiency and the potential biomass adaptation to continuously varying DO concentrations. 57 

Results from real-field N2O monitoring campaigns cannot fully explain long-term causes of N2O emissions 58 

and the combined effect of operating, environmental and external factors that influence the biological systems 59 
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(Jönsson et al., 2015).  Long-term full-scale monitoring campaigns have shown that N2O fluxes are highly 60 

dynamic with significant diurnal fluctuations and seasonal variations; however, the dynamics cannot be fully 61 

explained (Daelman et al., 2015; Kosonen et al., 2016).  62 

Several mechanistic process models describing N2O emissions from wastewater treatment plants have been 63 

developed over the last few years (Massara et al., 2017). While they have been successfully applied to identify 64 

N2O formation mechanisms and pathways from experimental data (Ni et al., 2015; Pocquet et al., 2016), their 65 

calibration and validation to long-term process data remains a challenge.   Domingo-Félez and F. Smets 66 

(2016) reported that substrate affinity constants for NO2 and NO reduction in existing N2O models differ by a 67 

factor of about 100. Additionally, calibration of models under specific operational conditions (i.e. dry 68 

weather) can affect their performance and accuracy when the system varies (Gernaey et al., 2004; Guo and 69 

Vanrolleghem, 2014). Moreover, full-scale N2O emission data show long-term trends that cannot be explained 70 

by commonly available operational data (Daelman et al., 2015) but are possibly caused by microbial 71 

population changes, which are hard to catch with the current models, typically describing single functional 72 

groups with fixed parameter sets.  Multivariate statistical techniques are capable of identifying relationships 73 

between N2O emissions and a multitude of influencing factors, at the same time identifying various operating 74 

sub-periods for which this behaviour may differ. This will lead to increased understanding of experimental 75 

data, on its turn facilitating the application, calibration and validation of mechanistic models. As such, 76 

multivariate statistical techniques maximize the information acquired from N2O monitoring campaign data. 77 

Statistical techniques have been used for the analysis of data from full-scale monitoring campaigns, to identify 78 

interconnections between operating and environmental variables on the one hand and N2O formation on the 79 

other hand. Through multiple linear regression analyses, Aboobakar et al. (2013) showed dependencies 80 

between N2O emissions and nitrogen load, temperature and dissolved oxygen (DO) in various compartments 81 

of a plug-flow reactor for biological nitrogen removal. Multi-regression analysis of one year of data with bi-82 

monthly sampling frequency, coming from a full-scale SBR (Sun et al., 2013) indicated negative correlation 83 

between N2O emissions and temperature, while COD/N ratio lower than 6 resulted in higher emissions. Brotto 84 

et al. (2015) used Spearman’s rank correlation to explain the behavior of N2O emissions in an activated sludge 85 
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process. The analysis showed negative correlation between N2O emissions and pH but positive correlation 86 

between N2O fluxes and temperature. However, most of the studies did not consider continuous long-term 87 

operational data, while further analysis is required to gain a better understanding on the dynamics and trade-88 

offs between N2O generation and the online monitored and controlled process variables.  89 

Multivariate analysis has been proven to be a suitable method for the identification of patterns and hidden 90 

relationships within WWTP data (Rosén and Lennox, 2001) and can be applied to provide insights on the 91 

combined effect of operational variables on N2O emissions in full-scale systems. Chemometric techniques 92 

have been applied to the wastewater treatment sector for 40 years (Rosén and Olsson, 1998), enabling the 93 

visualization and interpretation of the multi-dimensional interrelations of the operational variables monitored 94 

in biological processes (Platikanov et al., 2014). Their application can (i) improve the efficiency of process 95 

monitoring (Mirin and Wahab, 2014) and provide further insights of the biological processes (Moon et al., 96 

2009), (ii) identify and isolate process faults  (Haimi et al., 2016; Liu et al., 2014; Maere et al., 2012; Rosen 97 

and Yuan, 2001), sensor faults (Lee et al., 2004), and iii) predict significant operating variables in the 98 

biological systems that affect performance (Rustum et al., 2008). Furthermore, the gradual implementation of 99 

online sensors to monitor important parameters in the biological treatment train of WWTPs results in the 100 

production of time series, which require the application of specific statistical tools for their interpretation. The 101 

most widely applied approaches include methods aiming to reduce the dimensionality of large data-sets (i.e., 102 

principal component analysis (PCA), partial least squares (PLS)) and data clustering techniques (i.e., 103 

hierarchical clustering, k-means clustering) (Haimi et al., 2013). However, there are limited studies 104 

investigating the behavior of N2O emissions with the application of multivariate statistical techniques, 105 

especially utilizing online operational data in long-term monitoring.  106 

The aim of this work is to investigate whether widely applied multivariate statistical techniques can be applied 107 

to the online data collected from real-field N2O monitoring campaigns in order to gain a better understanding 108 

on the dynamic behavior of N2O emissions and explain the combined effect of the operating variables 109 

monitored in wastewater treatment processes on N2O emissions. Hourly data from the operating variables 110 

monitored online and N2O emissions data in a full-scale carrousel reactor from the long-term monitoring 111 
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campaign published by Daelman et al. (2015) were used for the analysis. A statistical methodological 112 

approach was developed, applying changepoint detection techniques to identify changes in the N2O fluxes 113 

behavior combined with hierarchical k-means clustering and PCA, to provide insights on N2O emissions 114 

patterns and generation pathways.  115 
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2. Materials and methods 116 

2.1 Process description and data origin  117 

This work was based on the data obtained by Daelman et al. (2015) for the Kralingseveer WWTP, consisting 118 

of a plug-flow reactor followed by two carrousel reactors in parallel (Figure 1). The plant treated 80.000 m
3
 119 

d
−1

 of domestic wastewater from a combined sewer system. The carrousel reactors were characterized by 120 

alternating anoxic/oxic zones; aeration was performed through surface aerators, which were manipulated to 121 

control the ammonium concentration in the effluent. Aerator 1 operates under on/off pattern, being on when 122 

the ammonium concentration was higher than 1.2 mg N/L), while surface aerators 2 and 3 were always 123 

operational to keep the solids from settling but operated at maximum capacity when the ammonium 124 

concentration became higher than 0.6 and 0.9 mg/L, respectively. Over the monitoring period the average total 125 

nitrogen (TN) removal efficiency was 81 ±10%; the average COD removal efficiency was equal to 87 ±5%.  126 

Ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N) and DO were monitored in the middle of the second 127 

oxic zone in the plug flow reactor (location 1, Figure 1). The carrousel reactors were equipped with, NH4-N, 128 

temperature probes, and 3 DO probes (DO1, DO2, DO3) (locations 2, 3, 4, Figure 1). The Northern carrousel 129 

reactor was also equipped with a nitrite probe. All the reactors were covered, and the off-gas was collected in 130 

ducts and pumped to a Servomex gas analyzer, where N2O was measured. Table S1 lists all the variables 131 

monitored online (Supplementary material). The data matrix developed consists of the variables monitored in 132 

the carrousel reactor (DO, NH4-N C, NO3-N C, NO2-N C, N2O C), the influent flow-rate, as well as the NH4-133 

N and NO3-N concentrations from the plug-flow reactor. 24 h composite samples of influent and effluent, 134 

available about every 6 days, were used to support the analysis. Figure 2, summarizes the methodological 135 

framework applied to the online database. 136 

[Figure 1] 137 

2.2 Methodological framework for data analysis 138 

The monitoring period was divided into distinct sub-periods based on the profile of N2O fluxes in the 139 

carrousel reactor. Spearman’s correlation analysis, k-means clustering, hierarchical clustering, and Principal 140 
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component analysis were applied to the database. The application of clustering algorithms facilitated the 141 

identification of operational modes that have historically resulted in specific ranges of N2O emissions. The 142 

PCA reduced the dimensionality of the data-set transforming the sensor signals into useful knowledge that that 143 

can be easily interpreted. The methodological framework is extensively described in the following sub-144 

sections.  145 

[Figure 2] 146 

The data-driven approach enabled the utilization of the information and patterns embedded in the real-time 147 

monitored variables (from the system sensors) in the biological processes and GHG measurements. 148 

Multivariate statistical analysis is an alternative to univariate analysis that is commonly applied for the 149 

analysis of WWTP data. It enables the identification of patterns and interrelations in data-sets by examining 150 

multiple variables simultaneously (Olsson et al., 2014). R software was used for the statistical analysis (R 151 

Core Team, 2017). The complete list of packages used is provided in the supplementary material (Table S2). 152 

2.2.1 Preliminary data processing  153 

The preliminary data analysis included: (i) data synchronization under the same time-stamp, and ii) removal 154 

of duplicate and unreliable measurements (multiple readings at the same time stamp for the same sensor). The 155 

data were aggregated into hourly averages in order to compensate for the missing data due to variation in 156 

sampling frequency between the different variables monitored. Exponential moving average imputation was 157 

applied when less than 24 consequential data were missing for each variable. Longer periods of missing data 158 

were excluded from the analysis. 159 

2.2.2 Binary segmentation changepoint detection 160 

Given a series of data, change point analysis investigates abrupt changes in a data-series when specific 161 

properties change (i.e., mean and variance) (Kawahara and Sugiyama, 2012). The Binary Segmentation (Scott 162 

and Knott, 1974) is a widely applied and computationally efficient changepoint detection algorithm (Killick et 163 

al., 2012). The algorithm employs initially single changepoint detection method to the complete data-set as 164 

described in (Killick and Eckley, 2014). If a changepoint is identified the procedure is repeated to the two new 165 
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segments formed; before and after the changepoint. The process continues splitting the data until there are no 166 

more changepoints identified. The computational cost of the algorithm is of the order of O(nlog n) with n 167 

being the number of data in the data-set and therefore it is applicable in large data-sets. A distribution-free test 168 

statistic was applied based on the work of Chen and Gupta, (1997). The penalty for the changepoints 169 

identification was equal to log(n). The algorithm requires independent data points. Therefore, first difference 170 

transformation of the N2O timeseries was performed and changes in variance were identified by the Binary 171 

segmentation algorithm. The profile of the N2O emissions was highly variable during the monitoring 172 

campaign. Binary segmentation enabled the identification of the sub-periods characterized by different N2O 173 

emissions’ profile. 174 

2.2.3 Spearman’s rank correlation 175 

Spearman's rank correlation coefficient (Spearman, 1904) was used to detect bivariate temporal monotonic 176 

trends among the system variables for the different sub-periods; it served as a measure of the association 177 

strength. This method is based on the rank of the values and therefore, is less sensitive to outliers than 178 

Pearson’s correlation. P values lower than .01 were considered to be significant. 179 

2.2.4 Hierarchical k-means clustering  180 

Clustering techniques are widely applied in data mining in order to identify and group the underling patterns 181 

that exist in high dimensional data sets (Jain, 2010).  K-means clustering (Hartigan and Wong, 1979) is a 182 

recognized clustering algorithm (Haimi at al., 2013). K-means clustering was applied to categorize the data in 183 

groups of similar observations and to investigate the patterns of N2O emission fluxes, based on Euclidean 184 

distance. K-means algorithm begins with the selection of k random centroids of the same dimension within the 185 

original data. All the data-points are compared and assigned to the nearest centroid. During each iteration, the 186 

nearest data to each centroid are re-defined and centroids are recalculated in a way that squared distances of 187 

all points within a cluster to the cluster’s centroid are minimized. However, the randomly selected initial 188 

centroids can result into locally optimized clustering results (Abu-Jamous et al., 2015). Therefore, hierarchical 189 

k-means clustering that was proposed by Arai and Barakbah, (2007), was applied to the dataset. In this 190 

method agglomerative hierarchical clustering (Kaufman and Rousseeuw, 1990) is applied for the selection of 191 
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the centroids; Ward's method is used in order to divide the dataset in clusters (Ward Jr, 1963).  The data were 192 

normalized before the analysis. NBclust package in R (Charrad et al., 2014) was used to select the number of 193 

clusters in each sub-period. The package applies a number cluster validity indexes (i.e. average silhouette 194 

value (Rousseeuw, 1987); Hartigan’s rule (Hartigan, 1975)).  195 

Hierarchical k-means clustering was applied to the carrousel reactor data matrix from the different sub-periods 196 

identified through binary segmentation, to investigate whether different temporal patterns of the operating 197 

variables were responsible for the different behavior of N2O emissions. Hierarchical k-means clustering 198 

enabled i) the detection of frequency and persistence of extreme ranges of operating variables, and ii) the 199 

comparison of the operational modes between the plug-low and carrousel reactor. Ammonium and nitrate 200 

probes in the plug-flow reactor were included in the analysis, since they can provide indirect feedback in 201 

terms of the carrousel reactor influent and additional information for the operational behavior of the system. 202 

However, the analysis was repeated excluding plug-flow variables (NH4-N and NO3-N). Graphical 203 

comparisons of the clustered data-points versus time and boxplots of the variables in each identified cluster 204 

are displayed in the results’ section. 205 

2.2.5 Principal component analysis 206 

Principal component analysis (PCA) (Jolliffe, 2002) was applied to the dataset in an effort to reduce the 207 

dimensionality of the data by eliminating a small proportion of variance in the data. PCA transforms the 208 

original correlated measured variables to uncorrelated variables, i.e., Principal components (PCs), explaining 209 

the maximum observed variability. The principal components are linear combinations of the original data 210 

variables. The loadings of the variables in each principal component can map their relationship with the 211 

respective principal component. PC scores are a linear combination of the data, weighted by the PC loadings 212 

for each variable. The scores of the principal components map the different samples in the new dimensional 213 

space of the principal components facilitating the investigation of the different relationships between the 214 

variables. The data matrices (X) consisting of J columns (variables) and I data rows (number of observations) 215 

were normalized with mean equal to 0 and standard deviation equal to 1. Each column of X,     216 
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            , j=1,…J, represents a vector in the I-dimensional space. In PCA, eigenvalue decomposition is 217 

used to factorize the data matrix X (I x J) and to map the data matrix to a reduced dimensional space: 218 

        

where, T: matrix (I x S) representing the score of the principal components, S: the number of principal 219 

components selected, P: matrix (J x S) representing the loadings and E: matrix of residuals. 220 

The biplot of the first 2 PCs was used in order to visualize the combined behavior of significant variables that 221 

affect the system. The biplots enabled the simultaneous visualization of i) the variables’ loadings in the first 222 

two principal components, ii) the scores of the first two principal components, and iii) the different clusters. 223 

The temporal variations of the PC scores enabled the identification of occasions in which the behavior of the 224 

system changes. PCA was applied to the data matrix of the carrousel reactor excluding N2O emissions time 225 

series, i) to identify the most significant variables that affect the system, (ii) to analyze the structure of the 226 

sensor data, iii) to investigate if changes in the relationship of the system coincide with changes in the N2O 227 

emissions profile, and iv) to validate the results from hierarchical clustering. N2O emissions time series were 228 

excluded from the PCA in order to investigate the relationship between the PC scores and N2O emissions and 229 

to examine which PCs are most significantly linked to the behavior of N2O emissions.  230 
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3. Results and discussion 231 

3.1 N2O emissions profile and main dependencies 232 

The profile of all the variables monitored was fluctuating during the monitoring period, which can justify the 233 

different profiles of N2O emissions that resulted from the Binary Segmentation algorithm. Overall, high 234 

ranges of emissions were reported when nitrate concentration in the plug-flow reactor was low, whereas 235 

periods with lower ammonium concentrations in the plug-flow reactor were linked with lower N2O emissions. 236 

Table 1 shows the average values and standard deviations of the variables monitored online and offline in the 237 

Northern carrousel and plug-flow reactors. N2O fluxes peaked in March 2011 followed by a period 238 

characterized by very low N2O emissions. Gradual decrease was observed until November 2011 and 239 

negligible emissions again until January 2011 (Figure 3).  240 

[Table 1] 241 

The application of Binary Segmentation algorithm to the N2O emissions of the Northern carrousel reactor 242 

identified 9 changepoints that correspond to 10 sub-periods with distinct variance of the N2O timeseries first 243 

difference (Figure 3). The analysis identified abrupt temporal changes in the emission dynamics that indicate 244 

changes in the underlying mechanisms or environmental conditions responsible for the N2O formation.  245 

[Figure 3] 246 

Offline data were analyzed in the different sub-periods in order to investigate significant changes that can 247 

contribute to the high N2O emissions in sub-periods 4 and 5. The average COD concentration in the influent 248 

of the plug-flow reactor (effluent of primary sedimentation) was 239 ± 80 mg COD/L over the 15-month 249 

monitoring period. The average plug-flow reactor influent and carrousel reactor effluent concentrations of 250 

COD, TKN, BOD, TP and the effluent pH for all sub-periods are given in the supplementary material (Table 251 

S3). In sub-period 5, 27% increase in the influent COD concentration to the plug flow reactor (compared to 252 

average value) was observed, which could be attributed to less precipitation events and to the consequently 253 

lower average influent flow-rate during this sub-period. Laboratory analyses did not show significant seasonal 254 
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changes in the plug-flow COD loading (19,934 ± 13310 kg COD/day). The COD loading in sub-period 4 255 

(16,160 ± 2546 kg COD/day) was 17% less than in sub-period 1. TKN and TP loadings were reduced in sub-256 

period 4 compared to sub-period, by 11% and 12% respectively. The COD:TKN:TP ratio remained quite 257 

stable, ranging between 1:0.17:0.02 (sub-period 2) and 1:0.20:0.03 (sub-period 4).  258 

Figure 4 shows the different COD to TKN ratios measured for all the sub-periods. There were cases with 259 

lower than average COD/TKN in the influent of the plug-flow reactor that coincided with increased N2O 260 

emissions, particularly in sub-periods 4 and 5. However, low ranges of COD/TKN (<5) in sub-periods 1, 2, 7 261 

and 6 corresponded with low N2O emissions. These observations indicate that limitation of COD cannot be 262 

considered the sole contributor of N2O emissions via heterotrophic denitrification in sub-periods 4 and 5.  263 

[Figure 4] 264 

The COD removal efficiency remained relatively steady during the monitoring campaign ranging from 79% 265 

(sub-period 8) to 91% (sub-period 5). The range of TN and TP removal efficiencies ranged from 73 % (sub-266 

periods 1 and 9) to 92% (sub-period 5) and from 67% (sub-period 7) to 87% (sub-period 4). The effluent pH 267 

was steady (~ 8) and did not show seasonal variability that could influence the generation of N2O emissions.  268 

On the other hand, a significant variation is observed for all variables monitored online by analyzing at the 269 

complete database. Table 2 summarizes the average values and standard deviations of the online monitored 270 

variables considered in the analysis for the target periods. In the carrousel reactor, the nitrite concentration is 271 

relatively high in sub-period 4 (average = 2.6 mg/L) and in the first part of sub-period 10 (average = 2.1 272 

mg/L). The average temperature in both cases is ~13 °C. In biological reactors operating in continuous mode, 273 

appreciable (> 2 mg N/L) nitrite concentrations are usually not observed, since nitrite is directly oxidized by 274 

nitrite oxidizing bacteria into nitrate.  However, in certain cases, high nitrite concentrations in biological 275 

processes have been observed, which have been linked with low temperatures that affect N2O reductase 276 

during denitrification enhancing N2O production (Holtan-Hartwig et al., 2002; Adouani et al., 2015).  277 

Analyzing the whole profile, the emissions tended to be low at higher temperatures (sub-periods 6, 7, and 8). 278 

Higher emissions were also observed, though, at temperature higher than 18 °C and low nitrite concentrations 279 
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(i.e., sub-period 5). Ahn et al. (2010) demonstrated that N2O emissions can be significant at higher 280 

temperatures due to the higher enzymatic activities of the bioprocesses producing N2O. In the carrousel 281 

reactor during sub-periods 4 and 5, the temperature increases from 11.8 to 20 °C. Low N2O emissions were 282 

also observed when ammonium concentration was lower than 13 mg/L and nitrate was higher than 2.5 mg/L 283 

in the plug-flow reactor. The probe was located in the middle of the second oxic zone; thus, lower ammonium 284 

concentrations in the plug-flow reactor can indicate less ammonium loads in the carrousel reactor. 285 

[Table 2] 286 

The analysis of the variables’ ranges for the N2O emission profiles provides limited insight on the 287 

dependencies between the system variables monitored online, which is further analyzed in the following 288 

sections.  289 

3.2 Spearman’s rank correlation analysis for carrousel reactor 290 

The application of Spearman’s rank correlation coefficient to the data of the carrousel reactor could not 291 

identify significant correlations between the N2O emissions and the operating variables. The lack of 292 

monotonic univariate dependencies could be attributed to i) the temporal fluctuations of the influent 293 

characteristics, ii) the continuous variability in the operating conditions of the reactors, and iii) the seasonal 294 

variations of the environmental conditions in wastewater treatment processes. Fluctuating correlation 295 

coefficients between N2O emissions and carrousel reactor variables were identified (Supplementary, Figures 296 

S1:S2). The findings are in line with the study of Kosonen et al., (2016). The authors compared the results 297 

from two monitoring periods at the same biological system and identified different relationships between N2O 298 

emissions and BOD7(ATU) loads. 299 

The correlation coefficient between nitrite and N2O emissions ranged from 0.78 (sub-period 7) to 0.51 (sub-300 

period 9). As a general remark, nitrite was correlated with N2O emissions in sub-periods 4, 6 and 7, while 301 

lower correlation was observed during sub-periods 5 (Figure 5), 8 and 9. N2O emissions and NO3-N 302 

concentration in the carrousel reactor exhibited a positive correlation with coefficient higher than 0.7 for sub-303 

periods 2 (Figure 5), 4 and 10 (the temperature was lower than 13 °C in all cases). N2O emissions and NO3-N 304 
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concentrations followed similar diurnal patterns, wherein peaks in nitrate concentration coincided with peaks 305 

in N2O emissions (Daelman et al., 2015). The accumulation of nitrate is potentially linked with higher 306 

nitrification than denitrification rates. This is in line with Daelman et al. (2015), considering that the nitrate 307 

utilization rate in these sub-periods is affected by the low temperatures (Elefsiniotis and Li, 2006). 308 

Additionally, during times when N2O was positively correlated with DO1 (> 0.5), medium to significant 309 

correlations between the N2O emissions and the ammonium concentration in the carrousel reactor were also 310 

observed (sub-periods 1, 6 and 7). Stripping of the already formed N2O can be a potential explanation.  Given 311 

that the surface aerator in the location of DO1 probe is manipulated to control the ammonium concentration in 312 

the effluent, ammonium peaks trigger the surface aerators to start. 313 

The correlation coefficient between any two of the system variables did not remain stable between the 314 

different sub-periods. Figure 5 shows the correlograms for sub-periods 2 and 5. These sub-periods were 315 

characterized by low and high ranges of N2O emissions and temperature respectively (Table 2). In sub-period 316 

2, the average NO3-N concentration in the plug-flow reactor was equal to 2.5 mg/L (Table 2) and correlated 317 

negatively with the influent flow-rate (~ - 0.63) (Figure 5). In sub-period 5 the behavior of nitrate 318 

concentration (average equal to 2.1 mg/L) was mainly correlated negatively with ammonium concentration in 319 

the same reactor. The ammonium concentration in the carrousel reactor was positively correlated with DO1 320 

only in sub-period 2. NH4-N concentration in the plug-flow reactor was correlated with the influent-flow rate 321 

only in sub-periods 4 and 5. However, the profiles of these two variables showed that in the majority of the 322 

sub-periods, abrupt and rapid increase of influent flow-rate (i.e., precipitation events) coincided with increase 323 

of the NH4-N. However, the NH4-N concentration reduced more rapidly in the system than the influent flow-324 

rate. For example, in sub-period 3 the correlation coefficient between NH4-N in the plug-flow reactor and 325 

influent flow-rate was 0.26. However, when days with significant precipitation events (and thus high influent 326 

flow-rate) were omitted, the correlation coefficient was equal to 0.58. The latter shows that, in this example, 327 

the lack of correlation between these two variables is most likely to be an indication that the interrelationships 328 

are not monotonic and that the method is not appropriate to identify complex relationships within the data. In 329 

order to verify that increased influent flow-rate was linked with precipitation events, daily precipitation data 330 
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were extracted from the Royal Netherlands meteorological institute. Spearman’s correlation coefficient 331 

between two days moving average of influent flow-rate and daily precipitation in the Netherlands was equal to 332 

0.69. Therefore, there is a direct link between higher than average flow-rates and precipitation events (the 333 

timeseries are shown in Figure S3, supplementary material). The correlograms for all sub-periods are provided 334 

in the Supplementary material (Figures S1:S2). 335 

Spearman’s rank correlation indicated structural changes in the dependencies between the system variables. 336 

Therefore, the fluctuating structural dependencies had a different impact on the generation of N2O emissions. 337 

Previous studies have shown that various monitored variables in the biological system (NH4-N, NO3-N, NO2-338 

N, Temperature) can affect N2O emissions generation. However, further analysis is required to investigate 339 

their combined effect in N2O formation in full-scale complex systems.  340 

[Figure 5] 341 

3.3 Hierarchical k-means clustering 342 

The application of hierarchical k-means clustering enabled the categorization of the different ranges of the 343 

operating variables and N2O emissions within each sub-period.  344 

Hierarchical k-means clustering analysis was repeated excluding NH4-N and NO3-N concentrations in the 345 

plug-flow reactor. The results showed that the majority of the data points were allocated to the same clusters 346 

for each sub-period even when the NH4-N and NO3-N concentrations in the plug-flow reactor were excluded. 347 

In the majority of the sub-periods (i.e. sub-periods 1-6) more than 85% of the data points were assigned to the 348 

same cluster. It can be concluded that specific patterns and ranges of NH4-N and NO3-N monitored in plug-349 

flow reactor, systematically resulted in specific responses to the carrousel reactor. The latter is supported by 350 

the Spearman’s rank correlation analysis, where high correlations were observed between the variables in the 351 

two reactors for several sub-periods. For example, the correlation coefficient between NH4-N in the plug-flow 352 

and carrousel reactors is higher than 0.7 for sub-periods 1 to 7. The similarity of the clusters for all the sub-353 

periods is shown in Table S4 in the Supporting Material. 354 
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The range of N2O emissions was differentiated in the majority of the clusters. In all the sub-periods, two 355 

major clusters were identified characterized by significant differences in the NH4-N and NO3-N 356 

concentrations in the plug-flow reactor. In the majority of the sub-periods they represented the diurnal 357 

variability of the system nutrient concentrations and influent-flow rate. Additionally, clustering distinguished 358 

occasions with high influent flow-rate and ammonium concentration in the carrousel reactor, which can be an 359 

indication of precipitation events. In sub-periods characterized by low average N2O emissions (i.e., 1, 2, 7, 8 360 

and 9), clusters with increased N2O emissions (yet relatively low) were mainly linked to higher loading rates 361 

due to the expected diurnal variability or to precipitation events. However, N2O emissions higher than 3.8 362 

kg/h were observed when the average NO3-N concentration was constantly lower than 1 mg/L in the plug-363 

flow reactor and the NO3-N concentration was lower than 4 mg/L in the carrousel reactor. Table 3 compares 364 

the clustered average values for all the variables in sub-period 2 (average N2O emissions equal to 0.6 kg/h – 365 

Table 2) and 4 (average N2O emissions equal to 5.6 kg/h – Table 2).  The average value of N2O emissions for 366 

a set of clusters in a specific sub-period (from Table 3) can be found taking into account the number of data-367 

points in the individual clusters. Sub-period 4 was characterized by very low NO3-N concentration in the 368 

middle of the oxic zone in the plug-flow reactor. The latter indicates slower oxidation of ammonia to nitrate or 369 

insufficient DO in the plug-flow nitrification lane. This can lead to higher NH4-N loading in the carrousel 370 

reactor. On the other hand, higher nitrification rates in the plug-flow reactor (i.e. sub-period 2) resulted in 371 

lower N2O emissions in the carrousel reactor. The average values of all the variables in each cluster during all 372 

the sub-periods are given as supplementary material (Table S5). 373 

In clusters 2 and 16 the averages of operating variables had similar ranges (Table 3). However, in these two 374 

occasions the N2O emissions were different (0.01 and 0.51 kg/h). Similarly, in clusters 1, 4 and 7, the 375 

averages of operating variables were similar yet the N2O emissions were different (0.09,0.87 and 3.22 kg/h 376 

respectively). A corollary to this also existed. In clusters 1 and 2 the averages of operating variables were 377 

different but the N2O emissions were similar (0.09 and 0.01). Similarly, in clusters 5 and 6 the averages of 378 

operating variables were different but the N2O emissions were similar (0.21 and 0.24). Such observations 379 

indicate the underlying complexities of the interdependencies. Additionally, it can be concluded that the range 380 
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of N2O emissions can partially depend on the preceding operational mode of the system. Figure 6 shows an 381 

example of the variables monitored online for two separate occasions in sub-periods 2 and 3 (from 00:00 am 382 

until 8:00 am) and the respective N2O emissions. All the variables showed a similar behavior (in terms of 383 

range and trends). N2O emission profiles had also the same trend; however, their range depended on the initial 384 

N2O fluxes at 00:00 am. The influent flow-rates, NH4-N and NO3-N concentrations in the plug-flow reactor 385 

also were similar in these two occasions. The average N2O fluxes were equal to 0.44 and 2.01 kg/h for 386 

occasion 1 and 2 respectively.  More extensive data are required for quantitative investigation. 387 

 [Table 3] 388 

[Figure 6] 389 

3.4 Principal component analysis in the carrousel reactor 390 

PCA was applied to transform the original correlated measured variables to uncorrelated variables (Principal 391 

components) and explain the maximum observed variability. In sub-periods with low emissions (1, 2, 7, 8, and 392 

9) the PCA analysis showed that N2O emissions’ peaks are related with NH4-N and influent flow-rate peaks in 393 

the carrousel reactor and with the effect of the diurnal variability of these variables’ loading rates.  394 

The current section discusses the PCA results for sub-period 2, as an example. The results for all the sub-395 

periods are given in the supplementary material (Tables S6-S13, Figures S4-S29). The application of PCA 396 

reduced the dimensionality of the data with 4 principal components (PCs) explaining ~86% of the total 397 

variance (PC1 = 39%, PC2 = 26%, PC3 = 12%, and PC4 = 9%). Loadings for the system variables in the 4 398 

PCs are given in Table 4. The loadings of each component are an indication of the variation in the variables 399 

explained by a specific component. Influent flow-rate, ammonium concentration in the carrousel reactor 400 

(NH4-N C) and the three DO (DO1, DO2 and DO3) concentrations had the highest negative loadings in PC1. 401 

This means that the first principal component increased with the increase of these variables. Nitrate 402 

concentration (NO3-N PF) in the plug-flow reactor has a relatively high positive loading in PC1 (0.36). 403 

Therefore, PC1 describes how the carrousel reactor responds to the behavior of the upstream plug-flow reactor 404 

processes and conditions, the variation of the influent flow-rate and variations in ammonium and DO 405 
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concentrations in the carrousel reactor. The latter can be indirectly connected with the control strategy of the 406 

carrousel reactor, since the surface aerators were manipulated based on the effluent ammonium concentration. 407 

PC2 linked ammonium concentration in the plug-flow reactor, nitrate concentration in the carrousel reactor 408 

and temperature (loadings higher than 0.47). In PC3 ammonium concentration in the carrousel reactor had 409 

high negative loading, while DO2 and DO3 concentrations had positive loadings that was not expected 410 

considering the control strategy of the system. Investigation of the variables’ profiles, though, showed an 411 

increasing trend of DO2 and DO3, whereas the ammonium profile did not present a similar trend. 412 

[Table 4] 413 

The biplot of the first 2 PCs is used to visualize the combined behavior of significant variables that affect the 414 

system. Data points assigned to cluster 6 (Figure 7), had negative scores in PC2 and PC1. Therefore, 415 

ammonium concentration in the carrousel reactor and influent flow rate were higher than average, while the 416 

nitrate concentration in the system was lower than average. Figure 8 shows the profile of N2O emissions and 417 

NH4-N in the carrousel reactor for sub-period 2. The colored points in the diagram represent the identified 418 

clusters. Peaks in emissions coincided with peaks in the NH4-N C profile, whereas peaks in NH4-N C 419 

coincided with precipitation events (cluster 6). 420 

[Figure 7] 421 

The scores of the data-points in cluster 5 were mainly positive in PC1 and negative in PC2 (Figure 7). PC2 422 

increased with the increase of NH4-N concentration in the plug-flow reactor (Table 4). Given that PC2 had an 423 

average equal to 0 (data are standardized), data-points with negative scores in PC2 represent occasions with 424 

lower than average NH4-N concentration in the plug-flow reactor. This is supported by the correlation plot 425 

(Figure 7), where the arrow of NH4-N concentration in the plug-flow reactor points to the direction of 426 

increasing concentrations of NH4-N. Therefore, data-points belonging to cluster 5 were characterized by 427 

higher than average ammonium concentration in the plug-flow reactor. Similarly, NO3-N concentration in the 428 

plug-flow reactor had relatively significant positive loading in PC1 (0.36 – Table 4). The latter indicates that 429 

NH4-N and DO concentrations (measured by three probes) in the carrousel reactor (that had negative loadings 430 
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in PC1 – Table 5) tended to decrease when NO3-N concentration in the plug-flow reactor increased. Given 431 

that all data-points in cluster 5 had positive scores in PC1, it can be concluded that they are characterized by 432 

lower than average NH4-N concentration in the carrousel reactor and higher than average NO3-N 433 

concentration in the plug-flow reactor. According to the clustering results the latter can be an indication of the 434 

high nitrogen loadings of the normal diurnal variability in the reactor. This finding is supported from the 435 

results presented in Figure 8, where the data-points of cluster 5 correspond to the daily low range of 436 

ammonium concentrations in both reactors.  437 

[Figure 8] 438 

Figure 9 summarizes scores of the PC2 and the respective clusters (colored points in the diagram) indicating 439 

strong diurnal cyclic fluctuations of the water quality during this sub-period. It also shows that after each 440 

precipitation event, a sudden temperature drop occurred; the system was disturbed and cannot recover 441 

immediately. Spearman’s rank correlation coefficient between PC2 and N2O emissions is equal to 0.72.  442 

[Figure 9] 443 

In sub-period 4, mechanisms triggering high N2O emissions in the carrousel reactor prevailed (average = 5.6 444 

kg/h). The PCA loadings were similar to sub-period 2, while the clustering results indicated 3 clusters; 445 

clusters 10 and 11 were affected by the diurnal variability and cluster 12 was affected by the precipitation 446 

events (Table 3). Again, the DO data obtained from the 3 sensors in the carrousel reactor had significant 447 

negative loadings in PC1. However, ammonium concentration in the carrousel reactor was not identified as a 448 

significant variable affecting the system in the first two PCs. This can be attributed to the fact that less NH4-N 449 

concentration peaks were observed in the effluent of the carrousel reactor (17 data points belong to cluster 450 

12). The correlation coefficient of PC1with NH4-N concentration in the carrousel reactor was -0.75. 451 

Therefore, PCA analysis shows that PC1 is a good indicator of the ammonium concentration in the carrousel 452 

reactor. The DO concentrations in this sub-period especially for cluster 10 (with average NH4-N concentration 453 

in the carrousel reactor equal to 1.26 mg/L) was the highest observed in all the clusters with similar NH4-N 454 

concentrations in the carrousel effluent. The alternation of aerobic and anaerobic conditions observed in this 455 
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reactor, combined with high NH4-N and DO concentrations has been identified as a significant cause of 456 

nitrification sourced emissions (Yu et al., 2010). 457 

[Table 5] 458 

In PC2, the NO3-N concentration and temperature had significant positive loadings (Table 5). The score plot 459 

of PC2 (Figure 10a) presented an increasing trend and therefore, showed that nitrate and temperature 460 

increased. The latter was verified by the profiles of NO3-N concentrations in the carrousel reactor (Figure 10b) 461 

and NO3-N concentration and temperature in the plug-flow reactor (Supplementary material S30). In the 462 

beginning of the sub-period 4 very low concentrations of nitrate were observed in the system and they 463 

gradually increased especially after the 28
th
 of March. The Spearman’s correlation coefficient between N2O 464 

emissions and PC2 scores were relatively high and equal to 0.62. However, contrary to sub-period 2, the 465 

clustering analysis showed that there is no nitrate accumulation (Table 3). The average nitrate concentration in 466 

the plug-flow reactor was equal to 0.2 mg/L until the 28
th
 of March and increased up to 1.6 mg/L until the end 467 

of the sub-period. Therefore, the observations in section 3.3 are supported by the PCA results (low nitrate in 468 

the plug flow resulted in increased loadings in the subsequent carrousel reactor and the denitrification activity 469 

in the carrousel reactor is affected by the low temperature resulting in nitrite accumulation).  470 

[Figure 10] 471 

In the section, the combination of hierarchical k-means clustering and PCA was used in order to link the 472 

different emission ranges with all the online monitored variables (i.e. Figure 7). Even though, the online 473 

dynamics of significant variables that can trigger N2O emissions in biological processes (i.e. COD, pH) were 474 

not available, the applied methodology enabled the identification of a set of variables that are connected with 475 

N2O emissions in each sub-period (i.e. Figure 8). Considering that online data were not available for the 476 

influent of the carrousel reactor, higher NH4-N loadings in the carrousel reactor were linked with clusters 477 

characterized by higher than average influent flow-rates and ammonium concentration and lower than average 478 

NO3-N concentration in the plug-flow reactor. The latter can be supported by the fact that the behavior of 479 

variables in the carrousel reactor was significantly dependent on the nutrient concentrations in the plug-flow 480 
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reactor (Table S4 – clustering results). Additionally, more intense aeration in the carrousel reactor (that can 481 

affect the stripping of dissolved N2O) was linked with clusters characterized by higher than average NH4-N 482 

concentration in the carrousel reactor (since the surface aerators were manipulated by the effluent ammonium 483 

concentration). 484 

3.5 N2O generation pathways 485 

In line with Daelman et al. (2015) findings, both AOB pathways can be considered responsible for the N2O 486 

emissions observed in the carrousel rector. The combination of nitrite accumulation and low oxygen 487 

concentrations can be linked with the nitrifier denitrification pathway, whereas higher AOR (ammonia 488 

oxidation rate), correlation of NH4-N concentration in the carrousel reactor with N2O emissions and higher 489 

DO concentrations can be linked with the hydroxylamine oxidation pathway (Law et al., 2012). N2O 490 

generation via heterotrophic denitrification can be also significant especially in periods with nitrate 491 

accumulation, suggesting insufficient anoxic conditions (Daelman et. al., 2015).  492 

In terms of the offline monitored variables, low pH, accompanied with nitrite accumulation, as observed in 493 

sub-period 4 has been identified as a significant factor inhibiting N2O reduction during denitrification (Pan et 494 

al., 2012). Zhou et al. (2008) reported that under these conditions the production of free nitrous acid (FNA) in 495 

a denitrifying-Enhanced Biological Phosphorus Removal culture was the main contributor to N2O emissions 496 

production even at low concentrations equal to 0.0007–0.001 mg HNO2-N/L (nitrite concentration 3-4 mg/L 497 

at pH 7). Additionally, high pH values (>7) combined low DO concentration (~0.55 mg/L) have been reported 498 

to be responsible for nitrification driven N2O emissions via the nitrifier denitrification pathway (Law et al., 499 

2011). The latter is attributed to increasing ammonium oxidation rate (due to the pH increase), enhancing the 500 

nitrifier denitrification pathway through electrons provision. On the other hand, lower pH (<7) has been linked 501 

with elevated nitrification driven N2O emissions at higher DO concentrations (~3 mg/L) (Li et al., 2015). The 502 

authors argued, that at higher pH the electrons available from the ammonium oxidation rate are mainly used to 503 

form water from molecular oxygen and H
+
. In the current study, the pH in the effluent of the reactor was 504 

steady during the monitoring campaign (~8±0.2). However, online pH data showing the exact dynamics of the 505 

pH in the carrousel reactor were not available.  506 
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Low COD/N ratios have been reported to be responsible for denitrification induced N2O emissions 507 

(Schulthess and Gujer, 1996). The offline data showed that COD/TKN ratio in the influent remained relatively 508 

steady during the monitoring campaign with a slight decrease in sub-periods 4 and 5 (<5) where emissions 509 

were higher (5.6 and 2.6 kg/h respectively). However, low COD/TKN (<5) was also observed in other sub-510 

periods and did not result into high N2O emissions (Figure 4). The frequency of the offline data (~6 days) did 511 

not enable the identification of the exact contribution of COD loading to the system. Figure 4 shows that COD 512 

limitation is not the sole contributor to the increased N2O emissions in sub-period 4. Therefore, the results 513 

indicate that heterotrophic denitrification induced by COD/TN limitation was not the main N2O emissions 514 

source in sub-periods 4 and 5. 515 

The results from the application of multivariate statistical techniques can be used for the identification and 516 

explanation of potential pathways for N2O generation. In sub-periods with lower average N2O emission fluxes 517 

(1, 6, and 7), emission peaks coincided with ammonium peaks in the plug-flow reactor and therefore in the 518 

influent carrousel reactor. In that case, average emission fluxes ranged from 0.05 kg/h (sub-period 1) to 2.54 519 

kg/h (sub-period 6).  Wunderlin et al., (2012) demonstrated that N2O production through hydroxylamine 520 

oxidation is accompanied by excess ammonia, low nitrite concentration and high ammonia oxidation rate. 521 

Additionally, in these sub-periods, N2O emissions were higher at higher temperatures and DO concentrations. 522 

The high DO concentrations coincided with peaks in nitrite and nitrate concentrations indicating also 523 

insufficient denitrification zones in the reactor. AOB can use nitrite instead of oxygen as electron acceptor 524 

(Kampschreur et al., 2009a) especially in oxygen limiting conditions (low DO zones exist even when all 525 

surface aerators are under operation); thus, nitrifier denitrification by AOB could potentially contribute in N2O 526 

emissions. Burgess et al. (2002) found strong dependency between nitrite accumulation and N2O emissions, 527 

especially at sudden increase of ammonia loading. 528 

Overall, N2O emissions increased significantly and peaked at low nitrate concentrations in both reactors (i.e., 529 

sub-periods 3 and 4) and high nitrite concentrations in the carrousel reactor (i.e., sub-period 4). Under aerobic 530 

conditions, nitrite accumulates in the system when the ammonia oxidation rate to nitrite exceeds the nitrite 531 

oxidation rate to nitrate (Guisasola et al., 2005) inducing the nitrifier denitrification pathway. Sub-optimum 532 
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DO, COD and pH can also result in nitrite accumulation during denitrification (Schulthess et al., 1994; Yang 533 

et al., 2012). Zheng et al., (2015) observed a synergistic N2O generation between nitrifier denitrification and 534 

heterotrophic denitrification in a pilot carrousel reactor where the nitrite built-up during denitrification 535 

boosted nitrifier denitrification pathway. The latter is in line with the N2O profiles observed in this study in 536 

sub-periods with high emissions. The combined results of PCA and hierarchical k-means clustering can guide 537 

through the most significant N2O production pathways in different sub-periods (supplementary material). 538 

Conclusions 539 

N2O emissions depend on a set of interacting biological and chemical conversions and physical processes. 540 

This complex interaction obscures the determination of the governing processes in individual treatment plants. 541 

With multivariate analysis correlations between influential factors in a complex system might be revealed. 542 

 A data-driven approach consisting of statistical-based methods was applied to analyze long-term N2O 543 

emission dynamics and generation mechanisms based on available high temporal resolution (hourly) 544 

data. Applying binary segmentation to the N2O emission profile allowed to split up the 15-month 545 

N2O monitoring campaign into 10 sub-periods.  546 

 Spearman’s rank correlation analysis showed significant univariate correlations between N2O 547 

emissions and ammonium, nitrate and nitrite concentrations. The correlation coefficients fluctuated 548 

between the 10 sub-periods. Low values for the correlation coefficients indicated non-monotonic 549 

interrelationships that Spearman’s rank correlation cannot identify.  550 

 Hierarchical k-means clustering provided information on the existence of reoccurring patterns and 551 

their effect on N2O emissions. N2O emission peaks were linked with the diurnal behavior of the 552 

nutrients’ concentrations and with rain events, whereas low nitrate concentrations in the preceding 553 

plug flow reactor (<1 mg/L) resulted in increased ammonium loadings and high N2O emissions in the 554 

subsequent carrousel reactor.  555 

 Principal component analysis validated the findings from the clustering analysis and showed that 556 

ammonium, nitrate, nitrite, influent flow-rate and temperature, explained more than 65% of the 557 

variance in the system for the majority of the sub-periods. The first principal component corresponded 558 

to the control strategy of the reactor. 559 

 The proposed methodological approach can detect and visualize disturbances in the system (i.e., 560 

precipitation events, high NH4-N concentrations, etc.) and their effect on N2O emissions. 561 
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Additionally, the ranges of operating variables that have historically resulted in low or high ranges of 562 

N2O emissions can be identified. Overall, multivariate analysis can assist researchers and operators to 563 

understand and control the N2O emissions using long term historical data. 564 
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Table 1:Average value and standard deviation (std) of variables monitored in the Northern carrousel reactor 763 

(C: carrousel reactor, N: Northern, PF: plug-flow reactor) 764 

Online variables Average Std Offline variables Average Std 

N2O (kg/h) 1.4 2.1 COD influent (mg COD/ L) 238.8 79.5 

NH4-N C (mg/L) 1.63 2.2 TKN influent (mg/L)  42.1 10.0 

NO3-N C (mg/L) 5.8 4 TP influent (mg/ L) 7.0 2.1 

NO2-N C (mg/L) 1.2 1.1 Flow-rate (m
3
/ d) 85,898 41,786 

DO1 (mg/L) 0.6 0.9 COD effluent (mg/ L) 36.9 6.9 

DO2 (mg/L) 0.8 0.9 TKN efffluent (mg/ L) 2.8 1.2 

DO3 (mg/L) 1.9 0.6 TP effluent (mg/ L) 1.1 0.6 

Temperature (°C) 16 3.5 pH effluent 8.0 0.2 

N2O PF (kg/h) 0.71 1.21    

NH4-N PF (mg/L) 12.41 5.35    

NO3-N PF (mg/L) 2.38 2.2    

Influent Flow-rate (m
3
/h) 3973 2375    

DO PF (mg/L) 2.61 0.65    
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Table 2: Average values and standard deviations of the main variables for the 10 sub-periods (C: carrousel reactor, N: Northern, PF: plug-flow reactor). 765 

766 
Variables 

N2O                         

(kg/h)  

NO3-C N 

(mg/l) 

NO3-N PF 

(mg/l) 

NH4-N C 

(mg/l) 

NH4-N PF 

(mg/l) 

NO2-N C* 

(mg/l) 

Temperature 

(°C) 

DO1  

(mg/l) 

DO2  

(mg/l) 

DO3  

(mg/l) 

 Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

1 0 0.1 6.1 3.1 1.8 1.6 1.8 2.67 11.4 4.1     15.7 1.4 0.62 0.7 0.62 0.5 1.5 0.4 

2 0.6 0.6 7.2 3.1 2.5 2 1.5 1.7 13 4     11.2 1.0 0.77 1 1.31 0.8 2 0.4 

3 2.7 1.4 6.1 3.2 1.6 2.1 1.6 2.1 15.2 4.5     11.5 0.7 0.67 0.8 1.49 1 2.07 0.4 

4 5.6 2. 6 3 0.1 0.5 0.7 1.3 1.6 15 4.8 2.6 1.9 12.9 1.1 0.64 0.9 1.95 0.9 1.9 0.4 

5 2.6 2.2 4.3 4.2 3.1 1.9 1.3 2 11.5 5.2 0.8 1 18.2 1.7 0.34 0.7 0.39 0.8 1.94 0.5 

6 0.8 1.4 3.3 3.2 2.3 1.9 2 3.1 14.7 6.1 0.5 0.5 20 1.0 0.42 0.7 0.26 0.5 2.27 0.5 

7 0.2 0.3 7.2 5 2.8 2.4 2 3.1 9.8 5.2 0.6 0.4 20 0.7 0.42 0.6 0.29 0.4 2.64 0.5 

8 0.1 0.2 10.1 5.7 5.2 2.6 1.4 1 9.6 5.5 0.8 0.5 19.6 0.5 0.27 0.5 0.2 0.5 2.71 0.6 

9 0.1 0.2 7.9 3.6 2.8 2.8 2 2 13.2 5.4 1.9 0.8 12.9 2.1 1.12 1.2 1.07 1 1.58 0.4 

10 1.3 1.1 6.3 3.5 1.4 0.9 1.6 3.7 16.4 4.3 2.1 0.9 13 0.7 0.58 1.0 1.04 1 1.52 0.3 

*NO2-N concentration was monitored between 11/03/2011 and 19/01/2012 
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Table 3: Operating variables (average) for all clusters defined by hierarchical clustering in the carrousel 767 

reactor (P: Sub-period, Cl: Clusters) 768 

P Cl 
N2O 

C 

NH4-

N PF 

NO3-

N   PF 
Influent 

NH4-

N C 

NO3-

N   C 
DO1 DO2 DO3 

NO2-

N 

  kg/h mg/l mg/l m
3
/h mg/l mg/l mg/l mg/l mg/l mg/l 

1 

1 0.09 14.13 1.48 3883 1.47 8.66 1.04 0.78 1.72  

2 0.01 8.55 2.41 3824 0.87 4.26 0.13 0.47 1.25  

3 0.05 14.74 0.30 8892 7.91 4.63 1.37 0.77 1.58  

2 

4 0.87 15.30 2.05 3827 1.51 8.61 0.94 1.53 2.22  

5 0.21 9.13 3.69 3419 0.74 5.28 0.03 0.62 1.41  

6 0.24 12.51 0.81 11132 4.52 5.42 2.27 2.31 2.22  

3 

7 3.22 16.85 1.52 3383 1.36 7.36 0.87 1.88 2.35  

8 1.72 10.96 1.91 3672 0.82 4.29 0.05 0.85 1.56  

9 2.40 21.40 0.12 7935 7.52 4.15 2.10 1.28 2.10  

4 

10 6.60 17.30 0.32 3207 1.26 3.79 2.14 0.95 2.41 4.10 

11 3.83 10.82 0.77 2747 0.79 1.80 1.51 0.05 1.20 1.40 

12 6.89 25.45 0.48 6375 10.86 3.62 1.98 2.12 2.34 4.28 

6 
15 2.54 17.66 0.75 5922 5.00 5.07 1.30 0.73 2.34 1.08 

16 0.51 8.20 2.84 3811 0.98 2.64 0.10 0.10 2.21 0.35 

*NO2-N concentration was monitored between 11/03/2011 and 19/01/2012 

 769 

  770 
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Table 4: PCA loadings sub-period 2, carrousel reactor 771 

Variable PC1 PC2 PC3 PC4 

NH4-N PF -0.28 0.47 -0.24 0.29 

NO3-N PF  0.36 0.21 0.14 -0.67 

Influent -0.38 -0.31 -0.09 -0.37 

NH4-N C -0.34 0.03 -0.59 -0.29 

NO3-N   C  -0.04 0.58 0.21 -0.31 

DO1 -0.43 0.06 -0.15 -0.18 

DO2 -0.40 0.08 0.48 -0.17 

DO3 -0.37 0.21 0.40 0.28 

Temperature 0.22 0.49 -0.33 0.11 

 772 

  773 



39 

 

Table 5: PCA loadings sub-period 4, carrousel reactor 774 

 PC1 PC2 PC3 PC4 

NH4-N PF -0.48 0.04 -0.11 0.25 

NO3-N PF  0.26 0.56 -0.04 -0.35 

Influent -0.33 -0.07 -0.52 -0.17 

NH4-N C -0.28 0.14 -0.50 -0.46 

NO3-N C  -0.17 0.59 0.32 0.04 

DO1 -0.37 0.24 -0.13 0.59 

DO2 -0.40 0.08 0.41 -0.14 

DO3 -0.37 0.01 0.33 -0.40 

Temperature 0.23 0.51 -0.27 0.19 

 775 

 776 

 777 
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Abstract 14 

Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns between 15 

N2O emissions and online operational variables (dissolved oxygen and nitrogen component concentrations, 16 

temperature and influent flow-rate) during biological nitrogen removal from wastewater. The system under 17 

study was a full-scale reactor, for which hourly sensor data were available. The 15-month long monitoring 18 

campaign was divided into 10 sub-periods based on the profile of N2O emissions, using Binary Segmentation. 19 

The dependencies between operating variables and N2O emissions fluctuated according to Spearman’s rank 20 

correlation. The correlation between N2O emissions and nitrite concentrations ranged between 0.51-0.78. 21 

Correlation > 0.7 between N2O emissions and nitrate concentrations was observed at sub-periods with average 22 

temperature lower than 12 °C. Hierarchical k-means clustering and principal component analysis linked N2O 23 

emission peaks with precipitation events and ammonium concentrations higher than 2 mg/L, especially in sub-24 

periods characterized by low N2O fluxes. Additionally, the highest ranges of measured N2O fluxes belonged 25 

to clusters corresponding with NO3-N concentration less than 1 mg/L in the upstream plug-flow reactor 26 

(middle of oxic zone), indicating slow nitrification rates. The results showed that the range of N2O emissions 27 

partially depend on the prior behavior of the system. The principal component analysis validated the findings 28 

from the clustering analysis and showed that ammonium, nitrate, nitrite and temperature explained a 29 

considerable percentage of the variance in the system for the majority of the sub-periods. The applied 30 

statistical methods, linked the different ranges of emissions with the system variables, provided insights on the 31 

effect of operating conditions on N2O emissions in each sub-period and can be integrated into N2O emissions 32 

data processing at wastewater treatment plants.  33 
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1. Introduction 34 

The increasing demand to reduce the carbon footprint of municipal wastewater treatment plants (WWTPs) by 35 

reducing greenhouse gas (GHG) emissions and energy consumption, is posing new challenges for the water 36 

industry (Flores-Alsina et al., 2014). The climate change pressures prompt the quantification and 37 

minimization of GHG emissions generated in WWTPs (Haas et al., 2014). Three main sources of GHG 38 

emissions prevail in WWTPs (Monteith et al., 2005; Mannina et al., 2016): (i) the direct emissions mainly 39 

linked to biological processes, (ii) the indirect internal emissions generated by the use of imported energy to 40 

the plants, and (iii) the indirect external emissions associated with the sources that are controlled outside the 41 

WWTPs (e.g. chemicals production, disposal of sewage sludge, transportation). The GHGs emitted into the 42 

atmosphere from biological wastewater treatment processes are carbon dioxide (CO2), methane (CH4) and 43 

nitrous oxide (N2O) (Kampschreur et al., 2009b).  44 

With the potential contribution of 265 times more than CO2 for a 100-year time horizon to global warming 45 

(IPCC, 2013), N2O is a potent GHG and the most significant contributor to ozone depletion (Ravishankara et 46 

al., 2009). WWTPs are significant generators of N2O and are responsible for 3.1% of the N2O emissions in 47 

Europe (EEA Report, 2017). N2O is generated mainly during the autotrophic nitrification and heterotrophic 48 

denitrification (Kampschreur et al., 2008) and can contribute up to 78% (Daelman et al., 2013) of the footprint 49 

of a WWTP’s operation. Recent studies have focused on the understanding, quantification, control and 50 

minimization of N2O emissions (Aboobakar et al., 2013; Mampaey et al., 2016; Pan et al., 2016). However, 51 

several studies have resulted in contradicting findings on the influence of operating and environmental 52 

variables on N2O generation (Liu et al., 2016; Massara et al., 2017). For instance, several studies have 53 

reported increasing N2O emissions with decreasing DO concentrations during nitrification (Kampschreur et 54 

al., 2009b). However, Rodriguez-Caballero et al. (2014) found that N2O emission profiles in a full-scale 55 

biological reactor did not change even for DO variations higher than 1.5 mg/L. The latter, was attributed to the 56 

high nitrification efficiency and the potential biomass adaptation to continuously varying DO concentrations. 57 

Results from real-field N2O monitoring campaigns cannot fully explain long-term causes of N2O emissions 58 

and the combined effect of operating, environmental and external factors that influence the biological systems 59 
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(Jönsson et al., 2015).  Long-term full-scale monitoring campaigns have shown that N2O fluxes are highly 60 

dynamic with significant diurnal fluctuations and seasonal variations; however, the dynamics cannot be fully 61 

explained (Daelman et al., 2015; Kosonen et al., 2016).  62 

Several mechanistic process models describing N2O emissions from wastewater treatment plants have been 63 

developed over the last few years (Massara et al., 2017). While they have been successfully applied to identify 64 

N2O formation mechanisms and pathways from experimental data (Ni et al., 2015; Pocquet et al., 2016), their 65 

calibration and validation to long-term process data remains a challenge.   Domingo-Félez and F. Smets 66 

(2016) reported that substrate affinity constants for NO2 and NO reduction in existing N2O models differ by a 67 

factor of about 100. Additionally, calibration of models under specific operational conditions (i.e. dry 68 

weather) can affect their performance and accuracy when the system varies (Gernaey et al., 2004; Guo and 69 

Vanrolleghem, 2014). Moreover, full-scale N2O emission data show long-term trends that cannot be explained 70 

by commonly available operational data (Daelman et al., 2015) but are possibly caused by microbial 71 

population changes, which are hard to catch with the current models, typically describing single functional 72 

groups with fixed parameter sets.  Multivariate statistical techniques are capable of identifying relationships 73 

between N2O emissions and a multitude of influencing factors, at the same time identifying various operating 74 

sub-periods for which this behaviour may differ. This will lead to increased understanding of experimental 75 

data, on its turn facilitating the application, calibration and validation of mechanistic models. As such, 76 

multivariate statistical techniques maximize the information acquired from N2O monitoring campaign data. 77 

Statistical techniques have been used for the analysis of data from full-scale monitoring campaigns, to identify 78 

interconnections between operating and environmental variables on the one hand and N2O formation on the 79 

other hand. Through multiple linear regression analyses, Aboobakar et al. (2013) showed dependencies 80 

between N2O emissions and nitrogen load, temperature and dissolved oxygen (DO) in various compartments 81 

of a plug-flow reactor for biological nitrogen removal. Multi-regression analysis of one year of data with bi-82 

monthly sampling frequency, coming from a full-scale SBR (Sun et al., 2013) indicated negative correlation 83 

between N2O emissions and temperature, while COD/N ratio lower than 6 resulted in higher emissions. Brotto 84 

et al. (2015) used Spearman’s rank correlation to explain the behavior of N2O emissions in an activated sludge 85 
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process. The analysis showed negative correlation between N2O emissions and pH but positive correlation 86 

between N2O fluxes and temperature. However, most of the studies did not consider continuous long-term 87 

operational data, while further analysis is required to gain a better understanding on the dynamics and trade-88 

offs between N2O generation and the online monitored and controlled process variables.  89 

Multivariate analysis has been proven to be a suitable method for the identification of patterns and hidden 90 

relationships within WWTP data (Rosén and Lennox, 2001) and can be applied to provide insights on the 91 

combined effect of operational variables on N2O emissions in full-scale systems. Chemometric techniques 92 

have been applied to the wastewater treatment sector for 40 years (Rosén and Olsson, 1998), enabling the 93 

visualization and interpretation of the multi-dimensional interrelations of the operational variables monitored 94 

in biological processes (Platikanov et al., 2014). Their application can (i) improve the efficiency of process 95 

monitoring (Mirin and Wahab, 2014) and provide further insights of the biological processes (Moon et al., 96 

2009), (ii) identify and isolate process faults  (Haimi et al., 2016; Liu et al., 2014; Maere et al., 2012; Rosen 97 

and Yuan, 2001), sensor faults (Lee et al., 2004), and iii) predict significant operating variables in the 98 

biological systems that affect performance (Rustum et al., 2008). Furthermore, the gradual implementation of 99 

online sensors to monitor important parameters in the biological treatment train of WWTPs results in the 100 

production of time series, which require the application of specific statistical tools for their interpretation. The 101 

most widely applied approaches include methods aiming to reduce the dimensionality of large data-sets (i.e., 102 

principal component analysis (PCA), partial least squares (PLS)) and data clustering techniques (i.e., 103 

hierarchical clustering, k-means clustering) (Haimi et al., 2013). However, there are limited studies 104 

investigating the behavior of N2O emissions with the application of multivariate statistical techniques, 105 

especially utilizing online operational data in long-term monitoring.  106 

The aim of this work is to investigate whether widely applied multivariate statistical techniques can be applied 107 

to the online data collected from real-field N2O monitoring campaigns in order to gain a better understanding 108 

on the dynamic behavior of N2O emissions and explain the combined effect of the operating variables 109 

monitored in wastewater treatment processes on N2O emissions. Hourly data from the operating variables 110 

monitored online and N2O emissions data in a full-scale carrousel reactor from the long-term monitoring 111 
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campaign published by Daelman et al. (2015) were used for the analysis. A statistical methodological 112 

approach was developed, applying changepoint detection techniques to identify changes in the N2O fluxes 113 

behavior combined with hierarchical k-means clustering and PCA, to provide insights on N2O emissions 114 

patterns and generation pathways.  115 
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2. Materials and methods 116 

2.1 Process description and data origin  117 

This work was based on the data obtained by Daelman et al. (2015) for the Kralingseveer WWTP, consisting 118 

of a plug-flow reactor followed by two carrousel reactors in parallel (Figure 1). The plant treated 80.000 m
3
 119 

d
−1

 of domestic wastewater from a combined sewer system. The carrousel reactors were characterized by 120 

alternating anoxic/oxic zones; aeration was performed through surface aerators, which were manipulated to 121 

control the ammonium concentration in the effluent. Aerator 1 operates under on/off pattern, being on when 122 

the ammonium concentration was higher than 1.2 mg N/L), while surface aerators 2 and 3 were always 123 

operational to keep the solids from settling but operated at maximum capacity when the ammonium 124 

concentration became higher than 0.6 and 0.9 mg/L, respectively. Over the monitoring period the average total 125 

nitrogen (TN) removal efficiency was 81 ±10%; the average COD removal efficiency was equal to 87 ±5%.  126 

Ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N) and DO were monitored in the middle of the second 127 

oxic zone in the plug flow reactor (location 1, Figure 1). The carrousel reactors were equipped with, NH4-N, 128 

temperature probes, and 3 DO probes (DO1, DO2, DO3) (locations 2, 3, 4, Figure 1). The Northern carrousel 129 

reactor was also equipped with a nitrite probe. All the reactors were covered, and the off-gas was collected in 130 

ducts and pumped to a Servomex gas analyzer, where N2O was measured. Table S1 lists all the variables 131 

monitored online (Supplementary material). The data matrix developed consists of the variables monitored in 132 

the carrousel reactor (DO, NH4-N C, NO3-N C, NO2-N C, N2O C), the influent flow-rate, as well as the NH4-133 

N and NO3-N concentrations from the plug-flow reactor. 24 h composite samples of influent and effluent, 134 

available about every 6 days, were used to support the analysis. Figure 2, summarizes the methodological 135 

framework applied to the online database. 136 

[Figure 1] 137 

2.2 Methodological framework for data analysis 138 

The monitoring period was divided into distinct sub-periods based on the profile of N2O fluxes in the 139 

carrousel reactor. Spearman’s correlation analysis, k-means clustering, hierarchical clustering, and Principal 140 
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component analysis were applied to the database. The application of clustering algorithms facilitated the 141 

identification of operational modes that have historically resulted in specific ranges of N2O emissions. The 142 

PCA reduced the dimensionality of the data-set transforming the sensor signals into useful knowledge that that 143 

can be easily interpreted. The methodological framework is extensively described in the following sub-144 

sections.  145 

[Figure 2] 146 

The data-driven approach enabled the utilization of the information and patterns embedded in the real-time 147 

monitored variables (from the system sensors) in the biological processes and GHG measurements. 148 

Multivariate statistical analysis is an alternative to univariate analysis that is commonly applied for the 149 

analysis of WWTP data. It enables the identification of patterns and interrelations in data-sets by examining 150 

multiple variables simultaneously (Olsson et al., 2014). R software was used for the statistical analysis (R 151 

Core Team, 2017). The complete list of packages used is provided in the supplementary material (Table S2). 152 

2.2.1 Preliminary data processing  153 

The preliminary data analysis included: (i) data synchronization under the same time-stamp, and ii) removal 154 

of duplicate and unreliable measurements (multiple readings at the same time stamp for the same sensor). The 155 

data were aggregated into hourly averages in order to compensate for the missing data due to variation in 156 

sampling frequency between the different variables monitored. Exponential moving average imputation was 157 

applied when less than 24 consequential data were missing for each variable. Longer periods of missing data 158 

were excluded from the analysis. 159 

2.2.2 Binary segmentation changepoint detection 160 

Given a series of data, change point analysis investigates abrupt changes in a data-series when specific 161 

properties change (i.e., mean and variance) (Kawahara and Sugiyama, 2012). The Binary Segmentation (Scott 162 

and Knott, 1974) is a widely applied and computationally efficient changepoint detection algorithm (Killick et 163 

al., 2012). The algorithm employs initially single changepoint detection method to the complete data-set as 164 

described in (Killick and Eckley, 2014). If a changepoint is identified the procedure is repeated to the two new 165 
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segments formed; before and after the changepoint. The process continues splitting the data until there are no 166 

more changepoints identified. The computational cost of the algorithm is of the order of O(nlog n) with n 167 

being the number of data in the data-set and therefore it is applicable in large data-sets. A distribution-free test 168 

statistic was applied based on the work of Chen and Gupta, (1997). The penalty for the changepoints 169 

identification was equal to log(n). The algorithm requires independent data points. Therefore, first difference 170 

transformation of the N2O timeseries was performed and changes in variance were identified by the Binary 171 

segmentation algorithm. The profile of the N2O emissions was highly variable during the monitoring 172 

campaign. Binary segmentation enabled the identification of the sub-periods characterized by different N2O 173 

emissions’ profile. 174 

2.2.3 Spearman’s rank correlation 175 

Spearman's rank correlation coefficient (Spearman, 1904) was used to detect bivariate temporal monotonic 176 

trends among the system variables for the different sub-periods; it served as a measure of the association 177 

strength. This method is based on the rank of the values and therefore, is less sensitive to outliers than 178 

Pearson’s correlation. P values lower than .01 were considered to be significant. 179 

2.2.4 Hierarchical k-means clustering  180 

Clustering techniques are widely applied in data mining in order to identify and group the underling patterns 181 

that exist in high dimensional data sets (Jain, 2010).  K-means clustering (Hartigan and Wong, 1979) is a 182 

recognized clustering algorithm (Haimi at al., 2013). K-means clustering was applied to categorize the data in 183 

groups of similar observations and to investigate the patterns of N2O emission fluxes, based on Euclidean 184 

distance. K-means algorithm begins with the selection of k random centroids of the same dimension within the 185 

original data. All the data-points are compared and assigned to the nearest centroid. During each iteration, the 186 

nearest data to each centroid are re-defined and centroids are recalculated in a way that squared distances of 187 

all points within a cluster to the cluster’s centroid are minimized. However, the randomly selected initial 188 

centroids can result into locally optimized clustering results (Abu-Jamous et al., 2015). Therefore, hierarchical 189 

k-means clustering that was proposed by Arai and Barakbah, (2007), was applied to the dataset. In this 190 

method agglomerative hierarchical clustering (Kaufman and Rousseeuw, 1990) is applied for the selection of 191 
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the centroids; Ward's method is used in order to divide the dataset in clusters (Ward Jr, 1963).  The data were 192 

normalized before the analysis. NBclust package in R (Charrad et al., 2014) was used to select the number of 193 

clusters in each sub-period. The package applies a number cluster validity indexes (i.e. average silhouette 194 

value (Rousseeuw, 1987); Hartigan’s rule (Hartigan, 1975)).  195 

Hierarchical k-means clustering was applied to the carrousel reactor data matrix from the different sub-periods 196 

identified through binary segmentation, to investigate whether different temporal patterns of the operating 197 

variables were responsible for the different behavior of N2O emissions. Hierarchical k-means clustering 198 

enabled i) the detection of frequency and persistence of extreme ranges of operating variables, and ii) the 199 

comparison of the operational modes between the plug-low and carrousel reactor. Ammonium and nitrate 200 

probes in the plug-flow reactor were included in the analysis, since they can provide indirect feedback in 201 

terms of the carrousel reactor influent and additional information for the operational behavior of the system. 202 

However, the analysis was repeated excluding plug-flow variables (NH4-N and NO3-N). Graphical 203 

comparisons of the clustered data-points versus time and boxplots of the variables in each identified cluster 204 

are displayed in the results’ section. 205 

2.2.5 Principal component analysis 206 

Principal component analysis (PCA) (Jolliffe, 2002) was applied to the dataset in an effort to reduce the 207 

dimensionality of the data by eliminating a small proportion of variance in the data. PCA transforms the 208 

original correlated measured variables to uncorrelated variables, i.e., Principal components (PCs), explaining 209 

the maximum observed variability. The principal components are linear combinations of the original data 210 

variables. The loadings of the variables in each principal component can map their relationship with the 211 

respective principal component. PC scores are a linear combination of the data, weighted by the PC loadings 212 

for each variable. The scores of the principal components map the different samples in the new dimensional 213 

space of the principal components facilitating the investigation of the different relationships between the 214 

variables. The data matrices (X) consisting of J columns (variables) and I data rows (number of observations) 215 

were normalized with mean equal to 0 and standard deviation equal to 1. Each column of X,     216 
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            , j=1,…J, represents a vector in the I-dimensional space. In PCA, eigenvalue decomposition is 217 

used to factorize the data matrix X (I x J) and to map the data matrix to a reduced dimensional space: 218 

        

where, T: matrix (I x S) representing the score of the principal components, S: the number of principal 219 

components selected, P: matrix (J x S) representing the loadings and E: matrix of residuals. 220 

The biplot of the first 2 PCs was used in order to visualize the combined behavior of significant variables that 221 

affect the system. The biplots enabled the simultaneous visualization of i) the variables’ loadings in the first 222 

two principal components, ii) the scores of the first two principal components, and iii) the different clusters. 223 

The temporal variations of the PC scores enabled the identification of occasions in which the behavior of the 224 

system changes. PCA was applied to the data matrix of the carrousel reactor excluding N2O emissions time 225 

series, i) to identify the most significant variables that affect the system, (ii) to analyze the structure of the 226 

sensor data, iii) to investigate if changes in the relationship of the system coincide with changes in the N2O 227 

emissions profile, and iv) to validate the results from hierarchical clustering. N2O emissions time series were 228 

excluded from the PCA in order to investigate the relationship between the PC scores and N2O emissions and 229 

to examine which PCs are most significantly linked to the behavior of N2O emissions.  230 
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3. Results and discussion 231 

3.1 N2O emissions profile and main dependencies 232 

The profile of all the variables monitored was fluctuating during the monitoring period, which can justify the 233 

different profiles of N2O emissions that resulted from the Binary Segmentation algorithm. Overall, high 234 

ranges of emissions were reported when nitrate concentration in the plug-flow reactor was low, whereas 235 

periods with lower ammonium concentrations in the plug-flow reactor were linked with lower N2O emissions. 236 

Table 1 shows the average values and standard deviations of the variables monitored online and offline in the 237 

Northern carrousel and plug-flow reactors. N2O fluxes peaked in March 2011 followed by a period 238 

characterized by very low N2O emissions. Gradual decrease was observed until November 2011 and 239 

negligible emissions again until January 2011 (Figure 3).  240 

[Table 1] 241 

The application of Binary Segmentation algorithm to the N2O emissions of the Northern carrousel reactor 242 

identified 9 changepoints that correspond to 10 sub-periods with distinct variance of the N2O timeseries first 243 

difference (Figure 3). The analysis identified abrupt temporal changes in the emission dynamics that indicate 244 

changes in the underlying mechanisms or environmental conditions responsible for the N2O formation.  245 

[Figure 3] 246 

Offline data were analyzed in the different sub-periods in order to investigate significant changes that can 247 

contribute to the high N2O emissions in sub-periods 4 and 5. The average COD concentration in the influent 248 

of the plug-flow reactor (effluent of primary sedimentation) was 239 ± 80 mg COD/L over the 15-month 249 

monitoring period. The average plug-flow reactor influent and carrousel reactor effluent concentrations of 250 

COD, TKN, BOD, TP and the effluent pH for all sub-periods are given in the supplementary material (Table 251 

S3). In sub-period 5, 27% increase in the influent COD concentration to the plug flow reactor (compared to 252 

average value) was observed, which could be attributed to less precipitation events and to the consequently 253 

lower average influent flow-rate during this sub-period. Laboratory analyses did not show significant seasonal 254 
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changes in the plug-flow COD loading (19,934 ± 13310 kg COD/day). The COD loading in sub-period 4 255 

(16,160 ± 2546 kg COD/day) was 17% less than in sub-period 1. TKN and TP loadings were reduced in sub-256 

period 4 compared to sub-period, by 11% and 12% respectively. The COD:TKN:TP ratio remained quite 257 

stable, ranging between 1:0.17:0.02 (sub-period 2) and 1:0.20:0.03 (sub-period 4).  258 

Figure 4 shows the different COD to TKN ratios measured for all the sub-periods. There were cases with 259 

lower than average COD/TKN in the influent of the plug-flow reactor that coincided with increased N2O 260 

emissions, particularly in sub-periods 4 and 5. However, low ranges of COD/TKN (<5) in sub-periods 1, 2, 7 261 

and 6 corresponded with low N2O emissions. These observations indicate that limitation of COD cannot be 262 

considered the sole contributor of N2O emissions via heterotrophic denitrification in sub-periods 4 and 5.  263 

[Figure 4] 264 

The COD removal efficiency remained relatively steady during the monitoring campaign ranging from 79% 265 

(sub-period 8) to 91% (sub-period 5). The range of TN and TP removal efficiencies ranged from 73 % (sub-266 

periods 1 and 9) to 92% (sub-period 5) and from 67% (sub-period 7) to 87% (sub-period 4). The effluent pH 267 

was steady (~ 8) and did not show seasonal variability that could influence the generation of N2O emissions.  268 

On the other hand, a significant variation is observed for all variables monitored online by analyzing at the 269 

complete database. Table 2 summarizes the average values and standard deviations of the online monitored 270 

variables considered in the analysis for the target periods. In the carrousel reactor, the nitrite concentration is 271 

relatively high in sub-period 4 (average = 2.6 mg/L) and in the first part of sub-period 10 (average = 2.1 272 

mg/L). The average temperature in both cases is ~13 °C. In biological reactors operating in continuous mode, 273 

appreciable (> 2 mg N/L) nitrite concentrations are usually not observed, since nitrite is directly oxidized by 274 

nitrite oxidizing bacteria into nitrate.  However, in certain cases, high nitrite concentrations in biological 275 

processes have been observed, which have been linked with low temperatures that affect N2O reductase 276 

during denitrification enhancing N2O production (Holtan-Hartwig et al., 2002; Adouani et al., 2015).  277 

Analyzing the whole profile, the emissions tended to be low at higher temperatures (sub-periods 6, 7, and 8). 278 

Higher emissions were also observed, though, at temperature higher than 18 °C and low nitrite concentrations 279 
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(i.e., sub-period 5). Ahn et al. (2010) demonstrated that N2O emissions can be significant at higher 280 

temperatures due to the higher enzymatic activities of the bioprocesses producing N2O. In the carrousel 281 

reactor during sub-periods 4 and 5, the temperature increases from 11.8 to 20 °C. Low N2O emissions were 282 

also observed when ammonium concentration was lower than 13 mg/L and nitrate was higher than 2.5 mg/L 283 

in the plug-flow reactor. The probe was located in the middle of the second oxic zone; thus, lower ammonium 284 

concentrations in the plug-flow reactor can indicate less ammonium loads in the carrousel reactor. 285 

[Table 2] 286 

The analysis of the variables’ ranges for the N2O emission profiles provides limited insight on the 287 

dependencies between the system variables monitored online, which is further analyzed in the following 288 

sections.  289 

3.2 Spearman’s rank correlation analysis for carrousel reactor 290 

The application of Spearman’s rank correlation coefficient to the data of the carrousel reactor could not 291 

identify significant correlations between the N2O emissions and the operating variables. The lack of 292 

monotonic univariate dependencies could be attributed to i) the temporal fluctuations of the influent 293 

characteristics, ii) the continuous variability in the operating conditions of the reactors, and iii) the seasonal 294 

variations of the environmental conditions in wastewater treatment processes. Fluctuating correlation 295 

coefficients between N2O emissions and carrousel reactor variables were identified (Supplementary, Figures 296 

S1:S2). The findings are in line with the study of Kosonen et al., (2016). The authors compared the results 297 

from two monitoring periods at the same biological system and identified different relationships between N2O 298 

emissions and BOD7(ATU) loads. 299 

The correlation coefficient between nitrite and N2O emissions ranged from 0.78 (sub-period 7) to 0.51 (sub-300 

period 9). As a general remark, nitrite was correlated with N2O emissions in sub-periods 4, 6 and 7, while 301 

lower correlation was observed during sub-periods 5 (Figure 5), 8 and 9. N2O emissions and NO3-N 302 

concentration in the carrousel reactor exhibited a positive correlation with coefficient higher than 0.7 for sub-303 

periods 2 (Figure 5), 4 and 10 (the temperature was lower than 13 °C in all cases). N2O emissions and NO3-N 304 
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concentrations followed similar diurnal patterns, wherein peaks in nitrate concentration coincided with peaks 305 

in N2O emissions (Daelman et al., 2015). The accumulation of nitrate is potentially linked with higher 306 

nitrification than denitrification rates. This is in line with Daelman et al. (2015), considering that the nitrate 307 

utilization rate in these sub-periods is affected by the low temperatures (Elefsiniotis and Li, 2006). 308 

Additionally, during times when N2O was positively correlated with DO1 (> 0.5), medium to significant 309 

correlations between the N2O emissions and the ammonium concentration in the carrousel reactor were also 310 

observed (sub-periods 1, 6 and 7). Stripping of the already formed N2O can be a potential explanation.  Given 311 

that the surface aerator in the location of DO1 probe is manipulated to control the ammonium concentration in 312 

the effluent, ammonium peaks trigger the surface aerators to start. 313 

The correlation coefficient between any two of the system variables did not remain stable between the 314 

different sub-periods. Figure 5 shows the correlograms for sub-periods 2 and 5. These sub-periods were 315 

characterized by low and high ranges of N2O emissions and temperature respectively (Table 2). In sub-period 316 

2, the average NO3-N concentration in the plug-flow reactor was equal to 2.5 mg/L (Table 2) and correlated 317 

negatively with the influent flow-rate (~ - 0.63) (Figure 5). In sub-period 5 the behavior of nitrate 318 

concentration (average equal to 2.1 mg/L) was mainly correlated negatively with ammonium concentration in 319 

the same reactor. The ammonium concentration in the carrousel reactor was positively correlated with DO1 320 

only in sub-period 2. NH4-N concentration in the plug-flow reactor was correlated with the influent-flow rate 321 

only in sub-periods 4 and 5. However, the profiles of these two variables showed that in the majority of the 322 

sub-periods, abrupt and rapid increase of influent flow-rate (i.e., precipitation events) coincided with increase 323 

of the NH4-N. However, the NH4-N concentration reduced more rapidly in the system than the influent flow-324 

rate. For example, in sub-period 3 the correlation coefficient between NH4-N in the plug-flow reactor and 325 

influent flow-rate was 0.26. However, when days with significant precipitation events (and thus high influent 326 

flow-rate) were omitted, the correlation coefficient was equal to 0.58. The latter shows that, in this example, 327 

the lack of correlation between these two variables is most likely to be an indication that the interrelationships 328 

are not monotonic and that the method is not appropriate to identify complex relationships within the data. In 329 

order to verify that increased influent flow-rate was linked with precipitation events, daily precipitation data 330 
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were extracted from the Royal Netherlands meteorological institute. Spearman’s correlation coefficient 331 

between two days moving average of influent flow-rate and daily precipitation in the Netherlands was equal to 332 

0.69. Therefore, there is a direct link between higher than average flow-rates and precipitation events (the 333 

timeseries are shown in Figure S3, supplementary material). The correlograms for all sub-periods are provided 334 

in the Supplementary material (Figures S1:S2). 335 

Spearman’s rank correlation indicated structural changes in the dependencies between the system variables. 336 

Therefore, the fluctuating structural dependencies had a different impact on the generation of N2O emissions. 337 

Previous studies have shown that various monitored variables in the biological system (NH4-N, NO3-N, NO2-338 

N, Temperature) can affect N2O emissions generation. However, further analysis is required to investigate 339 

their combined effect in N2O formation in full-scale complex systems.  340 

[Figure 5] 341 

3.3 Hierarchical k-means clustering 342 

The application of hierarchical k-means clustering enabled the categorization of the different ranges of the 343 

operating variables and N2O emissions within each sub-period.  344 

Hierarchical k-means clustering analysis was repeated excluding NH4-N and NO3-N concentrations in the 345 

plug-flow reactor. The results showed that the majority of the data points were allocated to the same clusters 346 

for each sub-period even when the NH4-N and NO3-N concentrations in the plug-flow reactor were excluded. 347 

In the majority of the sub-periods (i.e. sub-periods 1-6) more than 85% of the data points were assigned to the 348 

same cluster. It can be concluded that specific patterns and ranges of NH4-N and NO3-N monitored in plug-349 

flow reactor, systematically resulted in specific responses to the carrousel reactor. The latter is supported by 350 

the Spearman’s rank correlation analysis, where high correlations were observed between the variables in the 351 

two reactors for several sub-periods. For example, the correlation coefficient between NH4-N in the plug-flow 352 

and carrousel reactors is higher than 0.7 for sub-periods 1 to 7. The similarity of the clusters for all the sub-353 

periods is shown in Table S4 in the Supporting Material. 354 
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The range of N2O emissions was differentiated in the majority of the clusters. In all the sub-periods, two 355 

major clusters were identified characterized by significant differences in the NH4-N and NO3-N 356 

concentrations in the plug-flow reactor. In the majority of the sub-periods they represented the diurnal 357 

variability of the system nutrient concentrations and influent-flow rate. Additionally, clustering distinguished 358 

occasions with high influent flow-rate and ammonium concentration in the carrousel reactor, which can be an 359 

indication of precipitation events. In sub-periods characterized by low average N2O emissions (i.e., 1, 2, 7, 8 360 

and 9), clusters with increased N2O emissions (yet relatively low) were mainly linked to higher loading rates 361 

due to the expected diurnal variability or to precipitation events. However, N2O emissions higher than 3.8 362 

kg/h were observed when the average NO3-N concentration was constantly lower than 1 mg/L in the plug-363 

flow reactor and the NO3-N concentration was lower than 4 mg/L in the carrousel reactor. Table 3 compares 364 

the clustered average values for all the variables in sub-period 2 (average N2O emissions equal to 0.6 kg/h – 365 

Table 2) and 4 (average N2O emissions equal to 5.6 kg/h – Table 2).  The average value of N2O emissions for 366 

a set of clusters in a specific sub-period (from Table 3) can be found taking into account the number of data-367 

points in the individual clusters. Sub-period 4 was characterized by very low NO3-N concentration in the 368 

middle of the oxic zone in the plug-flow reactor. The latter indicates slower oxidation of ammonia to nitrate or 369 

insufficient DO in the plug-flow nitrification lane. This can lead to higher NH4-N loading in the carrousel 370 

reactor. On the other hand, higher nitrification rates in the plug-flow reactor (i.e. sub-period 2) resulted in 371 

lower N2O emissions in the carrousel reactor. The average values of all the variables in each cluster during all 372 

the sub-periods are given as supplementary material (Table S5). 373 

In clusters 2 and 16 the averages of operating variables had similar ranges (Table 3). However, in these two 374 

occasions the N2O emissions were different (0.01 and 0.51 kg/h). Similarly, in clusters 1, 4 and 7, the 375 

averages of operating variables were similar yet the N2O emissions were different (0.09,0.87 and 3.22 kg/h 376 

respectively). A corollary to this also existed. In clusters 1 and 2 the averages of operating variables were 377 

different but the N2O emissions were similar (0.09 and 0.01). Similarly, in clusters 5 and 6 the averages of 378 

operating variables were different but the N2O emissions were similar (0.21 and 0.24). Such observations 379 

indicate the underlying complexities of the interdependencies. Additionally, it can be concluded that the range 380 



19 

 

of N2O emissions can partially depend on the preceding operational mode of the system. Figure 6 shows an 381 

example of the variables monitored online for two separate occasions in sub-periods 2 and 3 (from 00:00 am 382 

until 8:00 am) and the respective N2O emissions. All the variables showed a similar behavior (in terms of 383 

range and trends). N2O emission profiles had also the same trend; however, their range depended on the initial 384 

N2O fluxes at 00:00 am. The influent flow-rates, NH4-N and NO3-N concentrations in the plug-flow reactor 385 

also were similar in these two occasions. The average N2O fluxes were equal to 0.44 and 2.01 kg/h for 386 

occasion 1 and 2 respectively.  More extensive data are required for quantitative investigation. 387 

 [Table 3] 388 

[Figure 6] 389 

3.4 Principal component analysis in the carrousel reactor 390 

PCA was applied to transform the original correlated measured variables to uncorrelated variables (Principal 391 

components) and explain the maximum observed variability. In sub-periods with low emissions (1, 2, 7, 8, and 392 

9) the PCA analysis showed that N2O emissions’ peaks are related with NH4-N and influent flow-rate peaks in 393 

the carrousel reactor and with the effect of the diurnal variability of these variables’ loading rates.  394 

The current section discusses the PCA results for sub-period 2, as an example. The results for all the sub-395 

periods are given in the supplementary material (Tables S6-S13, Figures S4-S29). The application of PCA 396 

reduced the dimensionality of the data with 4 principal components (PCs) explaining ~86% of the total 397 

variance (PC1 = 39%, PC2 = 26%, PC3 = 12%, and PC4 = 9%). Loadings for the system variables in the 4 398 

PCs are given in Table 4. The loadings of each component are an indication of the variation in the variables 399 

explained by a specific component. Influent flow-rate, ammonium concentration in the carrousel reactor 400 

(NH4-N C) and the three DO (DO1, DO2 and DO3) concentrations had the highest negative loadings in PC1. 401 

This means that the first principal component increased with the increase of these variables. Nitrate 402 

concentration (NO3-N PF) in the plug-flow reactor has a relatively high positive loading in PC1 (0.36). 403 

Therefore, PC1 describes how the carrousel reactor responds to the behavior of the upstream plug-flow reactor 404 

processes and conditions, the variation of the influent flow-rate and variations in ammonium and DO 405 
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concentrations in the carrousel reactor. The latter can be indirectly connected with the control strategy of the 406 

carrousel reactor, since the surface aerators were manipulated based on the effluent ammonium concentration. 407 

PC2 linked ammonium concentration in the plug-flow reactor, nitrate concentration in the carrousel reactor 408 

and temperature (loadings higher than 0.47). In PC3 ammonium concentration in the carrousel reactor had 409 

high negative loading, while DO2 and DO3 concentrations had positive loadings that was not expected 410 

considering the control strategy of the system. Investigation of the variables’ profiles, though, showed an 411 

increasing trend of DO2 and DO3, whereas the ammonium profile did not present a similar trend. 412 

[Table 4] 413 

The biplot of the first 2 PCs is used to visualize the combined behavior of significant variables that affect the 414 

system. Data points assigned to cluster 6 (Figure 7), had negative scores in PC2 and PC1. Therefore, 415 

ammonium concentration in the carrousel reactor and influent flow rate were higher than average, while the 416 

nitrate concentration in the system was lower than average. Figure 8 shows the profile of N2O emissions and 417 

NH4-N in the carrousel reactor for sub-period 2. The colored points in the diagram represent the identified 418 

clusters. Peaks in emissions coincided with peaks in the NH4-N C profile, whereas peaks in NH4-N C 419 

coincided with precipitation events (cluster 6). 420 

[Figure 7] 421 

The scores of the data-points in cluster 5 were mainly positive in PC1 and negative in PC2 (Figure 7). PC2 422 

increased with the increase of NH4-N concentration in the plug-flow reactor (Table 4). Given that PC2 had an 423 

average equal to 0 (data are standardized), data-points with negative scores in PC2 represent occasions with 424 

lower than average NH4-N concentration in the plug-flow reactor. This is supported by the correlation plot 425 

(Figure 7), where the arrow of NH4-N concentration in the plug-flow reactor points to the direction of 426 

increasing concentrations of NH4-N. Therefore, data-points belonging to cluster 5 were characterized by 427 

higher than average ammonium concentration in the plug-flow reactor. Similarly, NO3-N concentration in the 428 

plug-flow reactor had relatively significant positive loading in PC1 (0.36 – Table 4). The latter indicates that 429 

NH4-N and DO concentrations (measured by three probes) in the carrousel reactor (that had negative loadings 430 
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in PC1 – Table 5) tended to decrease when NO3-N concentration in the plug-flow reactor increased. Given 431 

that all data-points in cluster 5 had positive scores in PC1, it can be concluded that they are characterized by 432 

lower than average NH4-N concentration in the carrousel reactor and higher than average NO3-N 433 

concentration in the plug-flow reactor. According to the clustering results the latter can be an indication of the 434 

high nitrogen loadings of the normal diurnal variability in the reactor. This finding is supported from the 435 

results presented in Figure 8, where the data-points of cluster 5 correspond to the daily low range of 436 

ammonium concentrations in both reactors.  437 

[Figure 8] 438 

Figure 9 summarizes scores of the PC2 and the respective clusters (colored points in the diagram) indicating 439 

strong diurnal cyclic fluctuations of the water quality during this sub-period. It also shows that after each 440 

precipitation event, a sudden temperature drop occurred; the system was disturbed and cannot recover 441 

immediately. Spearman’s rank correlation coefficient between PC2 and N2O emissions is equal to 0.72.  442 

[Figure 9] 443 

In sub-period 4, mechanisms triggering high N2O emissions in the carrousel reactor prevailed (average = 5.6 444 

kg/h). The PCA loadings were similar to sub-period 2, while the clustering results indicated 3 clusters; 445 

clusters 10 and 11 were affected by the diurnal variability and cluster 12 was affected by the precipitation 446 

events (Table 3). Again, the DO data obtained from the 3 sensors in the carrousel reactor had significant 447 

negative loadings in PC1. However, ammonium concentration in the carrousel reactor was not identified as a 448 

significant variable affecting the system in the first two PCs. This can be attributed to the fact that less NH4-N 449 

concentration peaks were observed in the effluent of the carrousel reactor (17 data points belong to cluster 450 

12). The correlation coefficient of PC1with NH4-N concentration in the carrousel reactor was -0.75. 451 

Therefore, PCA analysis shows that PC1 is a good indicator of the ammonium concentration in the carrousel 452 

reactor. The DO concentrations in this sub-period especially for cluster 10 (with average NH4-N concentration 453 

in the carrousel reactor equal to 1.26 mg/L) was the highest observed in all the clusters with similar NH4-N 454 

concentrations in the carrousel effluent. The alternation of aerobic and anaerobic conditions observed in this 455 
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reactor, combined with high NH4-N and DO concentrations has been identified as a significant cause of 456 

nitrification sourced emissions (Yu et al., 2010). 457 

[Table 5] 458 

In PC2, the NO3-N concentration and temperature had significant positive loadings (Table 5). The score plot 459 

of PC2 (Figure 10a) presented an increasing trend and therefore, showed that nitrate and temperature 460 

increased. The latter was verified by the profiles of NO3-N concentrations in the carrousel reactor (Figure 10b) 461 

and NO3-N concentration and temperature in the plug-flow reactor (Supplementary material S30). In the 462 

beginning of the sub-period 4 very low concentrations of nitrate were observed in the system and they 463 

gradually increased especially after the 28
th
 of March. The Spearman’s correlation coefficient between N2O 464 

emissions and PC2 scores were relatively high and equal to 0.62. However, contrary to sub-period 2, the 465 

clustering analysis showed that there is no nitrate accumulation (Table 3). The average nitrate concentration in 466 

the plug-flow reactor was equal to 0.2 mg/L until the 28
th
 of March and increased up to 1.6 mg/L until the end 467 

of the sub-period. Therefore, the observations in section 3.3 are supported by the PCA results (low nitrate in 468 

the plug flow resulted in increased loadings in the subsequent carrousel reactor and the denitrification activity 469 

in the carrousel reactor is affected by the low temperature resulting in nitrite accumulation).  470 

[Figure 10] 471 

In the section, the combination of hierarchical k-means clustering and PCA was used in order to link the 472 

different emission ranges with all the online monitored variables (i.e. Figure 7). Even though, the online 473 

dynamics of significant variables that can trigger N2O emissions in biological processes (i.e. COD, pH) were 474 

not available, the applied methodology enabled the identification of a set of variables that are connected with 475 

N2O emissions in each sub-period (i.e. Figure 8). Considering that online data were not available for the 476 

influent of the carrousel reactor, higher NH4-N loadings in the carrousel reactor were linked with clusters 477 

characterized by higher than average influent flow-rates and ammonium concentration and lower than average 478 

NO3-N concentration in the plug-flow reactor. The latter can be supported by the fact that the behavior of 479 

variables in the carrousel reactor was significantly dependent on the nutrient concentrations in the plug-flow 480 
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reactor (Table S4 – clustering results). Additionally, more intense aeration in the carrousel reactor (that can 481 

affect the stripping of dissolved N2O) was linked with clusters characterized by higher than average NH4-N 482 

concentration in the carrousel reactor (since the surface aerators were manipulated by the effluent ammonium 483 

concentration). 484 

3.5 N2O generation pathways 485 

In line with Daelman et al. (2015) findings, both AOB pathways can be considered responsible for the N2O 486 

emissions observed in the carrousel rector. The combination of nitrite accumulation and low oxygen 487 

concentrations can be linked with the nitrifier denitrification pathway, whereas higher AOR (ammonia 488 

oxidation rate), correlation of NH4-N concentration in the carrousel reactor with N2O emissions and higher 489 

DO concentrations can be linked with the hydroxylamine oxidation pathway (Law et al., 2012). N2O 490 

generation via heterotrophic denitrification can be also significant especially in periods with nitrate 491 

accumulation, suggesting insufficient anoxic conditions (Daelman et. al., 2015).  492 

In terms of the offline monitored variables, low pH, accompanied with nitrite accumulation, as observed in 493 

sub-period 4 has been identified as a significant factor inhibiting N2O reduction during denitrification (Pan et 494 

al., 2012). Zhou et al. (2008) reported that under these conditions the production of free nitrous acid (FNA) in 495 

a denitrifying-Enhanced Biological Phosphorus Removal culture was the main contributor to N2O emissions 496 

production even at low concentrations equal to 0.0007–0.001 mg HNO2-N/L (nitrite concentration 3-4 mg/L 497 

at pH 7). Additionally, high pH values (>7) combined low DO concentration (~0.55 mg/L) have been reported 498 

to be responsible for nitrification driven N2O emissions via the nitrifier denitrification pathway (Law et al., 499 

2011). The latter is attributed to increasing ammonium oxidation rate (due to the pH increase), enhancing the 500 

nitrifier denitrification pathway through electrons provision. On the other hand, lower pH (<7) has been linked 501 

with elevated nitrification driven N2O emissions at higher DO concentrations (~3 mg/L) (Li et al., 2015). The 502 

authors argued, that at higher pH the electrons available from the ammonium oxidation rate are mainly used to 503 

form water from molecular oxygen and H
+
. In the current study, the pH in the effluent of the reactor was 504 

steady during the monitoring campaign (~8±0.2). However, online pH data showing the exact dynamics of the 505 

pH in the carrousel reactor were not available.  506 
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Low COD/N ratios have been reported to be responsible for denitrification induced N2O emissions 507 

(Schulthess and Gujer, 1996). The offline data showed that COD/TKN ratio in the influent remained relatively 508 

steady during the monitoring campaign with a slight decrease in sub-periods 4 and 5 (<5) where emissions 509 

were higher (5.6 and 2.6 kg/h respectively). However, low COD/TKN (<5) was also observed in other sub-510 

periods and did not result into high N2O emissions (Figure 4). The frequency of the offline data (~6 days) did 511 

not enable the identification of the exact contribution of COD loading to the system. Figure 4 shows that COD 512 

limitation is not the sole contributor to the increased N2O emissions in sub-period 4. Therefore, the results 513 

indicate that heterotrophic denitrification induced by COD/TN limitation was not the main N2O emissions 514 

source in sub-periods 4 and 5. 515 

The results from the application of multivariate statistical techniques can be used for the identification and 516 

explanation of potential pathways for N2O generation. In sub-periods with lower average N2O emission fluxes 517 

(1, 6, and 7), emission peaks coincided with ammonium peaks in the plug-flow reactor and therefore in the 518 

influent carrousel reactor. In that case, average emission fluxes ranged from 0.05 kg/h (sub-period 1) to 2.54 519 

kg/h (sub-period 6).  Wunderlin et al., (2012) demonstrated that N2O production through hydroxylamine 520 

oxidation is accompanied by excess ammonia, low nitrite concentration and high ammonia oxidation rate. 521 

Additionally, in these sub-periods, N2O emissions were higher at higher temperatures and DO concentrations. 522 

The high DO concentrations coincided with peaks in nitrite and nitrate concentrations indicating also 523 

insufficient denitrification zones in the reactor. AOB can use nitrite instead of oxygen as electron acceptor 524 

(Kampschreur et al., 2009a) especially in oxygen limiting conditions (low DO zones exist even when all 525 

surface aerators are under operation); thus, nitrifier denitrification by AOB could potentially contribute in N2O 526 

emissions. Burgess et al. (2002) found strong dependency between nitrite accumulation and N2O emissions, 527 

especially at sudden increase of ammonia loading. 528 

Overall, N2O emissions increased significantly and peaked at low nitrate concentrations in both reactors (i.e., 529 

sub-periods 3 and 4) and high nitrite concentrations in the carrousel reactor (i.e., sub-period 4). Under aerobic 530 

conditions, nitrite accumulates in the system when the ammonia oxidation rate to nitrite exceeds the nitrite 531 

oxidation rate to nitrate (Guisasola et al., 2005) inducing the nitrifier denitrification pathway. Sub-optimum 532 
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DO, COD and pH can also result in nitrite accumulation during denitrification (Schulthess et al., 1994; Yang 533 

et al., 2012). Zheng et al., (2015) observed a synergistic N2O generation between nitrifier denitrification and 534 

heterotrophic denitrification in a pilot carrousel reactor where the nitrite built-up during denitrification 535 

boosted nitrifier denitrification pathway. The latter is in line with the N2O profiles observed in this study in 536 

sub-periods with high emissions. The combined results of PCA and hierarchical k-means clustering can guide 537 

through the most significant N2O production pathways in different sub-periods (supplementary material). 538 

Conclusions 539 

N2O emissions depend on a set of interacting biological and chemical conversions and physical processes. 540 

This complex interaction obscures the determination of the governing processes in individual treatment plants. 541 

With multivariate analysis correlations between influential factors in a complex system might be revealed. 542 

 A data-driven approach consisting of statistical-based methods was applied to analyze long-term N2O 543 

emission dynamics and generation mechanisms based on available high temporal resolution (hourly) 544 

data. Applying binary segmentation to the N2O emission profile allowed to split up the 15-month 545 

N2O monitoring campaign into 10 sub-periods.  546 

 Spearman’s rank correlation analysis showed significant univariate correlations between N2O 547 

emissions and ammonium, nitrate and nitrite concentrations. The correlation coefficients fluctuated 548 

between the 10 sub-periods. Low values for the correlation coefficients indicated non-monotonic 549 

interrelationships that Spearman’s rank correlation cannot identify.  550 

 Hierarchical k-means clustering provided information on the existence of reoccurring patterns and 551 

their effect on N2O emissions. N2O emission peaks were linked with the diurnal behavior of the 552 

nutrients’ concentrations and with rain events, whereas low nitrate concentrations in the preceding 553 

plug flow reactor (<1 mg/L) resulted in increased ammonium loadings and high N2O emissions in the 554 

subsequent carrousel reactor.  555 

 Principal component analysis validated the findings from the clustering analysis and showed that 556 

ammonium, nitrate, nitrite, influent flow-rate and temperature, explained more than 65% of the 557 

variance in the system for the majority of the sub-periods. The first principal component corresponded 558 

to the control strategy of the reactor. 559 

 The proposed methodological approach can detect and visualize disturbances in the system (i.e., 560 

precipitation events, high NH4-N concentrations, etc.) and their effect on N2O emissions. 561 
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Additionally, the ranges of operating variables that have historically resulted in low or high ranges of 562 

N2O emissions can be identified. Overall, multivariate analysis can assist researchers and operators to 563 

understand and control the N2O emissions using long term historical data. 564 
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Table 1:Average value and standard deviation (std) of variables monitored in the Northern carrousel reactor 763 

(C: carrousel reactor, N: Northern, PF: plug-flow reactor) 764 

Online variables Average Std Offline variables Average Std 

N2O (kg/h) 1.4 2.1 COD influent (mg COD/ L) 238.8 79.5 

NH4-N C (mg/L) 1.63 2.2 TKN influent (mg/L)  42.1 10.0 

NO3-N C (mg/L) 5.8 4 TP influent (mg/ L) 7.0 2.1 

NO2-N C (mg/L) 1.2 1.1 Flow-rate (m
3
/ d) 85,898 41,786 

DO1 (mg/L) 0.6 0.9 COD effluent (mg/ L) 36.9 6.9 

DO2 (mg/L) 0.8 0.9 TKN efffluent (mg/ L) 2.8 1.2 

DO3 (mg/L) 1.9 0.6 TP effluent (mg/ L) 1.1 0.6 

Temperature (°C) 16 3.5 pH effluent 8.0 0.2 

N2O PF (kg/h) 0.71 1.21    

NH4-N PF (mg/L) 12.41 5.35    

NO3-N PF (mg/L) 2.38 2.2    

Influent Flow-rate (m
3
/h) 3973 2375    

DO PF (mg/L) 2.61 0.65    
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Table 2: Average values and standard deviations of the main variables for the 10 sub-periods (C: carrousel reactor, N: Northern, PF: plug-flow reactor). 765 

766 
Variables 

N2O                         

(kg/h)  

NO3-C N 

(mg/l) 

NO3-N PF 

(mg/l) 

NH4-N C 

(mg/l) 

NH4-N PF 

(mg/l) 

NO2-N C* 

(mg/l) 

Temperature 

(°C) 

DO1  

(mg/l) 

DO2  

(mg/l) 

DO3  

(mg/l) 

 Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

1 0 0.1 6.1 3.1 1.8 1.6 1.8 2.67 11.4 4.1     15.7 1.4 0.62 0.7 0.62 0.5 1.5 0.4 

2 0.6 0.6 7.2 3.1 2.5 2 1.5 1.7 13 4     11.2 1.0 0.77 1 1.31 0.8 2 0.4 

3 2.7 1.4 6.1 3.2 1.6 2.1 1.6 2.1 15.2 4.5     11.5 0.7 0.67 0.8 1.49 1 2.07 0.4 

4 5.6 2. 6 3 0.1 0.5 0.7 1.3 1.6 15 4.8 2.6 1.9 12.9 1.1 0.64 0.9 1.95 0.9 1.9 0.4 

5 2.6 2.2 4.3 4.2 3.1 1.9 1.3 2 11.5 5.2 0.8 1 18.2 1.7 0.34 0.7 0.39 0.8 1.94 0.5 

6 0.8 1.4 3.3 3.2 2.3 1.9 2 3.1 14.7 6.1 0.5 0.5 20 1.0 0.42 0.7 0.26 0.5 2.27 0.5 

7 0.2 0.3 7.2 5 2.8 2.4 2 3.1 9.8 5.2 0.6 0.4 20 0.7 0.42 0.6 0.29 0.4 2.64 0.5 

8 0.1 0.2 10.1 5.7 5.2 2.6 1.4 1 9.6 5.5 0.8 0.5 19.6 0.5 0.27 0.5 0.2 0.5 2.71 0.6 

9 0.1 0.2 7.9 3.6 2.8 2.8 2 2 13.2 5.4 1.9 0.8 12.9 2.1 1.12 1.2 1.07 1 1.58 0.4 

10 1.3 1.1 6.3 3.5 1.4 0.9 1.6 3.7 16.4 4.3 2.1 0.9 13 0.7 0.58 1.0 1.04 1 1.52 0.3 

*NO2-N concentration was monitored between 11/03/2011 and 19/01/2012 
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Table 3: Operating variables (average) for all clusters defined by hierarchical clustering in the carrousel 767 

reactor (P: Sub-period, Cl: Clusters) 768 

P Cl 
N2O 

C 

NH4-

N PF 

NO3-

N   PF 
Influent 

NH4-

N C 

NO3-

N   C 
DO1 DO2 DO3 

NO2-

N 

  kg/h mg/l mg/l m
3
/h mg/l mg/l mg/l mg/l mg/l mg/l 

1 

1 0.09 14.13 1.48 3883 1.47 8.66 1.04 0.78 1.72  

2 0.01 8.55 2.41 3824 0.87 4.26 0.13 0.47 1.25  

3 0.05 14.74 0.30 8892 7.91 4.63 1.37 0.77 1.58  

2 

4 0.87 15.30 2.05 3827 1.51 8.61 0.94 1.53 2.22  

5 0.21 9.13 3.69 3419 0.74 5.28 0.03 0.62 1.41  

6 0.24 12.51 0.81 11132 4.52 5.42 2.27 2.31 2.22  

3 

7 3.22 16.85 1.52 3383 1.36 7.36 0.87 1.88 2.35  

8 1.72 10.96 1.91 3672 0.82 4.29 0.05 0.85 1.56  

9 2.40 21.40 0.12 7935 7.52 4.15 2.10 1.28 2.10  

4 

10 6.60 17.30 0.32 3207 1.26 3.79 2.14 0.95 2.41 4.10 

11 3.83 10.82 0.77 2747 0.79 1.80 1.51 0.05 1.20 1.40 

12 6.89 25.45 0.48 6375 10.86 3.62 1.98 2.12 2.34 4.28 

6 
15 2.54 17.66 0.75 5922 5.00 5.07 1.30 0.73 2.34 1.08 

16 0.51 8.20 2.84 3811 0.98 2.64 0.10 0.10 2.21 0.35 

*NO2-N concentration was monitored between 11/03/2011 and 19/01/2012 

 769 

  770 
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Table 4: PCA loadings sub-period 2, carrousel reactor 771 

Variable PC1 PC2 PC3 PC4 

NH4-N PF -0.28 0.47 -0.24 0.29 

NO3-N PF  0.36 0.21 0.14 -0.67 

Influent -0.38 -0.31 -0.09 -0.37 

NH4-N C -0.34 0.03 -0.59 -0.29 

NO3-N   C  -0.04 0.58 0.21 -0.31 

DO1 -0.43 0.06 -0.15 -0.18 

DO2 -0.40 0.08 0.48 -0.17 

DO3 -0.37 0.21 0.40 0.28 

Temperature 0.22 0.49 -0.33 0.11 

 772 

  773 
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Table 5: PCA loadings sub-period 4, carrousel reactor 774 

 PC1 PC2 PC3 PC4 

NH4-N PF -0.48 0.04 -0.11 0.25 

NO3-N PF  0.26 0.56 -0.04 -0.35 

Influent -0.33 -0.07 -0.52 -0.17 

NH4-N C -0.28 0.14 -0.50 -0.46 

NO3-N C  -0.17 0.59 0.32 0.04 

DO1 -0.37 0.24 -0.13 0.59 

DO2 -0.40 0.08 0.41 -0.14 

DO3 -0.37 0.01 0.33 -0.40 

Temperature 0.23 0.51 -0.27 0.19 

 775 

 776 

 777 



 

Figure 1: Layout of Kralingseveer WWTP with Plug-flow and Carrousel reactors, adapted from 

Daelman et al., (2015). 
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Figure 1: Methodology followed in the current study for data processing and visualization 
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Figure 3 (top): N2O emissions profile in the Northern Carrousel reactor (grey area: periods with 

missing N2O data) (bottom): First difference of the N2O emissions timeseries (blue line) showing 

the sub-periods identified by the application of binary segmentation (grey area: periods with 

missing N2O data, blue dotted lines: changepoints identified by the algorithm, red horizontal 

lines: standard deviation in each sub-period) 
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Figure 4: COD/TKN (offline data) for each sub-period 
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Figure 5:  Spearman’s rank correlation coefficient for sensor signals in Northern Carrousel 

reactor. (Left): Sub-period 2. (Right): Sub-period 5. (Red: negative correlation, blue: positive 

correlation, the coloured part of the circles is proportional to the correlation coefficient, only 

results with p-value < 0.01 are shown) 
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Figure 6: (Top): Variables monitored online for two separate occasions in sub-periods 2 and 3 

(from 00:00 am until 8:00 am), (Bottom): The respective N2O emissions profiles 

 

0 

2 

4 

6 

8 

10 

12 

0 

0.5 

1 

1.5 

2 

2.5 

1 3 5 7 

N
O

3
-N

 C
 (

m
g/

L)
 

N
H

4
-N

 C
, 
D

O
1
, 

D
O

2
, 

D
O

3
 

(m
g
/L

) 

Operating time (h) 

NH4-N Carrousel 2 

NH4-N Carrousel 3 

DO1 Carrousel 3 

DO1 Carrousel 2 

DO2 Carrousel 2 

DO2 Carrousel 3 

DO3 Carrousel 2 

DO3 Carrousel 3 

NO3-N Carrousel 3 

NO3-N Carrousel 2 

0 

0.5 

1 

1.5 

2 

2.5 

3 

1 3 5 7 

N
2
O

 E
m

is
s
io

n
s
 (

k
g
/h

) 

Operating time (h) 

N2O Emissions 2 

N2O Emissions 3 

Figure



 

Figure 7: (left) Biplot of the first 2 PC scores, sub-period 2. The colored data-points represent the 

scores of the first two principal components. Groups 4, 5, and 6 represent sub-period 2, clusters. 

(right) Variable correlation plot. The arrows represent the direction and strength (variable 

coordinates = loading x component std) of the variables monitored in the system as projected into 

the 2-d plane. The contrib. legend represents the contribution (%) of the variables to the first two 

PCs. The arrows for each variable point to the direction of increase for that variable. The 

percentage given on each axis label represents the value of the total variance explained by that 

PC. 
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Figure 8: Profile of (a) N2O emissions, (b) NH4-N concentration in the Carrousel reactor and (c) 

NH4-N concentration in the plug-flow reactor for sub-period 2; coloured points indicate the 

respective clusters 
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Figure 9: PC2 scores for sub-period 2 
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Figure 10: (a) PC2 scores for sub-period 4 and (b) NO3-N concentration in the Carrousel reactor 

for sub-period 4. 
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