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Abstract—This paper is concerned with distributed
event-triggered H∞ consensus filtering for a discrete-time
linear system over a sensor network. Different from some
existing event-triggered communication schemes (ETCSs),
a new distributed ETCS is first developed to reduce the
communication frequency of neighboring sensors, where
the threshold parameter in an event triggering condition is
time-varying with attainable upper and lower bounds. Then
a threshold-parameter-dependent approach is proposed to
derive criteria for designing the desired H∞ consensus filters
and the ETCS such that the resultant filtering error system
is asymptotically stable with the prescribed H∞ performance
while maintaining satisfactory resource efficiency. Furthermore,
a polytope-like transformation with regard to time-varying
threshold parameters is performed and a recursive algorithm
is presented to determine the threshold-parameter-dependent
filter matrix sequences and event triggering weighting matrix
sequence. Two illustrative examples are employed to show the
effectiveness of the developed approach.

Index Terms—Distributed H∞ filtering, event-triggered com-
munication scheme, sensor network, threshold-parameter-
dependent approach.

I. INTRODUCTION

RECENT developments in sensing, computing and
wireless communication technologies have led to numer-

ous applications over sensor networks, such as battlefield
surveillance, target tracking, cooperative detection of toxic
chemicals in contaminated environments, search and rescue
operations after disasters, forest fire monitoring [1]. In a
sensor network, a basic idea is to employ a large number
of spatially distributed sensor nodes to cooperatively moni-
tor physical/environmental conditions or collaboratively gather
scientific data from moving targets through wireless chan-
nels. In practice, noise inevitably occurs when the signal of
interest is sensed and/or communicated by sensors through
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wireless channels, which often causes the degradation of the
system performance. Thus, it is desired to settle the problem of
how to develop a distributed algorithm to estimate an unavail-
able state signal through the noisy measurement and/or a
disturbed plant [2]–[5]. Some existing results along this line
of research can be arguably classified into three categories:
1) distributed Kalman filtering [6]–[8]; 2) distributed H∞ fil-
tering [4], [5], [9]–[15]; and 3) distributed set-membership
estimation [16]–[19].

Note that the majority of the distributed filtering or esti-
mation algorithms aforementioned require consecutive mea-
surement transmissions or periodical updates of the signal of
interest on each sensor node. This may lead to the inefficient
use of limited communication resources, such as sensor power
and bandwidth in sensor networks [12], [20], [21]. Therefore,
from a resource conservation perspective, it is wasteful for
each sensor node to communicate with its neighboring nodes
at every instant of sampling time especially when there is a
little fluctuation between two consecutive sampled-data.

In order to reduce the frequency of occupying scarce com-
munication resources, event-triggered communication schemes
(ETCSs) have been emerging to mitigate the unnecessary use
of resources while preserving certain system performance.
We refer to survey papers [22]–[25] regarding some recent
advances in event-triggered control and estimation. Under
ETCSs, an objective control or estimation task is only exe-
cuted after the occurrence of a specified “event” [26]–[32].
For example, the event is usually generated by an event pro-
cesser by checking whether or not the following triggering
condition is satisfied: ‖e‖2 − σ > 0 or ‖e‖2 − δ‖x‖2 > 0,
where e denotes the error between the current sampled-data
and the latest transmitted data; σ > 0 is a predesigned thresh-
old; x represents either the current sampled-data or the latest
transmitted data; and δ > 0 stands for a constant threshold
parameter. Once the event triggering condition above holds,
the current sampled-data will be broadcast and transmitted to
a remote controller or an estimator. In this sense, commu-
nication resources are occupied only when “necessary” and
the number of transmitted task executions may be reduced
significantly.

It should be pointed out that compared with many results
on event-triggered control in the literature, there are some
results available on distributed event-triggered filtering or esti-
mation over sensor networks. For example, in [12], a co-design
problem of distributed H∞ filters and ETCSs was addressed
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for continuous-time linear systems over sensor networks sub-
ject to communication delays. In [16]–[19], ETCSs were
implemented to tackle the distributed set-membership filtering
problem for discrete-time systems subject to unknown-but-
bounded noises. In [33], a distributed event-based H∞ state
estimation problem was considered for discrete-time stochastic
nonlinear systems in lossy sensor networks. By develop-
ing an ETCS, a recursive distributed filtering approach was
developed in [34] for a class of discrete time-varying linear
systems such that the filtering error covariance was minimized
locally.

It is noteworthy that the distributed event-triggered filter-
ing or estimation algorithms aforementioned are based on an
explicit assumption of “static” event triggering conditions, i.e.,
a threshold or a threshold parameter therein is fixed a priori
during the entire implementation of an ETCS. Recently, an
adaptive algorithm for determining a threshold parameter was
developed in [35] to tackle distributed event-based filtering
for continuous-time nonlinear stochastic systems over wireless
sensor networks. However, one limitation of this algorithm is
that the time-varying nature of the threshold parameter is not
considered during the performance analysis and filter design.
In practice, motivations of considering a time-varying thresh-
old parameter in an ETCS may arise from the following three
aspects, either explicitly or implicitly. First, it is well recog-
nized that a threshold parameter determines how frequently
data transmission occurs or how many data packets are trans-
mitted [26]. For example, lowering the threshold parameter
causes a small interevent time (the time interval between two
consecutive events), thus leading to more data packets being
transmitted through communication networks [12], [36]–[38].
Therefore, the threshold parameter is closely related to the data
transmission rate through a communication channel. However,
in practical communication networks, such as IEEE 802.11
wireless local area network, a transmission rate may vary over
time due to time-varying interference and random wireless
fading. Specifically, an IEEE 802.11b standard can provide dif-
ferent raw transmission rates at 1, 2, 5.5, and 11 Mb/s. In this
situation, the threshold parameter should essentially vary with
time to reflect such an engineering practice of time-varying
wireless transmission channels [26]. Second, event processers
are usually embedded in mobile devices which in most cases
are powered by small battery. It is possible that the threshold
parameter varies from time to time due to power allocation
decisions, limited chipset’s processing capacity and parame-
ter variations. Third, it has been shown in the literature that,
under ETCSs, various system performance can be achieved
by choosing different threshold parameters, such as selecting a
larger threshold parameter can lead to a deteriorative H∞ filter-
ing performance index [12], [36]. Hence, threshold parameter
variations have an impact on the system performance, and it is
essential to incorporate the time-varying nature of a threshold
parameter into a distributed event-triggered filtering frame-
work. To the best of the authors’ knowledge, there have been
few results investigating the effect of a time-varying thresh-
old parameter in the context of distributed event-triggered H∞
filtering, which motivates this paper.

In this paper, we will consider the problem of distributed
event-triggered H∞ consensus filtering for a discrete-time
linear-invariant system over a wireless sensor network. Sensor
nodes are spatially distributed and intercommunicated through
a wireless network medium. We summarize the main contri-
butions as follows.

1) A new distributed ETCS will be developed to deter-
mine when each sensor’s communication actions with
its neighboring sensors should be executed so as to
alleviate the continual occupancy of communication
resources. Different from some existing ETCSs, the
threshold parameter in the event triggering condition
is time-varying with accessible bound information. In
this sense, each sensor’s inter-event time is dynami-
cally adjusted in accordance with both the time-varying
threshold parameter and its current state estimation
information.

2) Delicate distributed event-triggered H∞ consensus fil-
ters will be constructed, where filters’ gain matrices
are dependent on the time-varying threshold param-
eter. Each sensor implements a threshold-parameter-
dependent consensus filter by following two steps. First,
each sensor receives an actual measurement output from
the system and takes it as an input of the filter. Second,
each sensor computes a state estimation based on con-
sensus strategies and locally triggered state estimations
of neighboring sensors, and uses it to form an output of
the filter.

3) A specific threshold-parameter-dependent filter design
approach will be proposed to derive criteria on the exis-
tence of the desired filters and ETCS. By constructing
a threshold-parameter-dependent Lyapunov functional,
sufficient conditions are derived to guarantee the asymp-
totic stability of the resultant filtering error system while
preserving the prescribed H∞ performance and reducing
the frequency of sensors’ communication.

4) A recursive optimization algorithm will be put forward
such that the threshold-parameter-dependent filter gain
matrix sequences and event triggering weighting matrix
sequence can be efficiently solved out. Due to the time-
varying characteristics of the threshold parameter, a
polytope-like transformation is first performed to convert
the infinite matrix inequalities into finite and numeri-
cally tractable linear matrix inequalities (LMIs). Then,
the desired filter gain matrix sequences and weighting
matrix sequences are obtained by solving a recursive
convex optimization algorithm in terms of recursive
LMIs.

Notation: diagN {Z} denotes a block-diagonal matrix with
N blocks Z, . . . ,Z and diagi

N {Zi} denotes a block-diagonal
matrix with N blocks Z1, . . . ,ZN . colN {Z} stands for an
N -block column vector [ZT · · · ZT ]T and coliN {Zi} denotes
an N -block column vector [ZT

1 . . . ZT
N ]T . The space of

square-summable vector functions over [0,∞) is denoted as
l2[0,∞) and for any w(k) ∈ l2[0,∞), its norm is given by

‖w(k)‖2 =
√∑∞

k=0 wT(k)w(k). ⊗ represents the Kronecker
product for matrices. Other notations are standard.
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Fig. 1. Schematic of distributed filtering over a wireless sensor network.

II. PROBLEM FORMULATION

A. Plant

Consider the plant described by a discrete-time linear-
invariant system of the following form:

{
x(k + 1) = Ax(k)+ Bw(k), x(0) = x0

z(k) = Ex(k)+ Fw(k)
(1)

where x(k) ∈ R
nx is the state vector; w(k) ∈ R

nw is the exoge-
nous disturbance input and belongs to l2[0,∞); z(k) ∈ R

nz

is the objective output signal to be estimated; x0 is the ini-
tial state of the plant; and A,B,E, and F are known constant
matrices with appropriate dimensions.

B. Sensor Network Topology

N cooperative sensors spatially distributed over a wireless
communication network are deployed to monitor the plant and
estimate the state of the plant, which is illustrated in Fig. 1. It is
natural to represent the sensors’ network topology, which mod-
els information exchange among sensors, by means of directed
graphs, see [2], [5], [9], [12], [13], [15], [20] and references
therein.

Let V = {1, 2, . . . ,N } denote an index set of N sen-
sor nodes, E ⊆ V × V denote the edge set of paired sensor
nodes and A = [aij] ∈ R

N ×N denote the weighted adja-
cency matrix. The directed weighted graph G = (V, E,A) is
used to model the network topology of interacting sensors.
An edge of G is denoted by (i, j). The adjacency element
aij > 0 ⇔ (i, j) ∈ E represents a positive weighting of the
edge between two adjacent sensors, which implies that sen-
sor i receives information from sensor j or sensor j transmits
information to sensor i, otherwise, aij = 0 if no information
link exists from sensor j to sensor i. Self-loops are excluded
in the graph, i.e., aii = 0, i ∈ V . The Laplacian matrix of the
digraph G is defined as L = W − A, where W = diagi

N {wi}
with the diagonal element wi = ∑

j∈Ni
aij. Node j is con-

sidered as a neighbor of node i if (i, j) ∈ E . The set of
neighbors of node i excluding the node itself is denoted by
Ni = {j ∈ V : (i, j) ∈ E}.

C. Sensor Measurement Output Model

In practice, sensors are often deployed either inside a
monitoring region of the plant or very close to the plant.
Furthermore, sensors are equipped with on-board sensing
units, which renders that sensors can observe the plant and

sense the plant’s state signal with noisy measurement [7].
Thus, it is assumed that sensor i, i ∈ V , takes the actual
measurement in the form of

ys
i (k) = Cix(k)+ Divi(k), ∀ i ∈ V (2)

where ys
i (k) ∈ R

ny is the measurement output vector received
by sensor node i from the plant; vi(k) ∈ R

nv belonging to
l2[0,∞) is the measurement noise through measurement trans-
mission link i; Ci and Di, i ∈ V , are known constant matrices
with appropriate dimensions. As can be seen from (2), the
measurement ys

i (k) is assumed to be taken at every instant
of time by sensor i. Although in some cases, this assumption
may be unfavorable as it may result in the inefficient use of
resources on sensor measuring, we consider in this paper that
the main cause for resource consumption comes from the data
transmission and receiving between sensors. This enables us to
focus exclusively on reducing the frequency of communication
among sensors so as to achieve better resource efficiency.

D. New Distributed Event-Triggered Communication Scheme

The purpose of this section is to develop a new distributed
ETCS to determine how frequently each sensor’s data should
be broadcast and transmitted over the wireless network.

A conceptual framework of the distributed ETCS on sensor
node i is shown in Fig. 2. An event processor (EP) which con-
sists of an event generator and a buffer is embedded within
each sensor node to determine when each sensor’s current
information of a state estimation should be broadcast to its
neighboring nodes for state update. Denote by {tik| tik ∈ N}
the broadcasting time sequence and {si

k| si
k = tik + mi,mi =

0, 1, . . . ,Mi,Mi = tik+1 − tik − 1} the current time sequence
between two consecutive broadcasting instants. At each time
k ∈ N, sensor i’s computes its state update x̂i(k) as an estima-
tion of the state x(k) of plant. This state estimation x̂i(k) and
its time-stamp k are encapsulated into a data packet (k, x̂i(k)).
We assume that tik also denotes the time when sensor node i
successfully transmits its state estimation x̂i(tik) to its neigh-
boring nodes. Therefore, all transmitted packets (tik, x̂i(tik)) are
time-stamped. The broadcasting and transmitting time instants
are determined recursively by an event generator according to
the following scheme:

tik+1 = tik + inf
mi≥0

{
mi + 1 | f

(
si

k

)
> 0

}
(3)

where

f
(
si

k

) = X T
i

(
si

k

)
�i
(
δi
(
si

k

))Xi
(
si

k

)

− δi
(
si

k

)YT
i

(
si

k

)
�i
(
δi
(
si

k

))Yi
(
si

k

)

Xi
(
si

k

) = x̂i
(
si

k

)− x̂i
(
tik
)

Yi
(
si

k

) =
∑
j∈Ni

aij

(
x̂i
(
tik
)− x̂j

(
tj
k̃j

))

with k̃j � arg mink̃{si
k − tj

k̃
| si

k > tj
k̃
, k̃ ∈ N}. For each index i,

δi(k) is a time-varying threshold parameter satisfying

0 ≤ δ̄1,i ≤ δi(k) ≤ δ̄2,i < 1, ∀ i ∈ V (4)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 2. Conceptual framework of distributed event-triggered communication
on sensor i, i ∈ V .

with constants δ̄1,i and δ̄2,i denoting the lower bound and
the upper bound of δi(k), respectively. Under the communica-
tion scheme (3), once the current sampled-data x̂i(si

k) satisfies
the event triggering condition f (si

k) > 0, EP i immediately
broadcasts sensor i’s current state estimation to its underly-
ing neighbors. It is assumed that the time-varying threshold
parameter can be estimated or measured via statistical tests
in real time. �i(δi(k)) denotes a symmetric positive definite
weighting matrix sequence that depends on the time-varying
threshold parameter. The buffer in EP i is assumed to be event-
driven and has the logical capability of checking the time
stamps of the newly arrived data packets and choosing the
newest one to actuate filter i, as shown in Fig. 2. Even though
transmitted data packets from neighboring nodes may arrive
with a different temporal order, buffer i is configured to keep
the arrived packet only when its time stamp is greater than
that of currently stored packet. In other words, buffer i will
reserve the latest data packets and keep sensor i’s state update
unchanged until new data packets are arrived. For simplic-
ity, it is assumed that data transmission over the network is
performed in a single packet manner.

Remark 1: Different from some existing dis-
tributed/decentralized ETCSs [12], [17], [19], [29], [33]–[35],
[39]–[41], the distributed ETCS (3) is dependent on the
time-varying threshold parameter δi(k). Generally, changing
the value of the threshold parameter leads to a variation of
the average inter-event time. Consequently, the above scheme
is capable to dynamically adjust the released event time
interval according to both the current sampled-data and the
time-varying threshold parameter. In (4), we consider that
δi(k) takes values on the interval [δ̄1,i, δ̄2,i] mainly based on
the three aspects mentioned in the introduction of this paper.

E. Distributed Event-Triggered H∞ Consensus Filters

To estimate the state of the plant, sensor i is assumed to run
a threshold-parameter-dependent consensus filter of the form
⎧
⎪⎪⎨
⎪⎪⎩

x̂i(k + 1) = Ax̂i(k)+ Ki(δi(k))
(
ys

i (k)− Cix̂i(k)
)

+ Gi(δi(k))
∑

j∈Ni

aij

(
x̂i
(
tik
)− x̂j

(
tj
k̃j(k)

))

ẑi(k) = Ex̂i(k)

(5)

where k ∈ ϒ � {tik, tik + 1, . . . , tik+1 − 1} with ϒ representing
the holding time sequence of filter i’s state update; k̃j(k) �
arg mink̃{k − tj

k̃
| k > tj

k̃
, k̃ ∈ N}; x̂i(k) ∈ R

nx is the state
estimation computed by sensor node i; ẑi(k) ∈ R

nz is the output

of sensor node i and represents an estimation of the objective
output signal z(k); the initial condition of filter i is given by
x̂i

0; Gi(δi(k)) and Ki(δi(k)), ∀ i ∈ V , are the filter gain matrix
sequences to be determined.

Remark 2: From Fig. 1, one can see that state estimations of
neighboring nodes i1, i2, . . ., iq ∈ Ni are exchanged with sen-
sor node i to provide some freedom and flexibility in choosing
information sent through the network. Furthermore, informa-
tion exchanged among neighboring nodes plays an important
role in collaborative information processing over wireless
sensor networks. Similar to [6], [13], and [42], the consensus-
based distributed filters are constructed in (5), where filter i’s
dynamics consists of two parts: one is derived from a local
Luenberger-like observer weighted with the matrix sequence
Ki(δi(k)); and the other arises from consensus and takes into
account state estimation information collected from sensor
node i’s all underlying neighbors weighted with the matrix
sequence Gi(δi(k)). However, the proposed filters (5) are inher-
ently distinct with the ones in [6], [13], and [42] from the
following three aspects.

1) The latter rely on a periodical or continuous communi-
cation scheme while the proposed filters are based on
an event-triggered communication paradigm.

2) The filters in [6] and [13] are constructed only for
continuous-time systems and the filter proposed in [42]
does not take the effects of external disturbance and
measurement noise into account.

3) The estimator gain matrices in [6], [13], and [42] are
fixed permanently while the filter gain matrices in (5) are
time-varying and dependent on the threshold parameter
δi(k).

F. Filtering Error Dynamics

For sensor node i, ∀ i ∈ V , define a state estimation error
vector ei(k) = x(k) − x̂i(k), an output estimation error vector
z̃i(k) = z(k) − ẑi(k) and a state update error vector ĥi(k) =
x̂i(k) − x̂i(tik), k ∈ ϒ . Combining (1), (2), and (5), we have
the following the filtering error system on node i:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ei(k + 1) = (A − Ki(δi(k))Ci)ei(k)

+ Gi(δi(k))
∑

j∈Ni

aij

(
ĥi(k)− ĥj(k)

)

+ Gi(δi(k))
∑

j∈Ni

aij
(
ei(k)− ej(k)

)

− Ki(δi(k))Divi(k)+ Bw(k)
z̃i(k) = Eei(k)+ Fw(k).

(6)

For notational brevity, we denote e(k) = coliN {ei(k)},
h(k) = coliN {ĥi(k)}, z̃(k) = coliN {z̃i(k)}, v(k) = coliN {vi(k)},
Ā = diagN {A}, B̄ = colN {B}, C̄ = diagi

N {Ci}, D̄ =
diagi

N {Di}, Ē = diagN {E}, F̄ = colN {F}, �(k) =
diagi

N {δi(k)}, �̄(�(k)) = diagi
N {�i(δi(k))}, Ḡ(�(k)) =

diagi
N {Gi(δi(k))}, and K̄(�(k)) = diagi

N {Ki(δi(k))}.
From (6), the filtering error system can be rewritten in a

compact form
{

e(k + 1) = Ãe(k)+ B̄w(k)+ C̃h(k)+ D̃v(k)
z̃(k) = Ēe(k)+ F̄w(k)

(7)
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where Ã = Ā − K̄(�(k))C̄ + Ḡ(�(k))L̃, C̃ = Ḡ(�(k))L̃, D̃ =
−K̄(�(k))D̄, and L̃ = L ⊗ I.

G. Problem to Be Addressed

For a prescribed level of disturbance attenuation
performance γ > 0 and a measurable threshold param-
eter δi(k) ∈ [δ̄1,i, δ̄2,i] ⊆ [0, 1), the objective of the distributed
event-triggered H∞ consensus filtering problem is to design
desired distributed event-triggered H∞ consensus filters in the
form of (5) and event triggering weighting matrix sequences
�i(δi(k)) for all i ∈ V , such that:

1) The resultant estimation error system (7) with w(k) = 0
and vi(k) = 0 is asymptotically stable; and

2) The following H∞ performance index:

1

N

N∑
i=1

∞∑
k=0

z̃T
i (k)z̃i(k) < γ 2

∞∑
k=0

wT(k)w(k)

+ γ 2 1

N

N∑
i=1

∞∑
k=0

vT
i (k)vi(k) (8)

is satisfied under nonzero w(k), vi(k) ∈ l2[0,∞) and
zero initial condition.

III. CRITERIA FOR DESIGNING DESIRED DISTRIBUTED

EVENT-TRIGGERED H∞ CONSENSUS FILTERS

In this section, criteria on the existence of desired distributed
event-triggered H∞ consensus filters of the form (5) and dis-
tributed ETCS in the form of (3) are derived to guarantee the
asymptotic stability of the resultant filtering error system (7)
with a prescribed H∞ performance index while reducing the
communication frequency of interacting sensors.

A. Criteria in the Case of Time-Varying Threshold
Parameters

Choose a new threshold-parameter-dependent Lyapunov
functional candidate as

V(k) = eT(k)P̄(�(k))e(k) (9)

where P̄(�(k)) = diagi
N {Pi(δi(k))}, which depends on the

threshold parameter δi(k), i ∈ V , is a time-varying matrix
sequence to be determined. We now state and establish the
following result.

Theorem 1: Given scalars γ > 0, α > 0, and a measur-
able threshold parameter δi(k) ∈ [δ̄1,i, δ̄2,i] ⊆ [0, 1), i ∈ V ,
the proposed distributed event-triggered H∞ consensus fil-
tering problem is solvable by the distributed filters (5), if
there exist a constant diagonal matrix R, diagonal matrix
sequences P̄(�(k)) > 0, �̄(�(k)) > 0, G̃(�(k)) and K̃(�(k))
of appropriate dimensions such that

	 < 0 (10)

where 	 = [	(pq)]6×6 is a symmetric block matrix with
its nonzero entries given by 	(11) = −P̄(�(k)) + 
(�(k)),
	(12) = 
(�(k)), 	(22) = 
(�(k)) − �̄(�(k)), 	(15) = ĒT ,
	(35) = F̄T , 	(16) = ĀTRT − C̄T K̃T(�(k)) + L̃TG̃T(�(k)),
	(26) = L̃TG̃T(�(k)), 	(36) = B̄TRT , 	(46) = −D̄T K̃T(�(k)),

	(33) = −γ 2I, 	(44) = −(γ 2/N )I, 	(55) = −N I, 	(66) =
α2P̄(�(k + 1)) − sym(αR), and 
(�(k)) = L̃T(�(k) ⊗
I)�̄(�(k))L̃. Furthermore, the filter gain matrix sequences are
given by

Ḡ(�(k)) = R−1G̃(�(k)), K̄(�(k)) = R−1K̃(�(k)). (11)

Proof: See the Appendix.
Remark 3: From Theorem 1, it is clear to see that in order

to ensure 	 < 0, one has to guarantee 	(22) = L̃T(�(k) ⊗
I)�̄(�(k))L̃ − �̄(�(k)) < 0. On the other hand, we have

L̃T(�(k)⊗ I)�̄(�(k))L̃ − �̄(�(k))

≤ λ2
max(�(k)⊗ I)�̄(�(k))− �̄(�(k))

=
((
λ2

max�(k)− I
)

⊗ I
)
�̄(�(k))

where λmax is the largest eigenvalue of the Laplacian matrix
L of the graph G. Since �̄(�(k)) > 0, it can be concluded
that if

0 ≤ δ̄1,i ≤ δi(k) ≤ δ̄2,i <
1

λ2
max

(12)

then 	(22) < 0 holds. As a consequence, the above con-
straint on the time-varying threshold parameter establishes
the relationship between the upper bound of the time-varying
threshold parameter and the largest eigenvalue of the Laplacian
matrix. However, the Laplacian matrix relies on the entire
sensor network topology. In other words, Theorem 1 iden-
tifies a way to build the relationship between how to bound
the threshold parameter and how to select a suitable network
topology.

Note that the number of matrix inequalities in Theorem 1
tends to be infinite due to the time-varying parameters �(k)
and �(k + 1). Therefore, it is difficult to directly solve the
inequalities to obtain the filter gain parameters. In the follow-
ing, we will convert the matrix inequalities (10) into finite
LMIs by resorting to a polytope-like transformation.

Choose the matrix sequences Pi(δi(k + 1)) and ∇i(δi(k)) of
the following structure:

Pi(δi(k + 1)) = Pi,0 + δi(k + 1)Pi

∇i(δi(k)) = ∇i,0 + δi(k)∇i (13)

where the symbol ∇ denotes P,�,G, and K, respectively.
Consequently, it can be easily observed from (5) that the
proposed distributed event-triggered filters comprise two kinds
of estimator gain parameters: 1) the constant (or fixed) param-
eters Gi,0,Ki,0,Gi, and Ki and 2) the time-varying parameter
δi(k). In this sense, the distributed event-triggered filters can
dynamically schedule their gain parameters according to the
measured threshold parameter δi(k).

We define some new variables

β1,i(k) = δ̄2,i − δi(k + 1)

δ̄2,i − δ̄1,i
, β2,i(k) = δi(k + 1)− δ̄1,i

δ̄2,i − δ̄1,i

α1,i(k) = δ̄2,i − δi(k)

δ̄2,i − δ̄1,i
, α2,i(k) = δi(k)− δ̄1,i

δ̄2,i − δ̄1,i
.

It can be readily derived that

δi(k + 1) =
2∑

l=1

βl,i(k)δ̄l,i, δi(k) =
2∑

m=1

αm,i(k)δ̄m,i. (14)
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Then from (13) we have that the matrix sequences Pi(δi(k+1))
and ∇i(δi(k)) belong to the following convex compact sets or
polytopes:

P̌i �
{

Pi : Pi
(
δ+i
) =

2∑
l=1

βl,i(k)(Pi,0 + δ̄l,iPi), βi ∈ βi
}


β
i �

{
βi : βl,i(k) ≥ 0, l = 1, 2;

2∑
l=1

βl,i(k) = 1

}

∇̌i �
{

∇i : ∇i(δi) =
2∑

m=1

αm,i(k)
(∇i,0 + δ̄m,i∇i

)
, αi ∈ αi

}

αi �
{
αi : αm,i(k) ≥ 0,m = 1, 2;

2∑
m=1

αm,i(k) = 1

}

where Pi,0 + δ̄l,iPi, l = 1, 2, are two vertices of the polytope
P̌i and βi = col2{β1,i(k), β2,i(k)} is the polytope coordinate;
∇i,0 + δ̄m,i∇i, m = 1, 2, are two vertices of the polytope ∇̌i

and αi = col2{α1,i(k), α2,i(k)} is the polytope coordinate; the
symbol ∇ denotes P,�,G, and K, respectively.

In the sequel, ∀ m, l = 1, 2, we denote �̄m = diagi
N {δ̄m,i},

�m(k) = diagi
N {αm,i(k)}, l(k) = diagi

N {βl,i(k)}, P̄0 =
diagi

N {P0,i}, P̄ = diagi
N {Pi}, �̄0 = diagi

N {�0,i}, �̄ =
diagi

N {�i}, Ḡ0 = diagi
N {G0,i}, Ḡ = diagi

N {Gi}, K̄0 =
diagi

N {K0,i}, K̄ = diagi
N {Ki}, P̌m = P̄0 + �̄mP̄, �̌m =

�̄0 + �̄m�̄, Ǧm = G̃0 + �̄mG̃, and Ǩm = K̃0 + �̄mK̃.
Applying the polytope-like transformation formulated

above, it follows from (10) that:

	 =
2∑

m=1

2∑
n=1

2∑
l=1

�m(k)�n(k)l(k)	m,n,l < 0 (15)

where 	m,n,l = [	(pq)
m,n,l]6×6 is a symmetric block matrix with

its nonzero entries given by 	(11)
m,n,l = −P̌m + L̃T(�̄n ⊗ I)�̌mL̃,

	
(12)
m,n,l = L̃T(�̄n ⊗ I)�̌mL̃, 	(15)

m,n,l = ĒT , 	(35)
m,n,l = F̄T , 	(22)

m,n,l =
L̃T(�̄n ⊗ I)�̌mL̃ − �̌m, 	(16)

m,n,l = ĀTRT − C̄T ǨT
m + L̃TǦT

m,

	
(26)
m,n,l = L̃TǦT

m, 	(36)
m,n,l = B̄TRT , 	(46)

m,n,l = −D̄T ǨT
m, 	(33)

m,n,l =
−γ 2I, 	(44)

m,n,l = −(γ 2/N )I, 	(55)
m,n,l = −N I, and 	

(66)
m,n,l =

α2P̌l − sym(αR), and other zero entries.
Now, we are in a position to present the following result.
Theorem 2: Given scalars γ > 0, α > 0, δ̄1,i and δ̄2,i sat-

isfying 0 ≤ δ̄1,i ≤ δ̄2,i < 1, i ∈ V , the proposed distributed
event-triggered H∞ consensus filtering problem is solvable by
the distributed filters (5) if there exist constant diagonal matri-
ces P̄0 > 0, P̄ > 0, R, �̄0 > 0, �̄ > 0, G̃0, G̃, K̃0, and K̃ of
appropriate dimensions such that

	m,n,l < 0, m, n, l = 1, 2. (16)

Furthermore, the constant filter gain matrices are given by

Ḡ0 = R−1G̃0, Ḡ = R−1G̃, K̄0 = R−1K̃0, K̄ = R−1K̃. (17)

With Theorem 2, the distributed event-triggered H∞ con-
sensus filtering problem can be transformed into the following
optimization problem (OP):

min
�

λ subject to (16)

where λ = γ 2 and � is the set of all feasible solutions from
LMIs (16) in Theorem 2. The optimal H∞ performance level
γ = √

λ can be obtained by solving the minimization problem
formulated above.

In the following, to obtain the threshold-parameter-
dependent event triggering weighting matrix sequence
�i(δi(k)) and filter gain matrix sequences Gi(δi(k)) and
Ki(δi(k)), ∀ i ∈ V , a recursive algorithm which outlines the
design procedure is presented.

Algorithm 1: To determine the sequences of �i(δi(k)),
Gi(δi(k)), and Ki(δi(k)), ∀ i ∈ V .

Step 1: Given the system matrices A,B,Ci,Di,E, and F,
scalars δ̄1,i and δ̄2,i satisfying 0 ≤ δ̄1,i ≤ δ̄2,i < 1.
Choose a fixed network topology G, an initial time
k = 0 and a simulation time Tsim.

Step 2: Solve the OP to obtain �̄ = diagi
N {�i}, R, G̃0,

G̃, K̃0, and K̃. Calculate the constant filter gain
matrices Ḡ0 = diagi

N {G0,i}, Ḡ = diagi
N {Gi},

K̄0 = diagi
N {K0,i}, and K̄ = diagi

N {Ki} according
to (17).

Step 3: For measurable threshold parameters δi(k), compute
the threshold-parameter-dependent event triggering
weighting matrix sequence and filter gain matrix
sequences as follows. �i(δi(k)) = �0,i + δi(k)�i,
Gi(δi(k)) = G0,i + δi(k)Gi and Ki(δi(k)) = K0,i +
δi(k)Ki, ∀ i ∈ V and set k = k + 1.

Step 4: If k < Tsim, go to step 3. Otherwise go to step 5.
Step 5: Output �i(δi(k)), Gi(δi(k)) and Ki(δi(k)), ∀ i ∈ V .

Exit.
Remark 4: Note from Theorem 2 that the infinite time-

varying LMIs established in Theorem 1 are converted into a
set of finite LMIs by reformulating the time-varying threshold
parameter δi(k) into a polytopic form (14). As a result, desired
threshold-parameter-dependent filter gain matrix sequences
Gi(δi(k)) and Ki(δi(k)) in (5) and event triggering weighting
matrix sequences �i(δi(k)) in (3) can be recursively calcu-
lated by Algorithm 1 at each time k. Recall that Gi(δi(k)),
Ki(δi(k)) and �i(δi(k)) depend on the threshold parameter
δi(k). In this paper, we refer to this filter design approach
as a threshold-parameter-dependent approach.

B. Criterion in the Case of Constant Threshold Parameters

When the threshold parameter δi(k), i ∈ V , is fixed a priori,
i.e., δi(k) ≡ δi, the ETCS (3) can be written as

tik+1 = tik + inf
mi≥0

{
mi + 1 | f̃i(s

i
k) > 0

}
(18)

where f̃i(si
k) = X T

i (s
i
k)�iXi(si

k)−δiYT
i (s

i
k)�iYi(si

k). The objec-
tive is thus to design constant event triggering weighting
matrix �i and desired estimators in the form of (5) with con-
stant filter gain matrices Gi and Ki, i ∈ V , such that the
resultant filtering error system is asymptotically stable with
a prescribed H∞ performance index γ . As a by-product, the
following theorem is straightforward from Theorem 2.

Theorem 3: Given scalars γ > 0, α > 0 and δi ∈ [0, 1),
i ∈ V , the distributed event-triggered H∞ consensus filter-
ing problem in the case of constant threshold parameters
is solvable by the distributed filters if there exist constant
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diagonal matrices R, P̄ > 0, �̄ > 0, G̃ and K̃ of appro-
priate dimensions such that 	̂ < 0, where 	̂ = [	̂(pq)]6×6
is a symmetric block matrix with its nonzero entries given
by 	̂(11) = −P̄ + L̃T(� ⊗ I)�̄L̃, 	̂(12) = L̃T(� ⊗ I)�̄L̃,
	̂(15) = ĒT , 	̂(35) = F̄T , 	̂(22) = L̃T(� ⊗ I)�̄L̃ − �̄,
	̂(33) = −γ 2I, 	̂(16) = ĀTRT −C̄T K̃T +L̃TG̃T , 	̂(26) = L̃TG̃T ,
	̂(36) = B̄TRT , 	̂(46) = −D̄TK̃T , 	̂(44) = −(γ 2/N )I,
	̂(55) = −N I, and 	̂(66) = α2P̄ − sym(αR), and other
zero entries. Furthermore, the filter gain matrices are given
by Ḡ = R−1G̃ and K̄ = R−1K̃ with Ḡ = diagi

N {Gi} and
K̄ = diagi

N {Ki}.
Remark 5: The problem of distributed event-triggered H∞

filtering for continuous-time linear systems over sensor
networks with constant threshold parameters was investigated
in [12]. A co-design algorithm was proposed to design both the
filter parameter matrices and the event-triggered parameters
including the threshold parameters and weighting matrices so
as to simultaneously preserve the desired system performance
and expected network resource occupancy. By following sim-
ilar analysis and design procedures in [12], interested readers
may extend Theorem 3 in the case of constant threshold
parameters to relevant co-design results for discrete-time linear
systems, which is omitted due to page limitations.

IV. CRITERION FOR DESIGNING DISTRIBUTED

TIME-TRIGGERED H∞ CONSENSUS FILTERS

Note that if one sets δi = 0, i ∈ V , it can be clearly seen
from (18) that tik+1 = tik+1 because X T

i (s
i
k)�iXi(si

k) > 0 holds
for every instant k, which means that sensor node i periodi-
cally updates its state estimation. As a result, the proposed
ETCS (3) reduces to a time-triggered communication scheme
(TTCS) and the corresponding distributed event-triggered H∞
consensus filters (5) can be reconstructed as

⎧
⎨
⎩

x̂i(k + 1) = Ax̂i(k)+ Ki
(
ys

i (k)− Cix̂i(k)
)

+ Gi
∑

j∈Ni
aij
(
x̂i(k)− x̂j(k)

)
ẑi(k) = Ex̂i(k)

(19)

where Gi and Ki, i ∈ V , are constant filter gain matrices to be
determined. In this case, similar to the proof of Theorem 1, one
can derive the following result to design desired distributed
time-triggered H∞ consensus filters (19) such that the resul-
tant filtering error system is asymptotically stable with the
prescribed H∞ performance.

Theorem 4: For prescribed scalars γ > 0 and α > 0, the
distributed time-triggered H∞ consensus filtering problem is
solvable by the distributed filters (19) if there exist constant
diagonal matrices R, P̄ > 0, �̄ > 0, G̃ and K̃ of appropri-
ate dimensions such that 	̌ < 0, where 	̌ = [	̌(pq)]5×5 is
a symmetric block matrix with its nonzero entries given by
	̌(11) = −P̄, 	̌(14) = ĒT , 	̌(15) = ĀTRT − C̄T K̃T + L̃TG̃T ,
	̌(22) = −γ 2I, 	̌(24) = F̄T , 	̌(25) = B̄TRT , 	̌(35) = −D̄T K̃T ,
	̌(33) = −(γ 2/N )I, 	̌(44) = −N I, and 	̌(55) = α2P̄ −
sym(αR), and other zero entries. Furthermore, the filter gain
matrices are given by Ḡ = R−1G̃ and K̄ = R−1K̃ with
Ḡ = diagi

N {Gi} and K̄ = diagi
N {Ki}.

Fig. 3. Mechanical system with two masses and two springs over a wireless
sensor network.

V. ILLUSTRATIVE EXAMPLES

In this section, two examples, which have been commonly
used in the filtering/estimation literature, are given to illustrate
the effectiveness of the proposed design approach.

A. Two-Mass-Spring Mechanical System

Consider a mechanical system with two masses and two
springs [43], illustrated in Fig. 3. The positions of these two
masses m1 and m2 are denoted as x1 and x2, respectively.
The parameters k1 and k2 stand for the spring constants. The
parameter c represents the viscous friction coefficient between
the masses and the horizontal surface. The system is disturbed
by a noise input w. Denoting x = col4{x1, x2, ẋ1, ẋ2}, a state-
space realization of this two-mass-spring system is given by

ẋ(t) =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

− k1+k2
m1

k2
m1

− c
m1

0
k2
m2

− k2
m2

0 − c
m2

⎤
⎥⎥⎦x(t)+

⎡
⎢⎢⎣

0
0
1

m1

0

⎤
⎥⎥⎦w(t).

The parameters are chosen as m1 = 1 kg, m2 = 0.5 kg, k1 =
k2 = 1 N/m, and c = 0.5 N·s/m. It is assumed that three sen-
sor nodes (N = 3) are deployed to cooperatively estimate the
position and the velocity of two masses over a wireless com-
munication network. The network topology is characterized
by a directed weighted graph G = (V, E,A) with the nodes
V = {1, 2, 3}, sets of edges E = {(1, 2), (1, 3), (2, 1), (3, 1)}
and the adjacency elements aij = 1/N , ∀ (i, j) ∈ E . Similar
to [15], we choose the sampling period T = 0.3s and obtain
by discretization the discrete-time model in the form of the
first equation in (1) with system parameter matrices given by

A =

⎡
⎢⎢⎣

0.9612 0.0416 0.2703 0.0040
0.0792 0.9202 0.0079 0.2515

−0.5328 0.2624 0.7810 0.0376
0.4872 −0.4951 0.0753 0.6686

⎤
⎥⎥⎦

B = [
0.0422 0.0006 0.2703 0.0079

]
.

The measurement output parameter matrices on sensors are
given by C1 = [2 2 − 1 − 2], C2 = [1 2 1 − 2],
C3 = [2 1 − 2 3] and D1 = D2 = D3 = 0.1. We are
interested in estimating the position of mass 1, thus one has
z(k) = x1(k), i.e., E = [1 0 0 0] and F = 0.

The objective is twofold. First, to build up a multisensor
estimation framework for estimating the position of mass 1
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TABLE I
COMPARISONS OF DIFFERENT COMMUNICATION SCHEMES

such that an optimal estimation performance index can be
achieved. Second, to reduce the communication frequency
among neighboring sensors in a quantitative manner so as to
achieve better resource efficiency.

For this purpose, we apply the obtained theoretical results
in three different cases. The time-triggered communication
scheme (TTCS) case, see [5], [9], [15], [20], [42]. In this case,
each sensor broadcasts and transmits its current state estima-
tion x̂i(k) to its neighboring sensors at every time step k ∈ N.
The ETCS with constant threshold parameters (ETCS-C) case,
see [17], [19], [33]–[35], [41]. In this case, the decision of
whether each sensor should broadcast and transmit its current
state estimation x̂i(k) to its neighbors is made by (18) in terms
of a constant threshold parameter δi. To solve Theorem 3, we
further choose δ1 = 0.75, δ2 = 0.8, and δ3 = 0.85. The
newly proposed ETCS with time-varying threshold parame-
ters (ETCS-TV) case. In this case, Theorem 2 is implemented
and the time-varying threshold parameter sequence in (3)
on each node is simulated as δ1(k) = 0.65 + 0.2| cos(k)|,
δ2(k) = 0.7 + 0.2| sin(k)| and δ3(k) = 0.75 + 0.2| sin(k)|,
respectively, as shown in Fig. 4. It can be checked that (12)
holds since λmax = 1.

Applying Theorems 2–4, it is found that desired consensus-
based distributed event-triggered filters can be designed such
that the resultant filtering error system (7) is asymptoti-
cally stable in each case while preserving the optimal H∞
performance index γmin, as given in Table I, respectively. The
designed filter gain matrices and event triggering weighting
matrices in difference cases are omitted for space limitations.

To provide the quantitative analysis on saving communi-
cation resources, we perform the simulation for 80 s and
calculate the number of transmitted data packets (NoTDP) on
each sensor node in the three cases aforementioned. The com-
parison result is presented in Table I. The specific sensors’
event release instants in different cases are depicted in Fig. 5.
This example reveals the following two facts. First, the TTCS
leads to the smallest H∞ performance index and the ETCS-C
achieves the less H∞ performance index than the ETCS-
TV. Second, the ETCS-TV results in the fewest transmitted
data packets through the communication network. In other
words, for this example, the proposed ETCS-TV outperforms
the TTCS and ETCS-C in light of reducing the communica-
tion frequency among sensors thus saving a certain amount
of communication resources, with slight degradation of the
H∞ performance. Generally, when an ETCS is employed to
design H∞ filters, there is a tradeoff between achieving bet-
ter resource efficiency and preserving less H∞ performance.
However, it is necessary to point out that the above comparison

Fig. 4. Time-varying threshold parameter sequence δi(k) on sensor i (i =
1, 2, 3) over [0 s, 80 s).

Fig. 5. Event release instants on sensor i (i = 1, 2, 3) over [0 s, 80 s) under
TTCS, ETCS-C, and ETCS-TV.

Fig. 6. Objective output z(k) and its estimation ẑi(k) on sensor i (i = 1, 2, 3)
under TTCS, ETCS-C, and ETCS-TV.

does not mean that the ETCS-TV always leads to less trans-
mitted data packets than the ETCS-C as the later depends on
the choice of constant threshold parameters.

In the sequel, choose the initial conditions as x0 =
col4{0.1,−0.3, 0.2,−0.3} and x̂i

0 = col4{0}, ∀ i ∈ V . The
external disturbance and the measurement noise are taken as
w(k) = 0.5rand(1)/(2 + 5k), v1(k) = exp(−0.4k), v2(k) =
exp(−0.2k) and v3(k) = exp(−0.3k), respectively. We con-
nect the obtained filters with the system under consideration
and apply the determined ETCS, Fig. 6 depicts the objective
output z(k) and its estimations ẑi(k), ∀ i ∈ V , under different
communication schemes. It can be seen from Fig. 6 that the
designed filters well estimate the masses’ positions as time
goes by.
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Fig. 7. CSTR monitored by a wireless sensor network consisting of six
cooperative sensors.

B. Continuous Stirred Tank Reactor

In this section, we consider an industrial nonisothermal con-
tinuous stirred tank reactor (CSTR), where chemical species
A reacts to form species B [44]. Fig. 7 demonstrates a simple
physical structure of the CSTR. The reactor inflow contains
only the educt A in low concentration CA0 and the reactor
outflow contains the desired product B mixed with A. CA rep-
resents the output concentration of the educt A; CB stands for
the output concentration of the desired product B within the
reactor; T denotes the reactor temperature; and Tc is the cool-
ing medium temperature. The CSTR model has been widely
adopted in the literature to address H∞ filtering problems,
see [45], [46]. Considering that it may be costly and practically
difficult to implement a direct measure of the concentration
by using a traditional chemical approach, an alternative way
is to apply a signal processing technique to estimate the con-
centration based on local measurement of the system. In the
following, the state matrix of the discretized and linearized
state-space model of the CSTR is borrowed from [45], [46]
and given by[

x(1)(k + 1)
x(2)(k + 1)

]
=
[

0.9719 −0.0013
−0.0340 0.8628

][
x(1)(k)
x(2)(k)

]
(20)

where x(1)(k) denotes the output concentration of the educt
A; and x(2)(k) represents the reactor temperature. In practice,
the process noise may stem from poisoning of the reaction,
fouling of the cooling coils or temperature fluctuation, which
can be regarded as an exogenous disturbance input and can be
mathematically described by adding one term Bw(k) in (20)
with B = [0.1 0.3]T . The actual measurement output on each
sensor and the objective output are given by{

yi(k) = [ − 0.2 0.1 + 0.1i]x(k)+ 1
i vi(k)

z(k) = [0 1]x(k)+ 0.1w(k).

The initial condition is x(0) = col2{2,−1}. The exter-
nal disturbance and the measurement noise are taken as
w(k) = 3rand(1)/(0.5+0.1k2), v1(k) = exp(−0.05k), v2(k) =
exp(−0.06k), v3(k) = exp(−0.08k), v4(k) = exp(−0.07k),
v5(k) = exp(−0.04k), and v6(k) = exp(−0.09k), respectively.

In what follows, we apply the developed distributed event-
triggered H∞ filtering approach to estimate the reactor temper-
ature. To enhance the reliability and to improve the estimation

Fig. 8. Comparisons of the NoTDP on sensor i (i = 1, 2, . . . , 6) over
[0 s, 250 s) under TTCS, ETCS-C, and ETCS-TV.

Fig. 9. Event release instants and event release intervals on sensor i (i =
1, 2, . . . , 6) over [0 s, 250 s) under ETCS-C and ETCS-TV.

performance, six cooperative sensors, i.e., N = 6, are
deployed to monitor the reactor. The network topology char-
acterized by a directed weighted graph is illustrated in Fig. 7.
When each sensor should broadcast and share its local estima-
tion to its neighbors is determined by the proposed ETCS-TV.
For comparison purposes, the following simulation is car-
ried out under three different communication schemes, i.e.,
TTCS, ETCS-C, and ETCS-TV. It is assumed that the time-
varying threshold parameter sequence on each node satisfies
δ1(k) = 0.50 + 0.33| sin(k)|, δ2(k) = 0.53 + 0.28| cos(k)|,
δ3(k) = 0.59 + 0.25| sin(k)|, δ4(k) = 0.52 + 0.32| cos(k)|,
δ5(k) = 0.55 + 0.27| cos(k)|, and δ6(k) = 0.56 + 0.29| sin(k)|,
respectively. In the ETCS-C case, the constant threshold
parameters are chosen as δ1 = 0.665, δ2 = 0.670, δ3 = 0.715,
δ4 = 0.680, δ5 = 0.685, and δ6 = 0.705.

Applying Theorems 2–4, we conclude that the proposed
distributed H∞ consensus filtering problem is solvable under
either TTCS, ETCS-C, or ETCS-TV with the minimal H∞
performance index γmin = 1.1675, γmin = 1.1890, and
γmin = 1.1964, respectively. The filter parameter matrices
are omitted for space limitations. Comparisons of the NoTDP
on each sensor node between TTCS, ETCS-C, and ETCS-
TV are provided in Fig. 8. The specific event release instants
and event release intervals under ETCS-C and ETCS-TV
are depicted in Fig. 9. Connecting the designed threshold-
parameter-dependent filters with the CSTR and performing
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Fig. 10. Objective output z(k) and its estimation ẑi(k) on sensor i (i =
1, 2, . . . , 6) under TTCS, ETCS-C, and ETCS-TV.

the determined communication schemes, the evolution of the
objective output z(k) and its estimation ẑi(k) on sensor i,
∀ i ∈ V is shown in Fig. 10.

Based on the simulation above, it can be seen that the
estimation performance under the TTCS is better than the
ETCS-C and ETCS-TV, however, at the expense of sacrificing
the communication resources since more data packets need
to be broadcast and transmitted among sensors to perform
the cooperative estimation task, and compared with the TTCS
and ETCS-C, the ETCS-TV releases the fewest data packets
through the wireless communication network, thus has more
potential to save certain communication resources in practice.
However, the overall estimation performance is compromised.
This is due to the tradeoff between system performance and
communication cost.

VI. CONCLUSION

The problem of distributed event-triggered H∞ consen-
sus filtering for a discrete-time linear system over a sensor
network has been addressed. In order to reduce sensor update
frequency, a new distributed ETCS which depends on the time-
varying threshold parameter has been proposed. To solve the
distributed event-triggered H∞ consensus filtering problem,
a new threshold-parameter-dependent filter design approach
has been developed. Sufficient conditions on the existence
of desired distributed H∞ consensus filters and ETCS have
been presented such that the resultant filtering error system
is asymptotically stable with the prescribed H∞ performance.
To deal with the time-varying threshold parameter residing
in the proposed design criteria, a polytope-like transforma-
tion has been introduced to convert the time-varying LMIs
into a set of finite LMIs, which are numerically tractable.
Then, a recursive algorithm has been presented to compute the
time-varying threshold-parameter-dependent filter gain matrix
sequences and event triggering weighting matrix sequence.
Two illustrative examples have been provided to show the
effectiveness and merits of the threshold-parameter-dependent
filter design approach. One future topic that deserves deep
investigation is to study the resource efficiency problem under

the simultaneous presence of quantized and event-triggered
data communication. This is significant because in general
data quantization determines the transmission bit rate of data
packets thus influences the usage of communication resources.
Another future topic may lie in applying the developed
threshold-parameter-dependent filter design approach to deal
with heterogenous sensor networks, where different types of
sensors possess different sensing/processing capabilities and/or
random sensor networks [14], [47], [48], where the network
topology randomly varies over time.

APPENDIX

PROOF OF THEOREM 1

We first prove the asymptotic stability of the resultant fil-
tering error system (7) with the prescribed H∞ performance.
Define the forward difference of V(k) in (9) as �V(k) �
V(k + 1)− V(k). Calculating the forward difference along the
system (7) yields

�V(k) = eT(k + 1)P̄(�(k + 1))e(k + 1)

− eT(k)P̄(�(k))e(k). (21)

On the other hand, for all k ∈ ϒ = [tik, tik+1), there is no
event released. According to the proposed ETCS (3), we have
that

ĥT
i (k)�(δi(k))ĥi(k) ≤ δi(k)ỸT

i (k)�(δi(k))Ỹi(k) (22)

where Ỹi(k) = ∑
j∈Ni

aij(x̂i(tik̃i
) − x̂j(t

j

k̃j
)) with k̃i �

arg mink̃{k − ti
k̃

| k ≥ ti
k̃
, k̃ ∈ N}. Thus, it leads to

hT(k)�̄(�(k))h(k) ≤ h̃T(k)
(�(k))h̃(k) (23)

where h̃(k) = e(k) + h(k) and 
(�(k)) = L̃T(�(k) ⊗
I)�̄(�(k))L̃, which can be rewritten as

[
e(k)
h(k)

]T

R
[

e(k)
h(k)

]
≥ 0 (24)

where

R =
[

(�(k)) 
(�(k))

T(�(k)) 
(�(k))− �̄(�(k))

]
.

Combining (21) and the inequality (24) yields

�V(k) ≤ ψT(k)

{
	̃ + 1

N
ρTρ + �TP̄(�(k + 1))�

}
ψ(k)

+ γ 2wT(k)w(k)+ γ 2

N
vT(k)v(k)− 1

N
z̃T(k)z̃(k)

(25)

where ψ(k) = col4{e(k), h(k),w(k), v(k)}, ρ = [Ē 0 F̄ 0],
� = [Ã C̃ B̄ D̃], and 	̃ = [	̃(pq)]4×4 is a symmetric block
matrix with its nonzero entries given by 	̃(11) = −P̄(�(k))+

(�(k)), 	̃(12) = 
(�(k)), 	̃(22) = 
(�(k)) − �̄(�(k)),
	̃(33) = −γ 2I, and 	̃(44) = −(γ 2/N )I.

By Schur complement, 	̃+(1/N )ρTρ+�TP̄(�(k+1))� <
0 is equivalent to

⎡
⎣
	̃ ρT �T

∗ −N I 0
∗ ∗ −P̄−1(�(k + 1))

⎤
⎦ < 0. (26)
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Performing a congruence transformation to (26) by
diag7{I, I, I, I, I,R}, applying the inequality −RP̄−1(�(k +
1))RT ≤ α2P̄(�(k+1))−sym(αR) and introducing new matrix
sequences G̃(�(k)) = RḠ(�(k)) and K̃(�(k)) = RK̄(�(k))
yield 	 < 0. Therefore, if (10) holds, we have

�V(k) ≤ γ 2wT(k)w(k)+ γ 2

N
vT(k)v(k)− 1

N
z̃T(k)z̃(k).

(27)

Summing both sides of (27) from 0 to ∞ on k, one obtains

1

N

∞∑
k=0

z̃T(k)z̃(k) ≤ γ 2
∞∑

k=0

wT(k)w(k)+ γ 2

N

∞∑
k=0

vT(k)v(k)

+ V(0)− V(∞). (28)

Under zero initial condition V(0) = 0, we have

1

N

∞∑
k=0

z̃T(k)z̃(k) ≤
∞∑

k=0

(
γ 2wT(k)w(k)+ γ 2

N
vT(k)v(k)

)

(29)

from which the H∞ performance (8) is guaranteed.
Assume that w(k) = 0 and v(k) = 0, combining (21)

and (24) yields

�V(k) ≤ ψT(k)
{
	̃ + �TP̄(�(k + 1))�

}
ψ(k). (30)

Following similar line of analysis, one has that 	̃+�TP̄(�(k+
1))� < 0 is deduced from (10). Therefore, there exists a scalar
λ > 0 such that �V(k) ≤ −λ||e(k)||22 < 0, from which it
is concluded that the resultant filtering error system (7) is
asymptotically stable.

We next solve out the filter gain parameters. Observe from
	 < 0 in (10) that 	(66) = α2P̄(�(k + 1)) − sym(αR) <
0, thereby leading to a nonsingular constant matrix R. As a
consequence, the filter gain matrix sequences in (5) can be
derived by (11). This completes the proof.
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