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Abstract 
As health care spending continues to strain government and household budgets, there is increasing 
interest in measuring whether the incremental dollar spent on health care is worth it.  In studying this 
question, researchers often make two key assumptions: that health care intensity can be summarized 
by a single index such as average spending, and that samples of hospitals or regions are spatially  
independent: Manhattan and the Bronx are no more alike than are Manhattan and San Diego, for 
example. In this paper we relax both assumptions. Using detailed data on 897,008 elderly Medicare 
enrolees with acute myocardial infarction (or a heart attack) during 2007-11, we find first that the 
total level of health care spending has little impact on health outcomes; more important is how the 
money is spent. Same-day stenting, a treatment with proven effectiveness, positively predicts survival, 
while home health care spending does not. Second, there is strong evidence of spatial autocorrelation; 
without corrections this can lead to inefficient estimates and standard errors that are biased 
downward. Spatial autocorrelation in outcomes appears to be the consequence both of unmeasured 
health status and spatial correlation in new and effective technology.  
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I. Introduction    

With health care spending in all OECD countries projected to rise over the next several 

decades (OECD, 2018), there is a growing interest in understanding whether spending more 

on health care yields health benefits, or the converse – will cutbacks in health spending have 

an adverse impact on health?  Many studies use a single measure of intensity – such as end-

of-life spending – to test the hypothesis that more health care spending yields better health 

outcomes. The results vary widely, depending on the cohort considered, the method of risk-

adjustment, and the type of disease.1 As well, nearly all studies using regional variation in 

spending and outcomes make statistical inferences under the assumption of spatial 

independence; that the unexplained residuals in San Francisco and San Jose (two adjacent 

regions) are no more likely to be correlated than those between San Francisco and Miami, 

Florida, 2585 miles distant. 2 

Yet there is increasing evidence that behavioural health and economic factors play an 

important role in explaining spatial patterns of back surgery, quality of life, health utilization, 

and physician practice patterns (e.g., Joines et al., 2003; Eibich and Ziebarth, 2014; 

Bhattacharjee et al., 2014; Chaix et al., 2005; Sriubaite, 2018).  Assuming independence in 

the presence of spatial autocorrelation can lead both to inefficient estimators and standard 

errors that are biased downward, leading to falsely rejecting the null hypothesis (Anselin, 

1988). 

                                                            
1 For example, see Hussey et al., 2013, Fisher et al., 2003a,b, Skinner, et al. 2005, Skinner and 
Staiger, 2015, Chandra and Staiger, 2007, Hadley, et al., 2011, Romley, et al., 2011, Silber, et al., 
2010, Doyle, 2011, Doyle, et al., 2015, 2017, Yasaitis et al., 2014, and  Kibria et al., 2013. 
 
2 An exception is Rickett and Holmes (2007), discussed below. By implicitly comparing outcomes in 
adjacent hospitals, the Doyle et al. 2015, 2017 studies sidestep these issues; also see Gravelle et al., 
2014, for evidence on spatial correlation of quality for local hospitals.  
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In this study, we relax both the assumption of a single “intensity” measure for health 

care, and the assumption of independence across regions. We first specify a model that allows 

for multiple types of health care inputs, and for the presence of spatial autocorrelation across 

regions. We then draw on data from 897,008 Medicare fee-for-service patients age 65 or 

older hospitalized for acute myocardial infarction (AMI) or heart attack, during 2007-11, 

aggregated by Hospital Referral Region (HRR) and year, and analyse these data using a 

general econometrics framework that allows for correlation both in the dependent variable 

and the error term (Anselin, 1988; Moscone and Tosetti, 2014).3   

 We first demonstrate that even when using highly risk-adjusted AMI survival rates, 

there remains considerable spatial autocorrelation across HRRs in the U.S.  After adjusting 

for spatial autocorrelation, we find that the marginal productivity of different health inputs 

are quite different; indeed for the specific inputs we consider, they are of opposite sign; what 

matters most for health outcomes is how the money is spent. Like Likosky et al. (2018), we 

find that nearly all the survival benefits for this cohort arose from primary or same-day 

stenting for AMI patients, an inpatient treatment with proven effectiveness and minimal 

incremental costs. Raising the fraction of patients receiving such treatments by 10 percentage 

points is associated with a 0.7 percentage point increase in survival. And like Doyle et al. 

(2015, 2017), we find that the intensity of acute care is more important for health outcomes 

than is post-acute home health care, which in our model provides negative benefits; a 

doubling of home health care spending is predicted to reduce survival by 0.5 percentage 

points (also see McKnight, 2006). 

 What are the sources of this spatial autocorrelation? We find that including at least 

two measures associated with health outcomes – regional income and smoking rates -- 

                                                            
3 While the likelihood of an AMI in a given year is less than 2% for these Medicare enrollees, the 
lifetime risk of a cardiovascular event is roughly one-third (Berry et al., 2012).  
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reduces the degree of autocorrelation, which suggests the importance of unmeasured health 

even for risk-adjusted AMI patients.4  Another factor that can explain spatial autocorrelation 

is that the diffusion of new and effective technologies such as same-day PCI are themselves 

spatially correlated; we find that including these measures directly in a regression attenuates 

the degree of measured spatial autocorrelation by as much as one-half. In sum, empirical 

studies relying on regional patterns of treatments and outcomes should consider addressing 

the problem of spatial autocorrelation as well as capturing more granular health inputs that go 

beyond a single measure of overall expenditures.  

 

II. A Model of Health Expenditures and Health Outcomes 

 Numerous studies have tried to understand the value of money spent on health care, 

motivated by the question of whether more spending “buys” better health outcomes.  Several 

studies examining the association between overall population health and total spending found 

a null or negative association (Fisher et al., 2003a,b; Skinner, et al. 2005; Yasaitis et al., 2009; 

Doyle et al., 2017, Kibria et al., 2013), while others demonstrated a positive association 

(Hadley, et al., 2011; Romley, et al., 2011; Silber, et al., 2010, Doyle, 2011; Doyle et al., 2015).  

Yet, total spending, even for specific health events, may not be the best measure of the care 

provided to patients.  A dollar spent on highly effective care may buy more health than a dollar 

spent on another, less effective, type of care.  

 We therefore hypothesize that the marginal value of the incremental dollar of health 

care spending depends critically on how the money is spent (Chandra and Skinner, 2012; 

Chandra et al., 2019).  For example, percutaneous coronary interventions (PCI), or stents, are 

                                                            
4 Since these are risk-adjusted measures of survival conditional on having a heart attack, researchers 
have often assumed that these are reliable measures of hospital or regional productivity; see Chandra 
et al. (2016). And as noted below, since the risk-adjusted measures of survival already adjust for ZIP 
code level income, HRR-level income may also proxy for supply-side effects.    
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a good example of this type of treatment, but where treatment within 12 hours of the AMI is 

far more beneficial than PCI performed at a later stage (Hochman et al., 2006; Weintraub et 

al., 2008). To capture these effects, we include variables capturing the likelihood of AMI 

patients to receive same-day PCI.  As well, we also hypothesize that quality of care in academic 

medical centers is better than in non-academic hospitals (Burke et al., 2017).  By contrast, other 

treatments are those with little documented benefit for patients. We hypothesize that spending 

on home health care services represent care in this category, as there is little evidence that these 

excess dollars are purchasing better health outcomes (McKnight, 2006) and may even lead to 

harm (Doyle et al., 2017).  

 Why might such differences in treatment patterns arise? While the objective of this 

study is less about the exogenous sources of treatment patterns, we can draw on other evidence 

that suggests physician beliefs or capacity for PCI, rather than the underlying illness in regions 

or patient demand, plays a central role to explaining regional variations.  For example, Cutler 

et al. (2019) have shown that physician beliefs about the efficacy of a variety of cardiovascular 

procedures – as measured by a national survey including detailed patient vignettes along with 

options for treatment – explained as much as 60 percent of variations in end-of-life regional 

spending, with only a modest role for patient preferences (see also Baker et al., 2014).  Molitor 

(2017) similarly found that when cardiologists move, they tend to adjust to the prevailing norms 

for PCI in their new institutions.  

 A real concern with observational data is the problem of reverse causation; that regions 

or hospitals with a higher level of unobserved illness will lead to higher levels of spending, 

thus biasing conventional regression estimates against finding positive effects of spending. 

Restricting attention to AMI patients is one approach to reducing the potential for endogeneity, 

since regions with worse health may have more people who have a myocardial infarction, but 

conditional on having an AMI of a specific type, and with specific comorbidities, there’s much 
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less chance of unobservable factors unrelated to the health system biasing the estimates.  Other 

approaches to avoiding endogeneity include using tourists with acute conditions (Doyle, 2011) 

and ambulance services loyal to specific hospitals (Doyle et al., 2015, 2017).5  

 We used a dataset of 897,008 heart attack (AMI, or acute myocardial infarction) 

patients during 2007-11 with follow-up through 2012. We follow previous research (such as 

Chandra and Staiger, 2007, Chandra et al., 2016, Cutler et al., 2019, Doyle, 2011, and Cutler 

et al., 1998) in using heart attack patients because any patient with an AMI is taken immediately 

to a nearby hospital, thus minimizing endogenous hospital or regional selection.    

There are 306 HRRs across the United States, and while some of the spatial boundaries 

cross state lines, we place the HRR “city” in its corresponding state. For each beneficiary in 

this cohort, demographic data included age, sex, and race or ethnicity.  The median household 

income in a beneficiary’s ZIP code of residence was used as a proxy for his or her income.  We 

also recorded diagnoses present on the beneficiaries’ claims from their inpatient admission, as 

well as creating an HCC risk adjustment measure based on Medicare claims 6 months prior to 

the AMI. 

 An AMI is based on the first diagnosis code (410.x1 or 410.x2), and not on the 

diagnostic related group (DRG), which can often vary depending on how the patient is 

subsequently treated.  Risk adjustment measures at the individual level include median ZIP 

code income (averaged across AMI patients), age (65-69, 70-74, 75-79, 80-84, 85+), fully 

interacted with sex, vascular disease, pulmonary disease, dementia, diabetes, liver failure, renal 

failure, cancer, plegia (stroke), rheumatologic disease, HIV, race (African-American, Hispanic 

and other) and location of the AMI: Anterolateral, inferolateral, inferoposterior, all other 

                                                            
5 That is, there is generally more than one ambulance sent out for a medical emergency, yet some 
ambulances are loyal to specific hospitals; this creates a natural randomization as to which hospital 
the patient is admitted.  Regarding the use of tourists as being unrelated to “place,” Chandra et al. 
(2019) used an AMI cohort similar to this one and did not find differences in estimates between 
samples of tourists and non-tourists, although the tourist sample estimates were much less precise.     
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inferior, true posterior walls, or subendocardial, other site, or not otherwise specified. In most 

cases, we also use Hierarchical Condition Categories (HCC), which, while leading to over-

adjustment and potential biases (Song et al., 2010; Wennberg et al., 2014; Finkelstein et al., 

2017), counts the number of different diagnoses that patients have received in the 6 months 

prior to the index admission, and weights them for severity.  We created HRR-level variables 

by aggregating individual-level regression models with HRR-year fixed effects for risk-

adjusted survival and spending measures from the beneficiaries living in those HRRs.6 Initially, 

we estimate models without HCCs, but then adopt them as the default risk adjustment. 

Descriptive statistics are provided in Table 1. 

 As noted above, treatment variables were created from the individual-level Medicare 

claims data for the AMI patients, and aggregated up to the year-HRR level.  Primary or early 

PCI was defined as angioplasty or stenting within one day of admission to the hospital, while 

home health care expenditures was average per capita spending for home health care (over the 

entire population of Medicare enrollees, even those who did not receive any home health care), 

by year and HRR. Our data are limited to the fee-for-service population, since we cannot 

measure utilization among those in managed care plans (Medicare Advantage).  

To adjust further for regional health risk, we created year-specific estimates of HRR-

level smoking rates by combining county-level small area estimates of smoking derived from 

the Behavioural Risk Factor Surveillance System, or BRFSS (Dwyer-Lindgren, 2014). Finally, 

we also included average HRR-level income for the AMI patients, aggregated up from the 

patient-specific ZIP code level income. Note that in our risk adjustment, we have already 

adjusted for the patient’s ZIP code, so this aggregate zip code could capture an agglomeration 

                                                            
6 Recall that when one regresses both the dependent variable Y, and a specific independent variable X, 
against a vector of risk adjusters Z (as we do), the coefficient from the bivariate coefficient of the 
regression of Y on X (as reported in the first column of Table 2) is equivalent to the corresponding 
coefficient on X for a fully risk-adjusted regression of Y on X and Z. However, variables such as 
smoking and PCI rates are not risk-adjusted.  
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effect if (for example) higher-quality physicians locate in regions with higher incomes and 

more amenities.  

 

III. Estimating Spatial Models 

A wide literature points to the existence of geographical concentration in population 

health and health care services (Rushton, 2003; Lorant, 2001; James et al., 2004; 

www.dartmouthatlas.org). Yet nearly all studies assume a zero correlation with regard to 

shocks affecting nearby regions, whether hospitals, states, or HRRs. One source of dependence, 

spatial correlation, is related to the location and distance among statistical units, with respect 

to the geographical, economic or social space in which they are embedded. Neighbouring units 

may share common general population characteristics or underlying socio-economic features 

that may affect health outcomes. For example, environmental stressors such as air pollution 

could be linked to regional rather than local factors, influencing prevalence and health needs 

across a wide area. Similarly, diet and health behaviors not already measured in our analysis 

could vary across broad regions of the United States.  

An alternative hypothesis is that unmeasured factors related to treatments are correlated 

across regions. One simple example is if there is spatial correlation in the use of a highly 

effective treatment such as same-day PCI, a pattern we find in the data. In the absence of 

measuring PCI rates directly, the dependent variable would exhibit spatial dependence because 

of the unmeasured spatial correlation in the X variable; if this hypothesis were true, including 

PCI rates (or other measures such as academic medical centers) directly would then be expected 

to attenuate measured spatial autocorrelation in the dependent variable.   

Another potential explanation would be that the spatial diffusion of new knowledge and 

practice patterns not measured in the data would cause nearby providers to deliver similar types 
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of care.7 For example, if physicians or hospital administrators migrate to, or interact with, 

health centers in nearby areas, their skills conditional on inputs (e.g., they trained at either a 

high-quality or low-quality residency, and move nearby), could lead to spatial autocorrelation; 

indeed our measure of HRR-level income could capture the fact that skilled physicians are 

attracted to higher-income regions, whether because of higher relative wages or the presence 

of amenities in such regions.8  

For a variety of reasons then, spatial spillovers are likely to induce correlations across 

regions in health care measures, whether of inputs or outputs.  When data contain cross section 

dependence, conventional estimators such as ordinary least squares are inefficient, and the 

estimated standard errors are biased. In an earlier study, Ricketts and Holmes (2007) allow for 

spatial autocorrelation, and importantly, heterogeneity across regions in the association 

between physician supply and mortality.9 While we do not allow for heterogeneity, we do 

account for potential spatial autocorrelation both in the dependent variable and in the error term 

by estimating a spatial autoregressive model with spatially correlated errors (SAR-SEM). For 

the spatial weights matrix, we use contiguity information, and assigned weights wij=1 when 

HRR i and j are contiguous according to the queen contiguity criterion and 0 otherwise. These 

spatial weights were also used to compute a set of diagnostics. 

In some regressions we have included state dummies to account for possible 

heterogeneity in health outcomes across US states. Such heterogeneity may be due, for 

                                                            
7 Spatial correlation might also be generated by cross-state border migration of health services 
beneficiaries, although our focus here on heart attack patients – emergencies in which ambulances 
take patients quickly to a nearby hospital.  
 
8 Recall that we control for ZIP-code-level income in our risk-adjusted patient mortality level, so we 
suspect that income in this case could capture other supply-side factors.  
 
9 The spatial heterogeneity in the association between physician supply and mortality may also reflect 
differences across regions in the importance of physician location; in areas where there is insurance 
coverage and generosity, physicians may tend to locate in healthier regions, rather than in those with 
the greatest demand for their services.  
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example, to the common reaction of units belonging to the same state to external forces and 

unanticipated events such as technological advances, health shocks, the implementation of new 

health policies and sociological structural changes. Finally, as sensitivity analysis, we also 

consider the model using county level.  This requires that we drop many of the smaller counties 

where sample sizes are insufficient for analysis.10  

 

IV. Results  

Figure 1 shows a map of risk-adjusted survival, while Figure 2 displays a map of risk-

adjusted expenditures. In both cases, there is considerable spatial correlation; for survival, the 

spatial error coefficient is 0.39 and highly significant.  Figure 3 shows the association between 

one-year Medicare expenditures (on the horizontal axis) and one-year survival (on the vertical 

axis), both adjusted using HCCs. There is considerable variance across regions of the U.S., 

both with regard to risk-adjusted mortality, and risk-adjusted expenditures.   

In Table 2 we report results of conventional OLS and spatial autoregressive models 

(with spatially lagged dependent variable and spatially lagged error term) of one-year survival. 

Because of concerns about risk-adjustment noted above (e.g., Song et al., 2010; Finkelstein et 

al., 2017), the upper panel of the table the dependent variable is a non-HCC measure of 

survival, while in the lower panel of the table, the dependent variable is a HCC-adjusted 

measure of survival (these models all use HCC-adjusted spending measures), which we use in 

subsequent regression analysis. We also report the Lagrange Multiplier (LM) tests for error 

dependence and for a missing spatially lagged dependent variable (see Bera et al. 1996 for 

details).  

                                                            
10 The Centers for Medicare and Medicaid research requires that all reported “cells” have counts of at 
least 11 individuals.  For this reason, we drop counties with fewer than 11 observations in any of the 
cells, with the critical measure typically being the number of patients with same-day PCI.   
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 Looking at regressions (I) in the upper panel of Column 1 in Table 2, the variable 

health expenditure is statistically significant with a negative sign (-0.04), suggesting that a 10 

percent increase in spending leads to a 0.4 percentage point decline in one-year survival.  The 

corresponding regression in Column 4 that includes spatial autocorrelation adjustment exhibits 

a coefficient of -0.024, suggesting that the lack of adjustment leads to an upward bias (in 

absolute terms) of roughly two-thirds, but only a slightly elevated standard error.  Including 

additional covariates (Columns 3 and 6) imply that the coefficient on overall spending is 

essentially zero in both cases, with a similar standard error.  

We next turn to the lower panel of Table 2 that includes the HCC risk-adjustment in 

creating HRR-level spending and survival measures for AMI patients.  Focusing on the fully 

specified model (Columns 3 and 6) suggest that the spatial adjustment essentially erases a 

significance “star”  from the estimate; while the model implies a positive coefficient on 

spending (conditional on PCI and home health care spending) of 0.018 (implying a 10 

percentage point increase in overall spending should increase survival by 0.18 percentage 

points), the coefficient is smaller in magnitude (0.014) and insignificant at conventional levels 

after adjustment for spatial autocorrelation (Column 6).  

The coefficients on income and smoking are not as sensitive to adjustment for spatial 

autocorrelation; in both cases they exhibit coefficients with the expected magnitude, and in the 

case of smoking, is associated with large and significant reductions in survival even after 

adjusting for other covariates. While the magnitude of the income coefficient is not affected by 

spatial autocorrelation, the coefficient on smoking is nearly one-third lower (again, in absolute 

terms) with adjustment for spatial autocorrelation; the results imply that a 10 percentage point 

increase in smoking rates would reduce survival by 0.6 percentage points.  

Finally, we consider hospital input measures such as primary PCI, home health care, 

and the fraction of patients treated in a teaching hospital. While teaching hospital status might 
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appear to provide significant health benefits in the absence of adjustments for spatial 

autocorrelation, once the adjustment is made, the coefficient shrinks in magnitude and is no 

longer significant.  However, both primary PCI and home health care spending are highly 

significant, although – like the findings in Doyle et al. (2015, 2017), the quality of acute care 

(e.g., whether a PCI is provided quickly) is associated with higher survival (a 10 percent 

increase in PCI implies a 0.67 percentage point greater likelihood of survival), while the 

magnitude of post-acute home health care is associated with a decline in survival.  

As well, the introduction of these “supply-side” factors reduces the degree of estimated 

spatial autocorrelation from .32 (Column 5 in Table 2) to .18 (Column 6), suggesting that 

spatial correlation in PCI rates – which are consistently higher in mountain and Midwest 

regions, and lower in the South – can explain nearly half of the observed spatial autocorrelation 

even after adjusting for health measures. Figure 4 provides a map of the adjusted errors, which 

do not appear to exhibit spatial autocorrelation.  

We also include for sensitivity analysis the regression analysis with an inverse distance 

weighted approach in Table 3; the coefficient estimates are similar, although now smoking is 

no longer significant.  What is different is the estimate of spatial autocorrelation, which appear 

to be larger when inverse distance weights are used compared to simple contiguity. This seems 

to suggest that absolute distance between HRRs is more important than whether they share a 

border; Boston and New York (for example) may share practice styles and patient 

characteristics, even if they are not adjacent.11  

Our LM tests point to a spatial error model over a spatial lag model as most suitable for 

describing the process underlying our data. A spatial error model is consistent with the 

hypothesis that spatial correlation arises from the geographical concentration of unobservables, 

                                                            
11 An alternative approach is to create “neighbors” not spatially, but with regard to similarities in 
economic and demographic characteristics, as in Case et al. (1993).   
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such as environmental risks that are difficult to measure like air pollution, or unmeasured life 

style factors, which are known to be spatially concentrated (Baltagi et al. 2018). Another 

potential explanation for spatial error correlation is, as noted above, technology or productivity 

spillover arising from the local diffusion of certain technological standards, due, for example, 

to professional interaction. In the light of results pointed by LM tests, we have run a SEM for 

each regression, but we have not reported the results since they do not add further information 

when compared to our spatial regressions. Similarly, we have not reported the estimation of 

the Durbin spatial model: the spatially lagged regressors turn out to be statistically 

insignificant.   

In Table 4 we introduce state fixed effects, so that all estimates are “within state” by 

HRR. (Recall that there are 306 HRRs, so some of the larger states, like Texas, have more than 

20 HRRs.)  The use of state-level effects effectively knocks out spatial autocorrelation – 

perhaps not surprisingly – and the coefficient estimates are largely consistent with Columns 3-

6 in Table 2, except that here home health care spending is positively associated with survival. 

State fixed effects are therefore a somewhat blunt instrument to adjust for spatial 

autocorrelation, because state borders are somewhat arbitrary from the viewpoint of (e.g.) 

smoking rates; large states have many HRRs, while smaller states in New England contribute 

little to the regression estimates because there is so little within-state variation. 

To check the robustness of our results the same empirical analysis has been conducted 

at the county level. In Table 5 we report results of conventional OLS and spatial autoregressive 

models (with spatially lagged dependent variable and spatially lagged error term) of one-year 

survival. Results from both the conventional OLS and spatial model, confirm that overall 

spending does not appear to have a strong association with survival when controlling for 

variables such as teaching hospital, PCI within 1 day, and average home health spending. 

Although these results are likely to be weaker than for HRRs because of missing counties, there 
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is evidence of spatial autocorrelation in the error term, though this effect does not seem to 

impact on the standard errors of the estimated coefficients.  

 

V. Discussion 

 Policy-makers are increasingly concerned with whether continued growth in health care 

spending is delivering a reasonable return in terms of improved health outcomes.  Economic 

studies have found mixed results, with some studies suggesting large health gains to more 

spending, while others suggest the opposite.  In this paper, we have relaxed two common 

assumptions typically made in these studies, that (1) health care inputs can be summarized by 

a single index of “intensity,” and (2) that in studies using regional variation in utilization and 

outcomes, each region or hospital is an independent draw.  We reject both assumptions.  First, 

we find that spending alone is a poor predictor of survival for our sample of heart attack (AMI) 

patients. What appears to be most important is how the money is spent; hospitals providing 

higher rates of same-day stenting (PCI), for example, exhibit substantially higher rates of one-

year survival, while hospitals whose patients receive large quantities of post-acute home health 

care generally do worse.  One could be concerned here of reverse causality; that patients who 

are sicker require more home health care, but Doyle et al. (2017) have found much the same 

result even with the strong natural randomization of their ambulance assignment approach.  

 We also found strong evidence of spatial correlation in the residuals, even for 

AMI survival rates, which have often been used as measures of hospital productivity (e.g., 

Chandra et al., 2016; Skinner and Staiger, 2015). Using our time-series cross-section data 

structure, we estimated our model with several types of adjustments for spatial autocorrelation; 

some (but not all) coefficients shrank in magnitudes; these typically lost a “star” in statistical 

significance. As well, the use of state-level fixed effects attenuated spatial autocorrelation, 

although this approach also throws out a considerable amount of statistical power.  
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We also found that including regional measures of health behaviors, income, and most 

importantly, health inputs such as PCI reduce the degree of spatial autocorrelation. This latter 

characteristic is consistent with models of diffusion through professional contacts (Coleman, 

Katz and Menzel, 1966); Papageorgiou et al. (2007) for example found interdependence in the 

adoption of medical technology that arises when one country strategically mimics neighbouring 

health policies, for example by adopting the same vaccine to prevent the diffusion of a 

contagious disease (also see Birke, 2009 and Moen et al., 2016).   

There are several limitations to the study. First, our analysis is performed at the HRR 

or county level; a substantially more complicated model might consider spatial effects at the 

hospital or even patient level.  Second, we acknowledge the potential for reverse correlation; 

that patients who are sicker on an unobservable basis may require more spending, thus leading 

to a positive bias on the association between spending and health outcomes. However, given 

that our results are consistent for the fully-specified model whether one includes HCCs or 

excludes them is reassuring that the input measures (e.g., PCI) are not directly associated with 

unobservable health status (Chandra et al., 2019).  Finally, our measures are specific only to 

Medicare fee-for-service patients; it could be that the association between medical inputs and 

survival differ for the under-65 population, or for those in a managed care plan. However, there 

is a close association between the under-65 and over-65 population for specific treatments such 

as joint surgery (Cooper et al., 2018) and end-of-life care (Baker et al., 2008).  

A final more general question is: How generalizable are these results to other studies 

using regional variation outside of health care? For example, to what extent are regional studies 

that compare state-level policies biased by the general problem of spatial autocorrelation, as in 

Betz et al. (2019) who question the use of instrumental variables in the presence of spatial 

autocorrelation? Adjusting for autocorrelation in our application to AMI patients does not 

change the basic implications of our model that the cross-sectional association between 
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spending and survival is very small and difficult to sign especially when conditioning on key 

inputs with proven effectiveness (or key inputs that have been shown to be ineffective).  We 

don’t yet understand entirely why some regions are so much more effective in adopting new 

and effective treatments, (Skinner and Staiger, 2007), but a careful modelling of spatial factors 

affecting health care and health status could provide additional insights into the question of 

whether we’re getting our “money’s worth” in health care.  
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Figure 1: Map of One-Year Survival after Acute Myocardial Infarction, HCC Risk-
Adjusted, 2007-2011 
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Figure 2: Map of One-Year Health Care Expenditures after Acute Myocardial 
Infarction, HCC Risk-Price Adjusted, 2007-2011
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Figure 3: Plot of One-Year HCC-adjusted survival (Y) and One-Year HCC-adjusted 

health expenditure (X), time average 2007-2011 
 

 
 

Note: Each dot represents a hospital referral region. 
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Figure 4: Survival Residuals with Spatial Adjustment  
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Table 1: Descriptive Characteristics For Aggregated HHR-Level Variables 
2007-2011  

 
Note: N = 1,530 (306 HRRs over 5 years) 
 
 

     Mean Std. dev. Min Max 
 Fraction Survival (1 Year)  0.68 0.03 0.57 0.81 
 Fraction HCC-adjusted Survival 0.68 0.03 0.57 0.80 
 Mean Health Expenditure $45,685 $4,548 $34,836 $61,477 
 Fraction Teaching Hospital 0.14 0.18 0.00 0.86 
 Fraction PCI within 1 day 0.29 0.07 0.10 0.61 
 Average Home Health Spending $1,675 $892 $202 $9,345 
 Average Income  $51,904 $12,978 $29,969 $112,442 
 Fraction Smoking   0.23 0.04 0.08 0.31 
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Table 2: HRR level regressions. 

 (I)   CONVENTIONAL OLS (II) SPATIAL REGRESSIONS 
Variable Par. Std.err. Par. Std.err. Par. Std.err. Par. Std.err. Par. Std.err. Par. Std.err. 
  Dependent variable Survival non HCC-adjusted 
Health exp. -0.0400*** 0.0078 -0.0559*** 0.0079 -0.0043 0.0093 -0.0242** 0.0088 -0.0412*** 0.0087 -0.0068 0.0096 
Income     0.0218*** 0.0049 0.0195*** 0.0048    0.0229*** 0.0054 0.0215*** 0.0051 
Smoke     -0.0997*** 0.0278 -0.0522 0.0269    -0.0687* 0.0317 -0.0413 0.0290 
Teaching hospital        0.0056 0.0042       0.0015 0.0043 
PCI within 1 day        0.1040*** 0.0106       0.0980*** 0.0112 
HH care exp.        -0.0122*** 0.0018       -0.0109*** 0.0019 
Spatial lag coeff.           -0.0020 0.0131 0.0158 0.0130 0.0271* 0.0125 
Spatial error coeff.           0.3918*** 0.0330 0.3162*** 0.0350 0.1772*** 0.0377 
LM spatial lag       0.182 [0.67] 3.102 [0.08] 5.528* [0.02] 
LM spatial error       141.7*** [0.00] 73.927*** [0.00] 18.005*** [0.00] 
  Dependent variable Survival HCC-adjusted 
Health exp. 0.0087 0.0054 -0.0104 0.0074 0.0180* 0.0090 0.0078 0.0083 -0.0075 0.0080 0.0140 0.0093 
Income     0.0210*** 0.0046 0.0189*** 0.0046    0.0214*** 0.0050 0.0205*** 0.0049 
Smoke     -0.1049*** 0.0260 -0.0761** 0.0261    -0.0808** 0.0288 -0.0591* 0.0280 
Teaching hospital        0.0097* 0.0041       0.0054 0.0041 
PCI within 1 day        0.0679*** 0.0103       0.0668*** 0.0108 
HH care exp.        -0.0065*** 0.0017       -0.0055** 0.0019 
Spatial lag coeff.           0.0000 0.0126 0.0179 0.0124 0.0211 0.0123 
Spatial error coeff.             0.3348*** 0.0344 0.2259*** 0.0368 0.1732*** 0.0377 
LM spatial lag       0.081 [0.78] 2.914 [0.09] 3.633 [0.06] 
LM spatial error       104.2*** [0.00] 35.421*** [0.00] 17.025*** [0.00] 
Notes: * <= .05, ** <= .01, and *** <=.001. 
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        Table 3: HRR-level regressions. Use of the inverse of distance as spatial weights matrix 

Variable Par. Std.err. Par. Std.err. Par. Std.err. 
Health exp. 0.0022 0.0082 -0.0108 0.0073 0.0115 0.0087 
Income    0.0204*** 0.0046 0.0194*** 0.0045 
Smoke    -0.0521 0.0271 -0.0311 0.0263 
Teaching hospital       0.0065 0.0040 
PCI within 1 day       0.0558*** 0.0101 
HH care exp.       -0.0049** 0.0017 
Sp. lag coeff. 0.6575 12.9998 0.6986*** 0.1977 0.6903*** 0.1222 
Sp. error coeff. 0.6565 13.0305 0.2311 0.3963 -0.0578 0.3155 
LM spatial lag 5.3770* [0.02] 21.3138*** [0.00] 44.3145*** [0.00] 
LM spatial error 2.5414 [0.11] 7.8449** [0.01] 0.0200 [0.89] 

Notes: * <= .05, ** <= .01, and *** <=.001. HCCs included in constructing the HRR/state level data. 
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Table 4: HRR level regressions. Controlling for State dummies. 
  (I)   CONVENTIONAL OLS (II) SPATIAL REGRESSIONS 

Variable Par. Std.err. Par. Std.err. Par. 
Std.err

. Par. Std.err. Par. Std.err. Par. Std.err. 
  Dependent variable Survival non HCC-adjusted 

Health exp. -0.0077 0.0088 -0.0220* 0.0090 -0.0174 0.0109 
 

-0.0071 0.0088 -0.0214* 0.0089 -0.0174 0.0106 
Income     0.0189*** 0.0057 0.0160** 0.0056    0.0196*** 0.0057 0.0159** 0.0055 
Smoke     -0.0987* 0.0384 -0.0783* 0.0383    -0.0920* 0.0381 -0.0805* 0.0374 
Teaching hospital        -0.0032 0.0047       -0.0032 0.0046 
PCI within 1 day        0.1053*** 0.0132       0.1061*** 0.0129 
HH care exp.        0.0008 0.0032       0.0006 0.0031 
Spatial lag par. -   -   -   -0.0094 0.0228 0.0029 0.0225 0.0114 0.0219 
Spatial error par. -   -   -   0.0770 0.0434 0.0413 0.0438 -0.0279 0.0443 
LM spatial lag       0.769 [0.38] 0.082 [0.77] 0.001 [0.97] 
LM spatial error       3.705 [0.05] 0.546 [0.46] 0.088 [0.77] 
  Dependent variable Survival HCC-adjusted 
Health exp. 0.0233** 0.0085 0.0103 0.0087 0.0018 0.0105 0.0226** 0.0085 0.0104 0.0086 0.0019 0.0103 
Income     0.0117* 0.0055 0.0091 0.0055    0.0123* 0.0055 0.0088 0.0053 
Smoke     -0.1343*** 0.0372 -0.1053** 0.0372    -0.1269*** 0.0369 -0.1081** 0.0364 
Teaching hospital        -0.0005 0.0046       -0.0004 0.0045 
PCI within 1 day        0.0932*** 0.0128       0.0938*** 0.0126 
HH care exp.        0.0068* 0.0031       0.0068* 0.0030 
Spatial lag par. -   -   -   -0.0197 0.0224 -0.0066 0.0222 -0.0007 0.0217 
Spatial error par. -   -   -   0.0918* 0.0429 0.0386 0.0436 -0.0172 0.0441 
LM spatial lag       0.187 [0.66] 0.017 [0.90] 0.274 [0.60] 
LM spatial error       2.494 [0.11] 0.594 [0.44] 0.301 [0.58] 

Notes: * <= .05, ** <= .01, and *** <=.001.
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Table 5: County-level regressions. 
  

(I)   CONVENTIONAL OLS 
  

(II) SPATIAL REGRESSIONS 
  

 Par. Std.err. Par. Std.err. Par. Std.err. Par. Std.er. Par. Std.err. Par. Std.err. 

Health exp. 0.0087 0.0054 0.0098 0.0054 0.0078 0.0059 0.0097 0.0056 0.0106 0.0055 0.0074 0.0060 

Income    -0.0016 0.0041 0.0011 0.0041    -0.0019 0.0043 0.0009 0.0043 

Smoke    -0.0018*** 0.0002 -0.0015*** 0.0002    -0.0018*** 0.0002 -0.0015*** 0.0002 

Teaching hosp.       0.0137*** 0.0037       0.0124** 0.0038 

PCI within 1 day       0.0812*** 0.0119       0.0823*** 0.0125 

HH care expend.       0.0031* 0.0013       0.0037** 0.0014 
Spatial lag par.          -0.0001 0.0042 -0.0009 0.0042 -0.0008 0.0042 
Spatial error par.          0.0893*** 0.0164 0.0705*** 0.0165 0.0651*** 0.0165 
LM spatial lag       0.885 [0.35] 1.613 [0.20] 2.194 [0.14] 
LM spatial error       35.081*** [0.00] 22.340*** [0.00] 18.498*** [0.00] 

Notes: * <= .05, ** <= .01, and *** <=.001. HCCs included in constructing the HRR/state level data.  
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