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Abstract

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of

cancer-related deaths in the United States. The purpose of this study was to evaluate the

gene expression differences in different stages of CRC. Gene expression data on 433 CRC

patient samples were obtained from The Cancer Genome Atlas (TCGA). Gene expression

differences were evaluated across CRC stages using linear regression. Genes with

p�0.001 in expression differences were evaluated further in principal component analysis

and genes with p�0.0001 were evaluated further in gene set enrichment analysis. A total of

377 patients with gene expression data in 20,532 genes were included in the final analysis.

The numbers of patients in stage I through IV were 59, 147, 116 and 55, respectively. NEK4

gene, which encodes for NIMA related kinase 4, was differentially expressed across the four

stages of CRC. The stage I patients had the highest expression of NEK4 genes, while the

stage IV patients had the lowest expressions (p = 9*10−6). Ten other genes (RNF34,

HIST3H2BB, NUDT6, LRCh4, GLB1L, HIST2H4A, TMEM79, AMIGO2, C20orf135 and

SPSB3) had p value of 0.0001 in the differential expression analysis. Principal component

analysis indicated that the patients from the 4 clinical stages do not appear to have distinct

gene expression pattern. Network-based and pathway-based gene set enrichment analyses

showed that these 11 genes map to multiple pathways such as meiotic synapsis and pack-

aging of telomere ends, etc. Ten of these 11 genes were linked to Gene Ontology terms

such as nucleosome, DNA packaging complex and protein-DNA interactions. The protein

complex-based gene set analysis showed that four genes were involved in H2AX complex

II. This study identified a small number of genes that might be associated with clinical stages

of CRC. Our analysis was not able to find a molecular basis for the current clinical staging

for CRC based on the gene expression patterns.

Introduction

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of can-

cer-related deaths in the United States [1]. Among the five subtypes of CRC (adenocarcinomas,
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carcinoid tumors, gastrointestinal stromal tumors, lymphomas and sarcomas), adenocarcino-

mas are the most common (95% of all CRCs). Currently the staging of CRC, referred to as clini-

cal staging, is based on results of physical exams, biopsies, and imaging tests (CT or MRI scan,

X-rays, PET scan, etc.). The criteria of staging are based on: 1) how far the cancer has grown

into the wall of the intestine; 2) whether it has reached nearby structures; and 3) whether it has

spread to the nearby lymph nodes or to distant organs. The results of surgery can be combined

with clinical staging to determine the pathologic stages. The most often used CRC staging sys-

tem is the AJCC cancer staging manual developed by American Joint Committee on Cancer

(AJCC), based on conditions of primary tumor (T), regional lymph nodes (N) and distant

metastasis (M) [2]. The earliest stage cancers are called stage 0, then range from stage I through

IV, with additional sub-stages identified with the letters A, B and C [3].

Several genes, such as WNT, WAPK/PI3K, TGF-β, TP, have been associated with CRC. For

instance, mutations in adenomatous polyposis col (APC) gene, a tumor suppressor gene, were

found to be responsible for familial adenomatous polyposis and then further developed to

CRC [4]. MisMatch Repair system genes such as MLH1 and MSH2 gene were found to be asso-

ciated with Lynch syndrome, the most frequent form of hereditary CRC [5, 6]. Further, a

12-gene recurrence score assay has been developed as a prognostic factor in stage II-III colon

or rectal carcinoma [7–9]. Even though many genes have been associated with an increased

risk of CRC, the genetic differences across different stages of CRC have not been clearly identi-

fied. So far, only one study had assessed the gene expression levels of three candidate genes

(MMP9, MMP28 and TIMP1) across CRC stages and found no statistically significant differ-

ences based on the stage of CRC [10]. There have been no studies in the literature comparing

the gene expression levels in the entire transcriptome across CRC stages. The purpose of this

study is to explore transcriptome-wide gene expression differences across different stages of

CRC followed by gene ontology, gene set network analysis approaches based on the publicly

available RNAseq dataset in The Cancer Genome Atlas (TCGA) [11].

Materials and methods

Data acquisition

The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov/) is a joint effort between

the National Cancer Institute (NCI) and the National Human Genome Research Institute

(NHGRI) to facilitate the sharing of data and speed up cancer research [11, 12]. The Eli and

Edythe L. Broad (Broad) Institute of MIT and Harvard is a joint venture between both institu-

tions and several area hospitals (https://www.broadinstitute.org/about-us). Their “FireHose”

project ingests, aggregates, standardizes, and processes TCGA data via automated pipelines in

an attempt to accelerate analysis and discoveries (https://confluence.broadinstitute.org/

display/GDAC/Rationale).

The Broad Institute has established pipelines for processing each TCGA dataset and the

outputs from each stage of the pipeline are made available as a versioned set. Illumina HiSeq

expression data was processed by Broad Institute to output both reads per kilobase per million

mapped reads (RPKM) expression values [13] and RNA-seq by Expectation-Maximization

(RSEM) values [14] normalized to “upper quartile count at 1000”. TCGA clinical data and

expression data were manually downloaded from the Broad Institute (TCGA data version

2016_01_28) via the firebrowse.org website.

(http://firebrowse.org/?cohort=COADREAD&download_dialog=true). The code used to

download the data can be accessed here: https://github.com/indera/crc_transcriptome_

analysis.
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Data merging

Using Python 2.7.10 and version 0.19.0 of the Pandas module, the expression data from the

Broad Institute was read into a Pandas dataframe, transposed, and re-saved. The clinical data

were also transposed in the same manner. Additionally, in order to cut down on the size of the

data and number of components of interest, only a subset of the columns from the clinical

data were kept for the analysis. These included common demographic data such as patient

gender, race, ethnicity, and age; clinical data such as cancer stage, associated International

Classification of Diseases (ICD) 10 codes, presence of polyps, whether analysis had been done

for common mutations such as KRAS and BRAF; and finally, approximately 85 different ali-

quot identifiers from the TCGA dataset itself.

Matching of clinical data with expression data was performed using TCGA’s "hybridization

REF" identifier from the expression data and searching against the aliquot identifiers present

in the clinical data. Eventually, 377 patients with gene expression data from 20,532 genes were

included in the final analysis.

Differential expression analysis

Gene expression differences were evaluated across the disease stages using linear regression.

The standard deviation of the gene expression level for each gene was computed. The genes

with standard deviation of zero, which indicates no change in the gene expression, were

removed from further analysis. To select top genes that are differentially expressed across can-

cer stages, a linear regression model was performed for each gene to test the trend in gene

expression with increasing cancer stages. The analyses adjusted for age, gender and race/eth-

nicity of the patients. Genes with p�0.0001 were considered suggestive and the expression

level by cancer stages were presented for these genes. Analyses were performed using R version

3.3.1 and SAS 9.4 (Cary, NC).

Principal component analysis

In order to identify gene expression pattern of the selected CRC samples across different

stages, all the genes with p�0.001 in the linear model analysis were included in the principal

component analysis using SAS. Ten principal components (PCs) were identified and the first

two PCs were plotted according to the staging status of the CRC patients.

Gene annotation and gene set enrichment analysis

Genes with expression difference of p� 0.0001 were evaluated further in gene annotation

using DAVID [15]. Then the gene IDs and official gene names were used for further analysis.

ConsensusPathDB tool [16, 17] was then used to perform network-based and pathway-based

analyses on these top genes. ConsensusPathDB consists of a comprehensive collection of

human, mouse and yeast molecular interaction data integrated from 32 different public reposi-

tories and a web interface with a set of computational methods and visualization tools to

explore these data (http://consensuspathdb.org). This tool applies computational methods for

statistical over-representation and enrichment analysis and reports network modules, path-

ways and functional information that are significantly enriched by any given gene list. Consen-

susPathDB provides 4 types of predefined annotation gene sets: neighborhood-based entity

sets (NESTs) which includes protein-protein interactions, biochemical interactions, gene regu-

latory and genetic interactions, protein complexes, pathways (including metabolic, signaling

and gene regulatory pathways) and GO terms [16]. For computing the significance of the
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enrichment of the annotation sets with respect to user-input gene list, this tool applies Wilcox-

on’s matched-pairs signed-rank test.

Results

Demographics

The TCGA database contains clinical information for 629 patients but only 396 unique

patients have both gene expression data and clinical data. The numbers of patients with CRC

in stage I through IV were 59, 147, 116 and 55 respectively and 19 patients did not have stage

information and there were no patients in the stage 0. The mean age of these patients was

64 ± 12 years. Further, 46.4% were women, 69.2% were white, 16.2% were Black/African

American, 14.6% were Asian, American Indian/Alaska Native and of unspecified race, and

1.1% were Hispanics. From a clinical standpoint, 76.7% had colon cancer and 23.3% had rectal

cancer. The demographic and relevant clinical information of these patients stratified by CRC

stage are summarized in Table 1. The final analysis included 377 patients with clinical data

including staging information and gene expression in 20,532 genes.

Linear model for gene expression

Eleven genes had p�0.0001 in the differential gene expression analysis according to the clini-

cal staging. NEK4 gene, which encodes for NIMA related kinase 4, was differentially expressed

across the four stages of CRC. The samples from the stage I patients had the highest expression

Table 1. Demographics of patients by CRC cancer stages.

Characteristic Stage I Stage II Stage III Stage IV Total

59

(14.89%)

147

(37.12%)

116

(29.29%)

55

(13.88%)

377

(100%)

Age Mean, SD 65 ± 12 67 ± 12 63 ± 13 60 ± 13 64 ± 13

Height Mean, SD (cm) 172 ± 10.8 166.9 ± 12.8 169.0 ± 10.8 171.8 ± 10.9 169.1 ± 11.8

Weight (Kg) 83.1 ± 19.7 77.8 ± 23.3 81.4 ± 20.1 80.6 ± 17.7 80.3 ± 21.2

BMI 28.1 28.0 28.5 27.3 28.1

Sex

Female 25 72 54 24 175 (46.4%)

Male 34 75 62 31 202 (53.6%)

Vital Status

Alive 57 133 103 39 332 (88.1%)

Dead 2 14 13 16 45 (11.9%)

Race

White 43 93 86 39 261 (69.2%)

Black/African American 8 20 22 11 61 (16.2%)

Other 8 34 8 5 55 (14.6%)

Ethnicity

Hispanic or Latino 0 1 1 2 4 (1.1%)

Not Hispanic or Latino 49 121 105 47 322 (85.4%)

Other 10 25 10 6 51 (13.5%)

Cancer Type

Colon 46 119 83 41 289 (76.7%)

Rectal 13 28 33 14 88 (23.3%)

SD: standard deviation. Continuous variables were summarized as mean and SD and categorical variables were summarized as number (%).

https://doi.org/10.1371/journal.pone.0188697.t001
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of NEK4 genes, while the stage IV had the lowest expressions (p = 4.50�10−6) (Table 2, Fig 1).

Ten other genes had p value of 0.0001 in the unadjusted differential expression analysis includ-

ing two with decreasing gene expression levels in more advanced CRC stages (RNF34 and
NUDT6) and eight with increasing gene expression levels in more advanced CRC stages (LRCH4,

HIST3H2BB, SPSB3, HIST2H4A, TMEM79, AMIGO2, GLB1L and C20orf135) (Table 2, Fig 1).

Principal component analysis

Principal component analysis result indicated that the first principal component (PC1)

explained 16% of the variability, while PC2 explained 9.7% and PC3 explained 4.8% of the vari-

ability in the gene expression data in all the CRC samples. Fig 2 illustrated PC1 vs. PC2 for all

the CRC samples across four stages. The samples from these four stages do not appear to have

distinct gene expression patterns.

Gene annotation and network-based analysis

Network analysis showed that the top eleven genes map to multiple pathways such as meiotic

synapsis and packaging of telomere ends, etc. (S1 Table). Ten of these 11 genes were linked to

Gene Ontology (GO) terms such as nucleosome, DNA packaging complex and protein-DNA

interactions (S2 Table). The protein complex-based gene set analysis showed that four genes

were involved in H2AX complex II with q value of 5.72�10–5 (S3 Table). The enriched neigh-

borhood based sets analysis of these 11 genes (S1 Fig) identified CDC like kinase 2 be con-

nected with most genes (386 genes) in the neighborhood. RNF4 and RNF8 genes, in the same

family as one of the top genes (RNF34), were also well-connected with multiple genes in path-

ways. Finally, the induced network module analysis identified several genes with gene protein

interaction: HIST2H4A, HIST3H2BB, LRCH4 and NUDT6 (S2 Fig).

Discussion

Using publically available data from TCGA, this study explored the gene expression differ-

ences across four stages of CRC. We found that eleven genes showed suggestive level of evi-

dence for differential expression in a linear fashion. These genes map to multiple pathways

and were linked to GO terms. Further, several few genes were enriched in protein complexes.

However, a principal component analysis was not able to identify a molecular basis for the cur-

rent CRC staging process. This might be due to the following: 1) due to the limitation of publi-

cally available data, our study was not able to compare the gene expression data from different

Table 2. The top genes in the linear regression analysis.

Gene Gene ID Gene Full Name P (unadjusted) P (adjusted)

NEK4 6787 NIMA related kinase 4 9.00E-06 4.50E-06

LRCH4 4034 leucine rich repeats and calponin homology domain containing 4 1.00E-04 2.40E-05

HIST3H2BB 128312 histone cluster 3 H2B family member b 1.00E-04 8.90E-05

SPSB3 90864 splA/ryanodine receptor domain and SOCS box containing 3 1.00E-04 1.33E-04

HIST2H4A 8370 histone cluster 2 H4 family member a 1.00E-04 1.50E-04

TMEM79 84283 transmembrane protein 79 1.00E-04 1.71E0-4

AMIGO2 347902 adhesion molecule with Ig like domain 2 1.00E-04 1.71E0-4

GLB1L 79411 galactosidase beta 1 like 1.00E-04 2.00E-04

RNF34 80196 ring finger protein 34 1.00E-04 2.23E-04

C20orf135 140701 1.00E-04 2.40E-04

NUDT6 11162 nudix hydrolase 6 1.00E-04 3.10E-04

https://doi.org/10.1371/journal.pone.0188697.t002
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Fig 1. Top gene expression levels by CRC cancer stage.

https://doi.org/10.1371/journal.pone.0188697.g001
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CRC stages with a normal control; 2) the CRC staging system currently uses the size of lesion

for staging, not molecular basis; and 3) the principal component analysis was able to cover

only ~30% of the variance in the gene expression data. Such analysis has not been done previ-

ously in the literature.

Fig 2. Principal component 1 and principle component 2 by cancer stage.

https://doi.org/10.1371/journal.pone.0188697.g002
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Among the genes with suggestive level of significance, only a few had possible link with can-

cer in the literature. The gene with the strongest p value for differential expression by stage is

NEK4 gene, which encodes NIMA related kinase 4, a serine/threonine protein kinase required

for normal entry info replicative senescence. In cell culture, suppression of NEK4 doubled the

number of replications needed to reach senescence, reduced cellular reactions to double-

stranded DNA damage in both recruitment of repair proteins and arresting of further cell divi-

sions, and also reduced activity of the p53 tumor suppressor protein [18]. Our study suggested

that the CRC patients in the higher stages have lower NEK4 gene expression compared to

lower stages, this is consistent with the direction shown in tissue culture [18] that lower expres-

sion was associated with worse diagnosis.

RNF34 gene, which encodes ring finger protein 34, was first known and characterized as

hRFI (human ring finger homologous to inhibitor of apoptosis protein type) in 2005, was

shown to have anti-apoptotic properties [19], and later was shown to also play a role in regula-

tion of p53 via ubiquitination and subsequent proteasomal degradation [20]. Overexpression

of this gene was shown to confer the resistance to 5-fluorouracil-induced apoptosis in colorec-

tal cancer cells via activation of NF-kappaB and upregulation of BCL-2 and BCL-XL [21]. In

our study, RNF34 had lower expression in those in the more advanced clinical stages of CRC

patients. This seems indicate that more advanced CRC patients may be more sensitive to

5-fluorouacil treatment compared to patients in earlier stages, but this is outside the scope of

our study. However, it is worth noting that 5-fluorouacil is currently recommended as one of

the adjuvant chemotherapy agents for stage III and high-risk stage II colon cancer patients

[22].

HIST3H2BB and HIST2H4A, both encoding histone proteins, were also among the top dif-

ferentially expressed genes, increasing in expression with increasing cancer stages. Eukaryotic

DNA that is not currently being replicated is stored in a wrapped and coiled form around four

pairs of histone proteins that provide support for the coiled DNA. Histones are also sensitive

to post-translational modification, such as acetylation and deacetylation, which the cells use to

help regulate transcription [23]. A direct link to the role of increased histone protein expres-

sion isn’t clear, perhaps further examination of co-expression levels of histone acetyltrans-

ferases and deacetylases would suggest a link.

Members of the NUDT6 gene family exhibit behaviors that include controlling the level of

cellular metabolites and signaling compounds as well as degrading “potentially mutagenic”

oxidized nucleotides” [24]. The trend of downregulation of this gene across cancers stages

would indeed contribute to the ability of cancer cells to continue to grow, divide, and evade

normal cellular precautions.

LRCH4 gene encodes leucine rich repeats and calponin homology domain containing 4,

which is a protein that contains leucine-rich repeats at its amino terminus and that is known

to be involved in ligand binding. AMIGO2, which encodes adhesion molecule with Ig like

domain 1, is a leucine-rich repeat family member. AMIGO2 mRNA was found to be differen-

tially expressed in near half of cancer vs. normal tissue from gastric adenocarcinoma patients

[25]. In an antisense study, it was found that the inhibition of AMIGO2 expression negatively

impact tumor growth and altered chromosomal stability [25].

Our study has some limitations: 1). TCGA CRC data only included data on samples from

cancer patients, therefore the only analysis we could perform was within cancer samples and

using controls from a different source would bring too much confounding. 2) The data from

TCGA had many field with missing information, such as medication information, which may

be altering gene expression in some of the genes or loci of interest. Therefore, no meaningful

analysis can be performed with the medication data.
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In conclusion, our study identified several genes that might be associated with clinical

stages of CRC. Our analysis also suggests that the current clinical staging might not have

molecular basis according to the gene expression patterns.
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