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SUMMARY: 

The aim of the project was to produce a numerical model of the stresses 
and displacements which develop in a pre-stressed rock mass when a tunnel 
of arbitrary profile is excavated, assuming plane strain conditions. The 
resulting program, christened FESTER, is based on a two-dimensional 
elasto-viscoplastic analysis, using an implicit timestepping algorithm. 
Eight-noded isoparametric quadrilateral finite elements are used, together 
with elastic joint elements to allow relative slip between different rock 
strata, and infinite elements to represent the continuing rock mass at the 
mesh boundary. The program contains a number of features of particular 
relevance to rock mechanics applications, namely: 

 - use of a Hoek-Brown yield criterion as an alternative to the usual 
Mohr-Coulomb model; 

 - modelling of rock brittleness, and a low tensile strength; 
 - modelling of  laminated rock,  with  anisotropic properties  and 
  allowing frictional sliding along a plane of weakness; 
 - a realistic loading-by-excavation algorithm; 
 - a simple variable-dilation nonassociated plastic flow rule. 

 In addition, a powerful pre- and postprocessor package has been 
developed, which runs on an IBM PC using Halo graphics. This allows mesh 
refinement (with automatic handling of boundary conditions, loads, etc.) 
and display of deformed meshes and principal stress plots. FESTER itself 
is written in Fortran 77, and is extremely portable between mainframes. 



 



CHAPTER 1:  OVERVIEW 

1.1 Introduction 
This report describes the Fortran 77 computer program FESTER (Finite 

Element Simulation of Tunnels Excavated in Rock), which has been developed 
on an S.E.R.C./British Coal co-funded research project. FESTER is intended 
to model the plane strain deformations and stresses in the rock mass 
surrounding an underground opening. It uses a nonlinear finite element 
analysis in two dimensions; the rock behaviour is modelled by the theory 
of elasto-viscoplaeticity, so that the progress of the deformation is 
followed over a nonphysical timescale. 

In this chapter the various features of FESTER will be summarized, and 
in subsequent chapters the theory underlying the program will be explained. 
The separate pre-processor package is also described, and an appendix 
contains a user manual. 

The program is based on a very general finite element package for 
linear elastic analyses; upon this foundation the nonlinear elasto-
viscoplastic algorithm for plane strain analyses has been constructed. 
These two levels will now be described. 

1.2 Elastic analyses 
The linear elastic finite element package upon which FESTER is based, 

is FINEPACK, developed at the Department of Civil Engineering, University 
College Swansea (Naylor 1977). The basic theory, notation and program 
structure are set out in Hinton & Owen (1977). Basically, the material 
continuum is discretized by a mesh of finite elements, and for each element 
an element stiffness matrix is calculated, which relates nodal loads to 
nodal displacements. These matrices are then assembled into a global 
stiffness matrix K. Loads applied to the continuum are represented by a 
nodal load vector f, and the matrix equation 

Ku = f       (1.2.1) 
is solved, with appropriate boundary conditions, for the nodal displace-
ments u. From these displacements, the strains and stresses at the 
Gaussian integration points of the elements may be calculated. The theory 
is summarized in section 2.1. 

FINEPACK is written for analyses in one, two or three dimensions, and a 
wide range of element types are available, from the two-noded linear bar 
element to the twenty-noded parabolic brick element. In two dimensions 
there are linear and quadratic, triangular and quadrilateral elements. To 
this range has been added a five-noded mapped infinite element, which is 
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derived from the eight-noded quadrilateral element by letting one side be 
located at infinity. This is particularly useful in analysing deep-level 
excavations, where the rock mass is treated as of infinite extent. See 
section 2.2. 

Loading may be by means of point loads at the nodes, distributed 
pressures across an element side/face, and body forces acting throughout 
the volume of an element. The latter two types of distributed load are 
converted into equivalent nodal loads by the program, for summing into the 
nodal load vector f. The type of loading occurring in underground 
excavations is slightly more complicated, however. Here, the continuum is 
in a state of equilibrium prior to excavation with the loading dictated by 
the in situ stress field. Deformation then occurs when these loads are 
removed around the wall of the opening by the process of excavation. For 
linear elastic analyses identical results will be obtained by simply 
applying the body forces from zero load and zero stress, or 'turning on the 
gravity'. This is not the case in nonlinear analyses, and the method of 
excavation loading has therefore been incorporated in FESTER; see 
section 2.3. 

In linear elastic analyses the global stiffness matrix K will be 
symmetric, and advantage is taken of this in the subroutine to solve 
(1.2.1). The frontal method of solution is used, in which the matrix K is 
not fully assembled, but the assembly and Gaussian elimination processes 
are interleaved - this saves considerably on the core storage required. 
Solution techniques are discussed in section 4.3. 

The general nature of FINEPACK has been preserved as far as possible in 
writing FESTER. However, FESTER has been designed only for two-dimensional 
plane strain analyses (instead of the plane strain, plane stress, 
axisymmetric and three-dimensional analyses possible with FINEPACK), and it 
is intended that the mesh be constructed of eight-noded quadrilateral 
elements and the related infinite elements. FESTER may be extended to 
three-dimensional analyses in a subsequent project. Integration over each 
element is performed by a second-order Gauss rule, involving four Gauss 
integration points. It is at these Gauss points that the element stresses 
are evaluated once (1.2.1) has been solved for the nodal displacements. 

FINEPACK assumed isotropic linear elasticity, defined in terms of a 
Young's modulus E and Poisson's ratio v. This has been generalized to 
orthotropic elasticity, with two sets of elastic parameters applying in 
orthogonal directions; see section 3.4. This orthotropy is a common 
feature of stratified, sedimentary rocks. 

Throughout this text, the 'compression positive' sign convention for 
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Stresses and strains will be assumed. 

1. 3    Viscoplastic analyses 
The viscoplasticity theory used in FESTER is detailed in Owen & Hinton 

(1980), chapter 8; the programming notation of this text is consistent 
with that of FINEPACK. The theory is summarized in section 3.1. Once the 
Gauss-point stresses have been found from an elastic analysis, they are 
tested against a yield criterion F(σ) > 0 to determine if plastic yield has 
occurred. Where this is the case, an additional plastic strain increment 
is present, of a magnitude proportional to the extent by which the yield 
surface F(σ) = 0 has been exceeded, and in a direction determined by a 
plastic flow rule defined in terms of a stress function Q(σ) known as the 
plastic potential. The essential equation may thus be written 

    
σ
Q

F(σP
.
ε

∂
∂

><γ= )    (1.3.1) 

where < F > = F if F > 0,  and is zero otherwise. γ is a fluidity parameter 
controlling the rate of deformation. 

By discretizing (1.3.1) in time, an incremental stiffness equation 
(n)Δg(n)Δu(n)K =ˆ    (1.3.2) 

is obtained, to be solved for the displacement increments over the time 

interval from . The algorithm is given in section 3.1, but ntnttont Δ+

two classes of algorithm may be distinguished depending on the form of 
discretization employed. Writing 

      (1.3.3) ,]
)1n(

P
.)n(

P
.

)1[(nt
)n(

P
+

εθ+εθ−Δ=εΔ

taking the discretization parameter θ=0 results in an explicit algorithm, 
whereas 0 < θ ≤ 1 produces an implicit algorithm. The effect of this on 
(1.3.2) is to make  in the explicit case, i.e. at each timestep the K)n(K̂ ≡
global stiffness matrix is unchanged from the initial elastic stiffness 
matrix. This makes the solution process at each timestep much faster than 
in the implicit algorithm; the disadvantage is that the timesteps must be 
kept small for stability, whereas the implicit algorithm is unconditionally 
stable if .1θ2

1 ≤≤  
A further important characteristic of the method is determined by the 

choice of the yield function F(σ) and plastic potential Q (σ). Where these 
are identical, F = Q, the flow rule is termed associated, and in this case 
the stiffness matrix )n(K

)
 will be symmetric. For non-associated flow )n(K

)
 

will be unsymmetric, unless of course the explicit algorithm is used. 
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Because of the greater work involved in solving (1.3.2) for unsymmetric 
)n(K

)
, and the guaranteed well-conditioning of the problem when )n(K

)
= K, 

the explicit algorithm has  proved much more popular than the implicit in 
published work. An additional factor is the ease of programming: 

formation of )n(K
)

 in the implicit case involves evaluating the Hessian 
matrix of second partial derivatives of Q(σ). An important feature of 
FESTER is that it is possible to use the implicit as well as the explicit 
algorithm. 

The standard yield criteria considered in plasticity texts are those of 
Von Mises, Drucker-Prager, Tresca and Mohr-Coulomb, of which the 
last-mentioned is the most appropriate for soils and rocks. FESTER uses 
the Mohr-Coulomb criterion, as well as a criterion due to Hoek and Brown 
which was derived from extensive triaxial testing of rock samples; see 
section 3.2. 

An important feature of rock behaviour which needs to be modelled is 
brittleness, that is, a substantial loss of strength upon yield, due to 
micro-cracking. This is equivalent to a shrinkage of the yield surface 
F(σ) = 0 (see fig 1.3.1) in principal stress space, to a residual surface 

0)(RF =σ  which lies closer to the hydrostatic axis 321 σ=σ=σ . Metals 

exhibit strain-hardening, i.e. a gradual expansion of the yield surface 
related to the amount of plastic strain, and by using a negative value of 
the hardening parameter a gradual strain-softening may be modelled in both 
elasto-plasticity and elasto-viscoplasticity theory. (At this point it is 
appropriate to point out the difference between the two theories. In 
elasto- plasticity, the stress state is not permitted to exceed the yield 
surface by more than an infinitesimal amount; the algorithm is an 
iterative one, with the stress states at yielded points being reduced down 
onto the yield surface at each iteration, which continues until an 
equilibrium is reached. In elasto-viscoplasticity, the yield surface may 
be exceeded temporarily, and the stress states are gradually brought down 
over time; the timestepping algorithm replaces the iterative process of 
elasto-plasticity.) The concept of brittleness is contrary to the 
asumptions of elasto-plasticity, since the sudden shrinkage of the yield 
surface at yield would leave the stress state significantly exceeding the 
residual surface; indeed, the elasto-plastic algorithm is highly unstable 
with strain-softening (see the review in Thomas 1984). For this reason 
elasto-viscoplastic theory is used in FESTER. It is then possible to model 
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Figure 1.3.1 

brittle rock by using F(σ) in testing for initial yield, but (RF σ  in )

(1.3.1) thereafter.    This also obviates the need for any 
difficult-to-determine strain-softening relationship. This aspect is 
discussed further in section 3.4. 

The stress path followed during plastic flow, is dependent upon the 
choice of plastic potential Q (σ) in the flow rule (1.3.1). 

An associated flow rule, with Q ≡ F, is mathematically attractive, 
since in this case one can prove the existence of a unique solution to the 
general boundary value problem with ideal plasticity (Hill 1983). For 
strain-hardening materials  this may also be the case with some 
non-associated flow rules (Korneev and Langer 1984, p.93). For strain-
softening and brittle materials these theorems do not apply; the work done 
in plastic straining must be positive, however, which requires that Q (σ) is 

a convex surface with the flow vector 
σ∂
∂Q  the outward normal from the surface 

at all points, that is Tσ
σ∂
∂Q  > 0  (Preévost and Hoëg 1975). 
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It has been observed that for geotechnical materials using the 
Mohr-Coulomb yield criterion, the associated flow rule produces results 
which greatly overestimate the displacements observed in practice. For 
this reason a plastic potential of Mohr-Coulomb type has been proposed 
(Zienkiewicz and Pande 1977) in which the angle of internal friction φ is 
replaced by an angle of dilation ϕ≤≤ ψψ 0, . At one extreme, ϕ=ψ  gives 
the associated flow rule; at the other, ψ = 0 means that the flow vectors 
lie in the octahedral plane ,0321 =σ+σ+σ  so that there is zero plastic 
dilation. However, this flow rule suffers from the same drawbacks as the 
Mohr-Coulomb yield function, namely the difficulty in finding partial 
derivatives, and the presence of sharp corners on the surface which must be 
smoothed out in some fairly arbitrary way. Moreover, the flow rule tends 
to direct the stress state towards these corners in problems with axial 
symmetry (Sloan and Booker 1986, Reed 1986b). FESTER avoids these problems 
by using a simple non-associated flow rule of Drucker-Prager type; full 
details are given in section 3.3. 

A further important aspect of rock behaviour which is modelled in 
FESTER is the existence of a plane of weakness. This is modelled in two 
w a y s :  ( i )  o r t h o t r o p i c  e l a s t i c  p a r a me t e r s ,  a s  me n t i o n e d  a b o v e ;  
(ii) separate yield and no-tension criteria. Stresses are resolved 
parallel and normal to the plane of weakness, and a frictional yield 
criterion is used to limit the shear in this plane. Tensile stresses 
normal to the plane are also eliminated if they occur. The resultant 
plastic strain increments are added on to those arising in the conventional 
viscoplastic analysis. The method, described in section 3.5, is based on 
the multilaminate rock model of Zienkiewicz and Pande (1977). 

Chapter 4 discusses some special techniques involved in the implicit 
algorithm, for the accurate formation of the stiffness matrices and 
solution of the matrix equation. In this algorithm the effect of large 
displacements can be taken into account (although the theory is still based 
on small strains). 

Some numerical results are presented in Chapter 5. 
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CHAPTER 2:     ELASTICITY 

2. 1  Basic theory 

The use of the finite element method for linear elasticity problems has 
been well-described in a number of texts (e.g. Zienkiewicz 1977, Hinton and 
Owen 1977, Greenough and Robinson 1981), but will be summarized here for 
completeness. Attention will concentrate on plane strain analyses; that 
is, situations in which there is no movement in the out-of-plane direction. 
This is a reasonable assumption in the case of a long tunnel, but it is 
c lear ly  not  val id  c lose to  the head of  the  tunnel ,  where a ful l  
three-dimensional analysis would be needed. In linear elastic analyses of 
plane strain problems, the out-of-plane stress remains constant during the 
deformation, and is usually omitted from the calculations; it does need to 
be considered in plasticity theory, however, and will therefore be 
introduced at the outset, as the last component of the stress vector. 

The state of stress at any point in the material continuum is expressed 
by the stress vector 

    )zxyyx( στσσ=σ T

where  is the shear stress in the xy-plane, and XYτ zyx ,, σσσ  are the 
normal stresses (the z-direction being the out-of-plane direction; there 
are no shear stresses in the xz- and yz-planes). The corresponding strain 
vector is 

   )zxyyx( εεε=ε γ  T     

and the stress and strain are linked by the elastic constitutive D-matrix: 

    σ = Dε      (2.1.1) 

which in plane strain is written in terms of the Young's modulus E and 
Poisson's ratio ν  as 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

ννν

ν

ννν
ννν−

ν−ν+
=

−

−

−

1

)21(

1

0
000

0
01

)21()1(
ED

2
1    (2.1.2) 

Since there is no displacement in the z-direction, the displacement vector 
is simply 

u = (u v)T 

with u and v the displacements in the x- and y-directions respectively. 
The elastic strains caused by a set of displacements u are 
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x
v

y
u

xy,
y
v

y,
x
u

x ∂
∂

+
∂
∂

=γ
∂
∂

=ε
∂
∂

=ε   (2.1.3) 

where second-order terms are ignored, i.e. assuming small strains. 

If an elastic body is subjected to a set of boundary tractions t and 

body forces b, then by the Principle of Virtual Work 

  ∫∫∫ =δ−Ωδ−Ωσδε Γ
ΓΩΩ

0tdubdud TTT     (2.1.4) 

where δu, δε are the virtual displacements and strains, Ω  represents the 

body and Γ its loaded boundary. 

In the finite element method, the displacements at any point (x,y) are 

approximated as a linear combination of the nodal displacements for the 

element in which that point lies, i.e. 

u = Nd       (2.1.5) 
)e(

where 

    
⎥
⎦

⎤
⎢
⎣

⎡
=

n21

n21

N...NN
N...NN

N

is the matrix of shape or basis functions corresponding to nodes l,2,..,n 

of the element, evaluated at (x,y), and 

    
T)nvnu.....vuvu(ed 2211

)( =

is the vector of nodal displacements. Combining (2.1.3) and (2.1.5) gives 

a strain-displacement relationship 

     .    (2.1.6) 
eBd )(=ε

Using (2.1.5) and (2.1.6) in the virtual work principle (2.1.4), which 

must hold for an arbitrary set of displacements δu, gives 

 ∫ ∫∫ =Γ−Ω−Ωσ
ΓΩΩ 0dtNdbNdB TTT  (2.1.7) 

Applying (2.1.1) and (2.1.6) gives the global stiffness equation 

Kd = f      (2.1.8) 

where the global stiffness matrix K is assembled from element stiffness matrices 

,DBdBe
eK )( Ω= ∫Ω

T
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the consistent load vector is 

    f = ∫ ∫ Γ+Ω ΓΩ ,dtNdbN TT  

and d is the global vector of nodal displacements. 

2. 2     Element types 

For two-dimensional analyses, FINEPACK has provision for the following 
types of elements to be used in the mesh: three- and six-noded triangles,                     
and four-, six- and eight-noded quadrilaterals. Linear elements (three-                      
noded triangles and four-noded quadrilaterals) can only represent stress                        
and strain fields as constant over each individual element. Quadratic                   
triangular elements suffer the disadvantage that the Gauss integration                       
points lie on the element edges, where the stress field will be discon-                     
tinuous, and are thus inappropriate as locations at which to keep track of                       
the stresses in the viscoplastic algorithm (as are the nodes, for the same                 
reason). We focus attention therefore on the well-known isoparametric                      
eight-noded quadrilateral element, which is very popular in geotechnical 
applications. The element is shown in fig.2.2.1, in a general form in the                                     
xy-plane, and in canonical form in terms of the local coordinates ξ,η. 

 

(a)       (b) 

 
Figure 2.2.1 
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The shape functions associated with the element are: 

for corner nodes, 
 

)1.2.2()1()1()1(),(N

)1()1()1(),(N

)1()1()1(),(N

)1()1()1(),(N

4
1

4
1

4
1

4
1

7

5

3

1

−η+ξ−η+ξ−=ηξ

−η+ξη+ξ+=ηξ

−η−ξη−ξ+=ηξ

−η−ξ−η−ξ−=ηξ

 

and for midside nodes, 

 
)1()1(),(N

)1()1(),(N

)1()1(),(N

)1()1(),(N

2
2
1

8

2
2
1

6

2
2
1

4

2
2
1

2

η−ξ−=ηξ

η+ξ+=ηξ

η−ξ+=ηξ

η−ξ−=ηξ

 
The x and y coordinates as well as the displacements at any point in the                    
element can be expressed as a linear combination of the nodal values: 

       (2.2.2) 
∑
=

ϕηξϕ
8

1i
.i),(iN)y,x(

A further advantage of this element over the linear elements is its                  
ability to model curved boundaries, which will be useful in tunneling                     
problems. 

A 2 ×  2 Gauss integration rule is used to approximate integrals over               
the element: 

    (2.2.3) 
)n,(fwηdd)η,(f jj

4

1j
j

1

1

1

1
ξ=ξξ ∑∫ ∫

=
− −

where the weights w1 = w2 = w3 = w4 = 1.0,  and the Gauss integration                    

points are ±=ξ jj n, 1/√3 (marked by crosses in fig 2.2.1b). It is at                             
these integration points that the stresses will be evaluated.  
Infinite element 

In geotechnical applications it is common to need to model a material 
continuum which extends to infinity in one or more directions. For this               
purpose a family of mapped infinite elements has been proposed                
(Zienkiewicz, Emson and Bettess 1983), and shown to improve the accuracy of 
the solution when compared to the conventional technique of extending the              
mesh of finite elements until the boundary ceases to influence the results 
significantly. It has been successfully employed in a number of                       
applications; the particular member of this family to be described has 
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been used in conjunction with eight-noded quadrilateral elements in plane             

strain elasto-plasticity analyses by Marques and Owen (1984). It is a            

five-noded element, derived from the eight-noded quadrilateral by extending           

the side at 1+=η   to infinity; it is shown in general and canonical form 

in fig 2.2.2. 

      

 
(a) (b)   

  

Figure 2.2.2 

 
 

The mapping from x,y to  coordinates is defined by a set of mapping ηξ,

functions M1,( ηξ, ,),...,Ms ( ξ ,n) which diverge to infinity as n →1. 

Interpolation of the field variable ϕ  is still performed by the standard 

shape functions from (2.2.1) for the five nodes of the element - this is 

equivalent to assuming that ϕ  decays to zero at the infinite boundary. 

Thus, field variables are interpolated by 

       (2.2.4) 
ii ),(N)y,x(

5

1i
ϕηξ=ϕ ∑

=

but the mapping functions are used in the integration process and 

location of the Gauss-point coordinates, for example 

       (2.2.5) 
i

5

1i
i x)n,(Mx ξ= ∑

=

Thus the Jacobian matrix is formed using the mapping functions and 

their derivatives, but the B matrix is formed using the shape functions, 
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when the stiffness matrix of the element is formed by Gaussian integration 
of 

      (2.2.6) ∫ ∫− −
ξ=

1

1

1

1
ddJdetDBBK )e( ηT

The shape and mapping functions for the five-noded mapped infinite element 
are 

Mapping function    Shape function 
     

).1()1(N)1/()1)(1(M

)7.2.2()1()1(N)1/()1()1(M

)n1()1()1(N)1/()1()1(M

)1()1(N)1/()1(2M

)1()1()1(N)1/()1()1(M
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1

52
1
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2
2
1

42
1

4

4
1

33

2
2
1

2
2

2

4
1

11

η−ξ−=η−ξ−η+=

η−ξ+=η−ξ+η+=

−ξ+−η−ξ+=η−η−ξ+−ξ+=

η−ξ−=η−ξ−=

η−ξ−−η−ξ−=η−η−ξ−−ξ−=

    
This element has been added to the repertoire of two-dimensional 

elements available in FINEPACK. 
 

Joint element 
In geomechanics applications it is often desirable to model interfaces 

between rock strata and imperfections such as faults. A finite element has 
been introduced into the FESTER package to model these very situations. The 
essential property of these features is an interface which allows the two 
sides to slide relatively easily past each other. The element described 
here is essentially the same as that proposed by Goodman et al. in 1968. 
However, the derivation of the stiffness matrix is taken from   ferasch &&
(1975). This formulation has been retained here because of its simplicity, 
and because the alternatives have their own drawbacks. A different 
formulation was proposed by Ghaboussi et al. (1973) who found that the 
original Goodman version could lead to ill-conditioning of the stiffness 
matrix. However, Pande and Sharma (1979) have done some numerical 
experiments which suggest that ill-conditioning is not a real problem with 
modern high accuracy computers. The Goodman joint has a zero thickness and   
it is difficult to prevent opposite faces of the joint interpenetrating. In 
an effort to overcome this and other problems, Desai et al. (1984) have 
proposed a thin layer element that has a definite thickness. However, this 
element posesses numerical properties that vary with its aspect ratio, and 
leaves the problem of having to choose a suitable thickness for the element 
for each application. 

The  treatment  here will be restricted to a summary of the derivation of 
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the stiffness matrix for the element. More details and some of  the matrices 
written out in full may be found in Goodman et  al. (1968) and sch  fera&&
(1975). The element is illustrated in fig. 2.2.3.  The two faces of the 
element are assumed to coincide. For the moment we   assume that we know the 
normal and tangential displacements  at each node i and we write tiuandniu

them in a vector u =  We   can now obtain a vector T)tu,......,nu,tu,nu( 6211

of relative displacements 
      ∆u  = A  u            (2.2.8) 
where A is a 6 matrix given by 12×
 

    
⎪
⎩

⎪
⎨

⎧
+=−

=
=

otherwise0
,6jiif1

jiif1
jia

The (interpolated) relative displacement at any point along the element 
can 
now be obtained from the usual 1 dimensional shape functions 
 
    r(x,y)=N(x,y) uΔ          (2.2.9) 
 
where N is a 2 ×  6 matrix containing the shape functions for the point 
(x,y) and r is the vector (rn, rt) of the normal and tangential relative 
displacements. A simple stiffness matrix is now used to obtain the forces 
acting due to these displacements 

p  = K  r           (2.2.10) 
 
where 

    K  ⎥
⎦

⎤
⎢
⎣

⎡
=

t

n

k0
0k

where kn and kt are the normal and tangential stiffnesses for the joint. We 
now use the principle of virtual work. Suppose that f is a vector of nodal 
forces and that δ u is a small change in u, then, setting the internal and 
external work done equal gives 

    ∫= elements
dsuANKNAδufδu

TTTT

where is the distance along the element.  Since  is arbitrary and we Tδu
arrive at the form 
              (2.2.11) ueKf =
where  is the finite element stiffness matrix. The integration may be eK

carried out in local coordinates by transforming from global coordinates in 
the usual way. 
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In practice the expression for the finite element stiffness matrix will 
contain an extra matrix which rotates the components of the nodal 
displacements to give the normal and tangential displacements. In general 
the angle of rotation is different for each pair of nodes, and must be 
worked out from the shape mapping from local to global coordinates. When 
numerical quadrature is used to evaluate the integral it is necessary to 
use a 3 point rule in this case to avoid a singular global stiffness matrix 
resulting. 

 
2.3   Types of loading 

FINEPACK has provision for the following types of loading in two 
dimensions: 

  (i)  point loads applied at the nodes: 
(ii) surface tractions applied along the edge of an element (their  

magnitude may vary linearly along the edge of a linear element, and 
parabolically along the edge of a higher-order element); 

(iii) body forces acting over the volume of an element. 
Forces of the latter two types are converted into equivalent nodal 

loads before being summed into the global consistent nodal load vector. 
The procedure may be found in Hinton and Owen (1977). 

The deformations around underground openings typically occur by a 
process of unloading rather than loading; that is, the rock mass is in 
equilibrium under a compressive in situ stress field prior to excavation, 
and these stresses are removed around the wall of the tunnel by the 
excavation process. In nonlinear analyses it is important to follow this 
loading process rather than to start with zero stresses and then 'turn on 
the gravity'. 

In situ stresses underground are normally described by means of a 
vertical stress Vσ  (usually taken to be the cover load) and a lateral 
stress ratio Ko (usually in the range ≤2

1   Ko ≤  1), so that the horizontal 
stress  .K VoH σ=σ

The nodal loads fo consistent with a given in situ stress field  are  oσ
found by integrating over each element: 

       (2.3.1) .doB
eo

Ωσ
Ω= ∫ Tf

In FESTER the in situ stresses are prescribed by Vσ  (either a constant or 
a cover load, in which case the unit weight of soil and the depth of the 
origin below ground level are input) and K0, and the stresses at the 
element Gauss points - including the out-of-plane stress - stored in an 
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array STRSG. The integration (2.3.1) is performed element-by-element and 

the nodal loads summed into the global nodal load vector. These loads and 

internal  stresses,  with  zero  displacements, constitute  the initial 

equilibrium state. The deformations are caused by applying equal and 

opposite loads on the nodes around the tunnel wall, to represent the 

excavation process. 

In nonlinear analyses the load should be added in increments, and 

provision is made for this in FESTER, each new increment being applied when 

there  is  no  further  significant  plastic  deformation   from   the   current   load. 

As well as modelling the rock mass, it is possible to use linear  

elastic finite elements around the tunnel wall to model support mechanisms 

such as concrete lining or steel arches. (In the latter case, the plane 

strain elements will be only a rough approximation to what is essentially a 

three-dimensional structure). These elements are omitted from the initial 

stress integration process, as they do not contain in situ stresses. They 

are distinguished from linear elastic rock elements in FESTER by a special 

material type code - see section 3.6. 



18 
 
It is commonly suggested that the viscoplasticity matrix D

)
  be simplified 

to 
         (3.1.12) 11 )nH

n
tD(

n
D̂ −− Δθ+=

but it has been found in using FESTER on problems with axial symmetry that 
this simplification can give rise to numerical errors when a Poisson's 
ratio v  close to 2

1   is used;  this is because the matrix D is singular 

at v= 2
1 . 

At time tn the applied nodal loads fn and internal stresses  are in nσ
equilibrium through the equation 

        (3.1.13) ,0nnB =−Ω∂∫Ω fσT

which in incremental form is 
        (3.1.14) 0ndnB =Δ−ΩΔ∫Ω fσT

where  the change in applied load over the time interval [t,nfΔ n, ,], is 1nt +

zero for all time steps except the first within each load increment. Using 
(3.1.10) to substitute for , (3.1.14) leads to the global stiffness nσΔ
equation to be solved for the displacement increments: 
        (3.1.15) nnn vdK Δ=Δ

where  the  global  stiffness  matrix  is 

   Ω= ∫Ω dBnDBnK
)T  

and  the   right-hand-side  vector  is 
    .ndntn

vp
nDBv fΔ+ΩΔ=Δ ∫Ω ε&

)T   

Unfortunately the resulting state of stress and deformation of the 
continuum will not exactly satisfy the equation of equilibrium (3.1.13), 
because the linearized approximation (3.1.14) is used, and approximations 
have been made in (3.1.5) and (3.1.6). The simplest way to compensate for 
this is to evaluate the residual force vector: 
         (3.1.16) 111 nd

nBn +++ +Ω= ∫ fσψ T

and add this to the new applied force increment at the next step. This is 
used in FESTER; alternative approaches to the problem of equilibrium 
correction are assessed by Stricklin et al (1973). 

In essence, the viscoplastic algorithm applied within each timestep is 
thus: 
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 (i)   use the current stress state   to find  by (3.1.4), nσ n
vpε&

         at each Gauss-point; 

(ii)   hence find nK,nD
)

 and by (3.1.10) and (3.1.15);  
nVΔ

(iii)  solve (3.1.15) to find the new displacements 
            (3.1.17) nnn 1 ddd Δ+=+

(iv)  for each Gauss-point, update  the  stresses  similarly 
        using (3.1.9); 
(v)   calculate  by (3.1.16) to use in the next timestep.  1n+ψ

Full details of the computational procedure, choice of timestep length,  
criterion  for  convergence, etc.,  are  given  in  Owen  and  Hinton  (1980). 

From the foregoing theory the advantages of the explicit algorithm 
( ) can be seen. When applied to (3.1.8) and (3.1.11), the 5.1.3ub0=θ

matrix  H  is  eliminated  from  the  theory,  and  (3.1.11)  becomes 

            (3.1.18) ,DnD̂ =

so that the stiffness matrix Kn in (3.1.15) is simply the stiffness 
matrix K of the elastic analysis (2.1.8). As only the right-hand-side of 
the stiffness equation changes at each timestep, considerable savings in 
computer time can be made. 

For the implicit  algorithm,  Kn  will be symmetric only if an associated 
flow rule is used, i.e. Q = F and so a = b in (3.1.7). As already remark- 
ed, associated flow is not a realistic assumption for soils and rock. 

The disadvantage of the explicit algorithm, of course, is its 
conditional stability; that is, there is a maximum size of the timestep  tΔ
for which the method will converge. Cormeau (1975) derives limits for  tΔ
for the explicit algorithm, associated flow, φ (F) = F, and the standard 
yield surfaces to be described in the next section. In FESTER, the 
magnitude of the timestep is controlled by a parameter T which limits the 
maximum effective viscoplastic strain increment as a fraction of the total 
effective strain. This is subject to the new timestep not exceeding a 
fixed multiple of the preceding one. For full details, see Appendix and 
Owen & Hinton (1980), p.277. A further restriction on the maximum timestep 
size is introduced in section 4.4. 

 
3.2  Yield surfaces 

A general state of stress in three dimensions is defined by six 
components: 
 

.)τττ( T
YZXZXYZYX σσσ=σ
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These may be resolved in an orientation in which there are no shear 
stresses, to give three principal stresses 321 ,, σσσ . The major and minor 
principal stresses are (taking compression positive) 
    

}max{maj 321 σσσ=σ  

               (3.2.1) 
    }.,,min{min 321 σσσ=σ     

In plane strain, with z the out-of-plane direction, Txy = Ty2 = 0 and the 
three principal stresses are 

    ]τ4)([ XY
22

yxyx1 2
1 +σ−σ+σ+σ=σ  

    ]τ4)([ 2
xy

2
YXYX3 2

1 +σ−σ−σ+σ=σ          (3.2.2) 

     .Z2 σ=σ

Yield functions are drawn as surfaces in three-dimensional principal 
stress space, as in fig.1.3.1. However, the experimental determination 
of such a surface requires very complex apparatus. The usual method of 
measuring rock strength is in a triaxial test. A cylindrical rock sample 
is subjected to an all-round jacket pressure o3, and an additional axial 
pressure ( ) is increasingly applied until the rock yields. From such 21 σ−σ
a test only the portion of the yield surface intersecting the plane σ 32 σ=  

(called the triaxial plane) can be determined. A straight line approx-
imation to this curve is provided by the Mohr-Coulomb yield criterion: 

    ,cminkmaj σ+σ=σ          (3.2.3) 

see fig.3.2.1. Here, k is the triaxial stress factor, and  is the Cσ

unconfined compressive strength. They are related to the cohesion c and 
angle of internal friction   by ϕ

   .
sin1
cosc2,

sin1
sin1k C ϕ−

ϕ
=σ

ϕ−
ϕ+

=         (3.2.4) 

An alternative criterion was proposed by Hoek and Brown (1980) after 
analysing a large number of triaxial test results for a range of rock 
samples; it is 

   ,2
CsminCmminmaj σ+σσ+σ=σ         (3.2.5) 

Here,   is the unconfined comoressive strength of an intact rock sample,  
and s is a parameter 0 ≤ 1 to be estimated by the engineer, according to s≤
the degree of fracturing present in the rock mass.  The  unconfined compress-
ive strength of the rock mass is then .s Cσ  . The parameter m plays a role 
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 similar   to  that  of  the  angle  of  friction  in  the  Mohr-Coulomb  model. 
 
  

 
 

 
The location of the triaxial plane in three-dimensional principal stress 
space is shown in fig. 3.2.3, together with the hydrostatic axis   21 σ=σ
= , which is normal to the deviatoric planes (or 3σ π -planes) 
 

   ttancons321 =σ+σ+σ     (3.2.6) 
 
 

 
 

Figure 3.2.3
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Yield surfaces in three dimensions are commonly written in terms of 

stress invariants; these will first be defined, insofar as they are 
relevant. 

The first stress invariant is 

   Zyx3211I σ+σ+σ=σ+σ+σ=           (3.2.7) 

The  mean  stress  is   / 3I1, and the deviatoric stresses are then 

  .          (3.2.8) .1Ι/31
Zσ

'
Zσ,1I/31

Yσ
'
Yσ,1I/31

Xσ
'
Xσ −=−=−=

The sceond deviatoric stress invariant is 

  .2
YZ
τ2

XY
τ2

XY
τ2'

Zσ
2'
Yσ

2'
X

σ
2
1

2J +++++= ⎟
⎠
⎞

⎜
⎝
⎛          (3.2.9) 

An alternative expression for J2 which can be derived is 

      [ ] .2
yZ

2
XY

2
XY

2)Xz(2)zY(2)YX(
6

1
2J τ+τ+τ+σ−σ+σ−σ+σ−σ=            (3.2.10) 

The third stress invariant is 

  .3 '

'

'

ZYZXZ

yZYXY

XZXYX
J

σττ
τστ
ττσ

=          (3.2.11) 

A more meaningful quantity than J2  is the Lode angle θ, defined by 

    .
JJ

J
2

333Cos
22

3=θ           (3.2.12) 

The principal stresses 321 ,, σσσ  with 321 ,, σσσ  can now be 
written in terms of these invariants 

.1

1

1

I
3
1

)
3

4sin(
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)
3
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3
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2
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2
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σ

σ
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       (3.2.13) 

A full description of stress invariants can be found in Chen and Saleeb 
(1982). 
The geometrical significance of I1 J2 and θ  is shown in fig.3.2.4.  Con-
sider any point P with coordinates 321 σσσ   Then the point A on the 

1hydrostatic axis lying closest to P has coordinates  .             )1I3/
1

1I3/
1,1I3/

1(

The distance PA is ,J2 2 , and the angle P  (where Q is at (IQÂ 1  0 0)) is  6/π+θ
radians. 
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            Figure 3.2.4 
 
A  final  result  which  will  be  useful  is 

   2
12

2
3

2
2

2
1 I

3
1J2 +=σ+σ+σ         (3.2.14) 

If the Mohr-Coulomb yield criterion (3.2.3) is applied to all possible 
stress combinations, the resulting surface is an irregular hexagonal cone 
around the hydrostatic axis - see Fig.3.2.5, which also shows a cross-
section of the cone in the deviatoric plane. The sharp edges of the 
surface are at points where two of the principal stresses are equal. 
 
  

 
 
 

Figure 3.2.5 
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Substituting  for  the principal stresses in (3.2.3) from (3.2.13) gives 

the equation of the Mohr-Coulomb surface in terms of stress invariants 

 .0cos)1k(sin)1k(3[JI)1k(
3
1)(F C21 =σ−θ++θ−+−=σ      (3.2.15) 

The Drucker-Prager yield criterion has a much simpler form for F( ), σ

namely 

   pIJ)(F 12 −α−=σ        (3.2.16) 

which defines a circular cone, as shown in fig.3.2.6. Its axial symmetry 

means that F( ) is independent of the Lode angle. The parameters  and σ α

p can be chosen so that the circular cross-section in the deviatoric p 

lane fits through either the outer or the inner apices of the Mohr-Coulomb 

hexagon. 

 
Figure 3.2.6 

The other two classical yield surfaces are special cases of the above. 

The Tresca criterion is obtained from the Mohr-Coulomb by setting k = 1, 

and the Von Mises criterion is given by setting a = 0 in the 

Drucker-Prager; they are cylinders with cross-sections which are a regular 

hexagon and a circle respectively. 

Careful experiments (e.g. Hoskins 1969) suggest that the true yield 

surface for rock materials has the general shape shown in 3.2.7. 
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Figure 3.2.7 

The Mohr-Coulomb hexagon is a reasonable approximation to the cross-

sectional shape of this surface, but the sides of the surface should be 

curved, especially at low stresses, as in the Hoek-Brown criterion 

(fig.3.2.2). It is therefore proposed to extend the Hoek-Brown criterion 

(3.2.5) to three-dimensional  stress  space,  giving  a  surface  shown in 

fig.3.2.8.

 

Fig.3.2.8
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If a yield function F(o) is to be of use  in  the viscoplasticity 
algorithm with brittle plastic or strain-softening material, it is 
necessary that F(σ) > 0 when evaluated at any point outside the yield 
surface F(σ) = 0, and that the magnitude of F should be a measure of the 
distance from the point to the surface. This condition will be satisfied 
if F has the form 
    of)(f)(F −σ=σ         (3.2.17) 

where fo is a constant indicating the strength of the material, and f(σ) 
does not involve the strength. Then any point outside the yield surface 
would  lie  on a related surface with the same f(σ) but a greater strength  

.of*of >  
The Mohr-Coulomb surface (3.2.15) is clearly of this form; it may be 

written  more  simply  in  terms  of  principal  stresses  from  (3.2.3)  as 

         csminkmaj)(F σ−σ−σ=σ      (3.2.18) 

where the parameter s, 0 ≤ s ≤ 1, has been introduced to allow for the 
reduced strength of the fractured rock mass in situ, as compared with the 
strength of a rock sample measured in a triaxial  test.  (British Coal 

currently uses a similar parameter, namely writing cf
1 σ  instead of .cs σ  

The choice of s is made here for consistency with the Hoek-Brown model. 
See  also  section  3.4,  where  the  concept of brittleness is introduced.) 

The Hoek-Brown criterion (3.2.5) is not so readily transformed, but by 
solving for  the yield surface may  be  written  (Reed  1986a) 2csσ

    .csmincm2)minmaj()(F σ−σσ−σ−σ=σ     (3.2.19) 

Note  that cσs   is  the  unconfined  compressive  strength   (fig .3.2.2). 
Other yield functions have been proposed by Kim and Lade (1984), and 

Matsuoka and Nakai (1974) to produce curved surfaces as in fig.3.2.7, but 
these do not satisfy the above condition on F(σ); Burd (1986) has diagrams 
of  the 'extraneous'  surfaces  F (σ) =0  lying above the main yield surface. 

A general criterion used by Zienkiewicz and Pande (1975) is 

        (3.2.20) 01
2

2
2 PPq)(F α−α+α−=σ

where 

.IpandJ
JJ2
J33

)1()1(
2
1q 12

22

3 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−γ−+γ

γ
=  
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This has not been used in FESTER for practical reasons; the four 
material parameters γααα ,,, 210  would require extensive and sophistic-
ated testing for their measurement, and this is not a practical possibil-
ity especially given the difficulty of taking representative core samples 
from an underground rock mass with large in situ stresses. 

In FESTER the emphasis has been on models with a minimum of material 
parameters, which should have physical significance and be easily measured 
or estimated. For this reason the two rock models which have been employed 
are: 

 (i) the Mohr-Coulomb yield surface (equation (3.2.18), figure 3.2.5); 
(ii) The  Hoek-Brown  yield  surface  (equaiton  (3.2.19),  figure  3.2.8). 

So far, the discussion has assumed ideal plasticity, that is, the yield 
surface remains fixed throughout the deformation. The question of brittle-
ness and strain-softening, in which there is a sudden or gradual loss of 
strength, is dealt with in section 3.4. First, however, we discuss the 
choice of flow rule. 

A good recent review of the experimental and theoretical aspects of              
soil  modelling  is  given  by  Dyer  et  al  (1986). 

 

3.3 Flow rules 
The flow rule (3.1.4) is defined by the choice of plastic potential 

function Q(σ). Prévost and Höeg (1975) have shown that for strain- 
softening materials, Q(σ) must be a convex surface, as is required for F(σ) 
in ideal plasticity. Hence, we may choose a plastic potential from the                  
range  of  functions  described  in  the  previous  section. 

The flow rule is associated if Q ≡ F.  It may be termed 'fully non-

associated' if the flow vector 
σ∂

∂
=b  lies in  the  deviatoric  plane IQ

1 =     

constant. In this latter case, it follows from the definition of volumetric 
strain.  
   (3.3.1)zεyεxεvε ++=   

and the flow rule (3.1.4) that the volumetric plastic strain increment is 
zero, i.e. there is no plastic dilation of the rock. Such a fully non- 
associated flow rule predicts displacements which are of the order observed 
in practice. 

A flow rule which has been widely used in conjunction with the Mohr-
Coulomb yield criterion, is obtained by replacing the angle of internal 
friction φ with an angle of dilation ϕ≤ψ≤ψ 0,  in defining Q(σ). 
Thus, at the one extreme ψ = φ we have an associated flow rule, while at 
the other ψ = 0 gives a Tresca surface for Q(σ) and the rule is fully a 
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non-associated. In fig.3.3.1 the cross-section of the yield surface in the 
deviatoric plane is shown, together with a field of flow lines indicating 
the direction of b at points outside the surface. A generic Q(σ) is 
drawn in dashed lines; for the case ψ = 0 its cross-section is a regular 
hexagon. 

This approach is not followed in FESTER, for a number of reasons. 
Firstly, there is the question of the singularities at the corners of the 
hexagon, and the resultant sudden change in direction of b along lines 
emanating from these corners. Formulae have been proposed for 'smoothing 
off' these corners (e.g. Sloan and Booker 1986), but these of necessity 
introduce new parameters. The problem is compounded because the flow rule 
tends to direct the stress state precisely towards these corners, 
especially in problems having axial symmetry. Reed (1986b) has shown how 
in the axisymmetric problem of a circular tunnel in an infinite rock mass, 

 

 
    (a)        (b) 

Figure 3.3.1 
an inner plastic zone arises in which θσ=σz . Koiter (1953) shows how           

these singularities may be handled in plasticity theory, namely as the 
intersection of two yield surfaces, with contributions to the flow rule 
from each surface, but it is arguable whether 'smoothing off the corners' 
approaches this in the limit. 

A final, pragmatic reason for not using the Mohr-Coulomb-type flow 
rule, is the complexity of forming the Hessian matrix of second partial 
derivatives of Q(σ), required in (3.1.7), especially when the function is 
described in terms  of  stress  invariants,  i.e. (3.2.15). 
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In FESTER the plastic potential is chosen independently of the yield 
function; the function chosen is that of Drucker-Prager, equation 3.2.16. 
Since only derivatives of Q(σ) are used in the viscoplasticity algorithm, 
the constant term may be omitted and the function written 

 

                

Figure 3.3.2  
The generic surface is a circular cone, shown in fig.3.2.6, and the 

resulting flow field in the deviatoric plane is shown in fig.3.3.2; there 
is now no problem of singularities. The flow vectors act towards the 
hydrostatic axis. This is similar to the flow rule used in critical state 
theory, where the flow in the strain-softening part of the curve is towards 
the hydrostatic p-axis (Schofield and Wroth 1968, p.150). 

This flow rule is used with the Mohr-Coulomb as well as Drucker-Prager 
yield surface. A fully non-associated flow rule is obtained by setting the 
dilation parameter α = 0 in (3.3.2).  There is no value of a which will 
give associated flow for the Mohr-Coulomb model, but an upper limit on α   
is 

            
)2k(3

1k
)sin3(3

sin2
max

+
−

=
ϕ−

ϕ
=α           (3.3.3) 

in which case Q(σ) generates a family of cones with the same apex angle as 
the yield surface; in the deviatoric plane the Drucker-Prager circle coin- 
cides with the outer apices of the Mohr-Coulomb hexagon. The performance 
of this flow rule is discussed in Reed (1988b). 
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For the Hoek-Brown model, a similar simplified flow rule may be con-
structed, in which the plastic potential Q(σ) is independent of the Lode 
angle θ (i.e. it is a volume of revolution around the hydrostatic axis), 
but has a curved profile in the triaxial plane matching that of the 
Hoek-Brown surface. It is obtained by writing (3.2.19) in terms of stress 
invariants, evaluating F(σ) at the angle θ=0 (giving a 'mean surface' 
between the inner and outer apices), omitting the strength constant, 
scaling and introducing a variable dilation parameter α. This produces 

   )I
3
1J(cJ)(Q 122 −ασ+=σ         (3.3.4) 

where m4
1=α  for 'quasi-associated flow', and α = 0 for zero plastic              

dilation  (in  which  case  the  rule  is  equivalent  to  3.3.2). 

The derivatives of Q(σ) are easily found, and are set out in section               
4.1. A  similar  surface  has  also  been  used  by  Pan  and  Hudson (1988). 

3.4   Brittleness and strain-softening 
Thus  far  in  this  section  it has been assumed that the yield surface          

F(σ) remains constant throughout the deformation. In practice, rock does 
not have this ideal plastic nature, but instead shows a rapid drop in 
strength upon yield. FESTER models this behaviour by using different 
material parameters in testing for initial yield and for the subsequent 
viscoplasticity  algorithm. 

Thus, for the Hoek-Brown model, initial yield is tested using (3.2.5) 
with the virgin parameters m, s, but the yield surface (3.2.20) is defined 
by residual parameters m', s'. This is consistent with the way Hoek (1983) 
proposed modelling brittle plastic rock with this criterion. The unconfin- 
ed compressive strength  is that measured for a small rock sample con-cσ
taining no joints. The parameters s and s' are in the range 0 ≤ s' ≤ s < 1 
and indicate the degree of jointing in the rock mass before and after 
failure. The corresponding unconfined compressive strengths of the rock  

mass are then Cσ
's  and, Cs σ  found by setting 0min =σ  in (3.2.5). 

In FESTER this dea has been carried over to the Mohr-Coulomb model, 
using (3.2.18): 

   csminkmaj)(F σ−σ+σ=σ  

for initial yield, with residual parameters k' and s'. 

This elastic-brittle plastic model assumes that the failure mechanism 
is a catastrophic micro-cracking in the rock, causing the sudden loss of 
strength.  If a  gradual drop in strength is  required,  governed by  the 
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extent of the plastic deformation, then an elastic-strain softening model 
must be used. Strain-softening models were originally developed by using a 
negative value for the strain-hardening parameter in the elasto-plastic 
algorithm used for strain-hardening materials such as metals, but this has 
considerable problems with numerical stability (Thomas 1984). This is a 
major reason why the elasto-viscoplastic algorithm was used in FESTER. 

For a strain-softening model, the general form of the yield function in 
(3.2.17) is altered by introducing a dependence upon a strain-softening 
parameter K: 

    )K(f)(f)k,(F 0−σ=σ           (3.4.1) 

The value of K depends on the extent of plastic strain; this is conven-
iently measured by the generalized plastic strain, pε . For example a para- 

bolic drop in strength from c'stocs σσ ,  as  shown  in  fig . 3.4.1, 
 

 
would be given by 

   c
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⎤
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⎢
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⎡

ε+
ε+

=    (3.4.2) 

where A is parameter controlling the rapidity of the loss of strength. 
This model is  used  by  Thomas  (1984). 

It will be seen that the brittle plastic model used in FESTER is an 
extreme case of (3.4.2), with A = 0. 

3.5   Plane of weakness 

The final aspect of rock behaviour which is modelled in FESTER is 
anisotropy, more specifically the presence of a plane or orientation of 
weakness. This anisotropy is introduced in two ways: orthotropic elastic 
properties, and extra plastic yield conditions. 

The plane of weakness arises from the laminated nature of the rock 
mass, created during sedimentation. In plane strain situations it extends 
in the out-of -plane direction, and at an angle P to the x-axis in  the 
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xy-plane.    Fig.  3.5.1  illustrates  such  a  rock  stratum. 

 
    Figure 3.5.1 

A sample cut from this rock will exhibit different elastic behaviour 
depending upon the direction of loading. This orthotropic elasticity is 
defined by five parameters: E1, ν1, are the Young's modulus and Poisson's 
ratio in the direction parallel to the plane of weakness; E2, ν2 are the 
corresponding properties in the direction normal to the plane, and G is the 
shear modulus. The orthotropic elastic constitutive matrix D for plane 
strain, replacing that for isotropy in (2.1.2), is (Zienkiewicz 1977): 

ΤTDTD '=     (3.5.1) 

where 
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Figure 3.5.2 

D' is the D-matrix in the x'y' coordinate system oriented with the 
plane of weakness (fig.3.5.2); it is transformed to the cartesian D-matrix 
by (3.5.1), where the transformation matrix T is 
  

            (3.5.3) 
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02sinβsinββ2sinβ2cos
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Recall from section 2.1 that in this notation the out-of-plane stress 
and strain are located in the fourth row of the stress/strain vectors. 

Resolving these cartesian stresses in the x'y' coordinate system gives nσ  

(the stress normal to the plane of weakness), tσ  (the stress tangential to 
the plane) and shear stress τ as 

               (3.5.4) 

.xy)sin2(cos)xycos(sin

xycossin2y
2sinx

2sint

xycossin2y
2cosx

2sinn

τββ+σ−σβ=τ

τββ−σβ+σβ=σ

τββ−σβ+σβ=σ

We now consider the circumstances in which sliding will occur along the                                 
planes of weakness. By the theory of limiting friction, sliding occurs if 

jcjtann|| +ϕσ≥τ       (3.5.5) 

where  is an angle of friction and cjϕ j a cohesion associated with the 

jointing.  A further criterion is that the rock cannot support a tensile 
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Stress   across  the  joints, i.e.  the  rock will break if 0n <σ . 
In FESTER these two criteria provide additional yield functions, which 

with their own flow rules can also contribute to the plastic strain rate. 
The no-slip criterion has yield function F1,(σ) and plastic potential Q1,(σ) 
defined by 

               (3.5.6) 
jtann||)(Q

cjtann||)(F

1

j1

ψσ−τ=σ

−ϕσ−τ=σ

where  is an angle of dilation. The no-tension criterion has yield            jψ

function F2(σ) and plastic potential )(Q2 σ : 

    .n)(Q)(F 22 σ−=σ=σ          (3.5.7)
 The conventional flow rule is used, as in (3.1.4): 

   2,1iiQ
)iF(j

i
vp

.
=

σ∂

∂
>Φ<γ=ε          (3.5.8) 

where jγ  is a fluidity parameter for the jointing. 

We will say that the rock has cracked if either of these flow rules 
become active. This cracking process is independent of the plastic yield  
of the rock mass described in previous sections - that is, at a given 
Gauss-point the rock may have cracked but not yielded plastically, or vice 
versa, or neither, or both. The way in which this cracking model (which is 
based on the multilaminate rock model proposed by Zienkiewicz and Pande 
1977) is incorporated into the viscoplasticity algorithm, is described in 
the next section. 

3.6  Models used in FESTER 
We conclude this chapter by filling in the details of the viscoplastic- 

ity algorithm in FESTER. The existence of more than one yield surface is 
easily handled; each active flow rule of the general form 

   
σ∂

∂
>Φ<γ=ε 1Q

)iF(iii
vp

.
        (3.6.1) 

contributes a viscoplastic strain increment. The total viscoplastic strain 
rate is then 

             (3.6.2) ∑ε=ε
i

i
vp

.i
vp

.

and (3.6.1) and (3.6.2) replace (3.1.4) in the viscoplasticity theory. The 
other change is that the matrix H in (3.1.7) now becomes a sum of matrices 
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Hi from each active flow rule. It is usual to choose the functions Φ(F) in             
the flow rule as 

    
o

o

f
f)(f

)F(
−σ

=Φ           (3.6.3) 

when F(σ) has the general form (3.4.2). However, for rock strata with very 
low residual strength, fo will be close to zero, and (3.6.3) will cause 
very large plastic strain increments, giving rise to numerical instability. 
Therefore, it is the practice in FESTER to use 

Φ(F) = F .             (3.6.4) 

The drawback to this is that Φ is not dimensionless, and thus the viscosity 
parameter  γ  must  be  scaled  according  to  the  units  of  stress  being  used. 

A final yield criterion has been added in FESTER, partly to model 
realistic rock behaviour and partly to cure a numerical instability which 
may arise. Even isotropic rock with no planes of weakness can support only 
a very limited tensile stress; it may be unrealistic for stress states to 
lie on parts of the yield surfaces in figs.3.2.5 or 3.2.8 where the minor 
principal stress is negative. In FESTER a small negative tensile strength 

tenσ may be specified, and if tenmin σ<σ  then the small-tension flow rule 

defined by 

   minten)(Q)(F σ−σ=σ=σ           (3.6.5) 

with Φ(F) = F and the same fluidity parameter as for plastic yield, becomes 
active. 

This flow rule may come into play even in problems where the stresses 
do not theoretically become negative, if there is a large drop of strength 
on yield, a low residual strength and an unsupported excavation. In this 
case, when at a certain time a new rock element away from the excavation 
yields, there is a large stress redistribution which can push elements 
close to the rock face, where all the stresses are low, into negative parts 
of the stress space temporarily. The numerical method will diverge if a 
stress state finds itself in a deviatoric plane behind the apex of the 
yield surface; a Drucker-Prager flow rule with low dilation will not move 
such a point back to the surface. This small-tension criterion is used by,     
for example, Cramer and Wunderlich (1981). 

To summarize, then, there are a total of nine types of material model 
used  in  FESTER: 

1. Linear elastic structure (no in situ stresses), isotropic. 

2. Linear elastic rock, isotropic. 

3. Linear elastic orthotropic rock. 

4. Viscoplastic isotropic rock with Mohr-Coulomb yield. 
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5. Viscoplastic isotropic rock with Hoek-Brown yield. 

6. Viscoplastic orthotropic rock with Mohr-Coulomb yield. 

7. Viscoplastic orthotropic rock with Hoek-Brown yield. 

8. Viscoplastic isotropic rock with Drucker-Prager yield. 

9. Elastic joint element. 

The Drucker-Prager material type is available for theoretical studies- 
with this material it is possible to have associated flow, with the flow  
rule (3.3.2). 

Details of the material parameters required for each model are given in 
the Appendix. 
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CHAPTER 4 IMPLICIT ALGORITHM;  PRACTICAL ASPECTS 

4.1 Calculation of H 
In the implicit algorithm, as described in section 3.1, it is necessary 

to form the viscoplasticity matrix , at each element integration point nD̂
and at each timestep.  is defined in (3.1.11), which can be nD̂
generalized to 
              (4.1.1) ∑ −− Δθ+=

i
)iHtD(D̂ 11

where more than one flow rule is active. (The superscript indicating the 
n'th timestep is now omitted, for convenience). For each flow rule the 
matrix 
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must be formed (equation 3.1.7). For completeness, some of these 
expressions will now be given, in forms suitable for computation. 

The Drucker-Prager plastic potential (3.3.2) is used with the flow rule 
for the rock mass. Performing the differentiations gives the following 
results for 
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For Hoek-Brown materials, using the plastic potential (3.3.4), the 
corresponding derivatives are 
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with  A,  c,  m  defined  as  before. 

The Mohr-Coulomb and Hoek-Brown yield functions are defined in (3.2.19) 
and (3.2.20) in terms of the major and minor principal stresses. The                 
vector  a  is  found  from  the  chain  rule: 

  .maj
maj

Fmin
min

FFa
σ∂

σ∂

σ∂
∂

+
σ∂

σ∂

σ∂
∂

=
σ∂
∂

=          (4.1.5) 

The principal  stresses  are  defined  in  (3.2.1) - (3.2.2),  and  their 
derivatives are 

   T)0,r,p1,p(1 −=
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          (4.1.6) 
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There will be a sudden change of direction in a when two principal 
stresses are equal, but as the flow rule does not direct stress states 
towards these corners of the yield surface it has not been found necessary 
to introduce any smoothing here. 

For the small-tension yield criterion (3.6.4), the first and second 
derivatives of  are required. The first derivatives are given above, minσ

and  the  Hessian  matrix  of  second derivatives is 

   T
T

dd
)2yx(

2a
3

3σ−σ+σ
=

σ∂
∂       (4.1.7) 

where         if 
T)o,yx,xy,xy(d σ−σττ−= ,min 3σ=σ

 

and    
0a

=
σ∂

∂ T

 if zmin σ=σ
(which is unlikely) . 

The cracking flow rules are given in (3.5.6)-(3.5.7).  Notice from these 
and  (3.5.4)  that  each  F (σ)  and  Q (σ)  is  a  linear  combination  of  the  stress  
components,  so  that  the  first  derivatives  a  and  b  will  be  constant   vectors, 

and the Hessian matrix .0
Tb
≡

σ∂
∂  
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4.2   Large displacements 
The strain-displacement relationships (2.1.3) are in fact approxi-

mations ignoring second- and higher-order terms in e, and for this reason 
the theory describved in the preceding chapters is based on the assumption 
of small strains. 

A further assumption that has been implicit in the theory is of small 
displacements; this is assumed when the Cartesian derivatives of the shape 
functions (terms such as ∂Ni/∂x) are evaluated for the matrix B in (2.1.6). 
This process uses the nodal coordinates x(e) which has been assumed fixed, 
even though the nodes are being displaced. The assumption can be avoided 
by adding the current nodal displacements d(e) to x»e) before using this 
vector in forming the matrix B. Then B will no longer be constant, but 
will change slightly at each timestep. This is not a problem in the 
implicit algorithm, since here D̂  is also changing, and the stiffness matrix 
is reformulated at each timestep. 

This refinement has been tested in FESTER, and has a small effect on 
the results; for example, in an axisymmetric tunnel problem using the 
Hoek-Brown criterion, a wall displacement of 16.366mm with constant B 
became 16.356mm when the effect of the displacements was taken into 
account, and the stresses close to the tunnel wall dropped slightly. (The 
tunnel radius was 4m.) 

However, this minor modification can produce unexpected results if a 
new user is experimenting with the program on a simple linear elastic 
problem, for which he knows the analytic solution.  As the effect of the. 
refinement is small, it has been decided to avoid potential confusion and 
omit the refinement. 

Ideally, of course, large strain theory should be included in FESTER, 
and this major modification will be made in a future version of the 
program. 

4.3   Solution techniques 
This section briefly mentions the method of solving the global 

incremental stiffness equation (3.1.15). The matrix Kn is large, sparse 
and banded. It will be symmetric if either 

     (i)   an elastic analysis is being performed; 
          (ii) the explicit viscoplasticity algorithm (with constant B) is used;         
or      (iii)  only  associated  flow  rules  are  used,  so  that  b  =  a  in  (3.1.7). 

In FESTER, the initial elastic solution is performed using the original 
FINEPACK routine FRONT. This is written for a symmetric matrix K (so that 
only half the matrix need be stored) and uses the frontal  solution  method. 
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which is a variant of Gaussian elimination in which the assembly of K from 
the element stiffness matrices k )e( is interleaved with the elimination 
process; the advantage of this is that the whole assembled matrix does not 
need to be held in store. This routine also keeps a record of the elimin-
ation process on scratch files, so that much of the work can be avoided in 
any re-solutions using the same stiffness matrix with a different right-
hand-side. Matrix elements are held in a one-dimensional array GSTIF, so 
that element kij is linked to GSTIF(NFUNC), where 

         (4.4.1) )IJ(.I/2/)JJJ()J,I(NFUNC * ≥+−=

The ordering of this storage is illustrated in fig.4.4.l(a). 
If the explicit algorithm (0=0) is employed, this subroutine is used in 

the subsequent timestepping, and the extra efficiency in re-solutions is 
taken advantage of. 

For the implicit algorithm, subroutine FRONT has been generalized to 
produce a routine AFRONT which uses the frontal method on an unsymmetric 
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 Fig. 4.4.1 
 
matrix K. The ordering in GSTIF used to hold the upper and lower triang-
ular parts of K is shown in fig.4.4.l(b); this is achieved by the function 

}.0,ij{MAX)1}j,i{MAX()j,i(NFUNC 2 −+−=         (4.4.3) 

There is no partial or full pivoting, so it is possible that numerical 
errors could arise in the solution if K is ill-conditioned. A check on 
this is provided by printing out the largest and smallest pivots encounter- 
ed during the solution process; a large difference in the magnitudes of 
these would suggest that the results from the program were suspect. 

There has recently been much work done on using iterative solution 
methods such as conjugate gradients in finite element computations. It is 
planned to investigate the use of an iterative method applicable to 
unsymmetric matrices to make the implicit algorithm in FESTER more 
efficient for large problems. 
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4.4   Undershoot 

In the conventional viscopiasticity algorithm, the final solution 
obtained will be dependent on the timestepping regimen that is used; 
however, the solutions will approach that for an elasto-plastic model (in 
which stress states doe not exceed the yield surface) as the individual 
timesteps are progressively reduced in size (or, equivalently, as the 
viscosity parameter y is reduced). This is because any individual visco-
plastic strain increment  can be made arbitrarily small as n

vpεΔ .0t n →Δγ            

(see equations 3.11.4, 3.1.8). This is not the case with the brittle rock 
model, where there is a minimum finite distance which a stress state must 
lie outside the residual yield surface when it first yields plasticically. 
In practice this can cause the phenomenon of 'undershoot', in which yielded 
stress states move inside the yield surface to the elastic region during 
the timestepping, instead of coming to rest on the surface, and this cannot 
be cured by taking smaller timesteps. The technique used in FESTER to 
counter this problem is to allow 'reverse plastic straining' - that is, the 

flow rule 3.1.4 is used with )F(φ  = F even when  lies in the elastic 
nσ

region F( ) < 0, if yield has already occurred. This gives a 'negative’ σ

plastic strain rate   which in (3.1.10) will produce a stress increment to 
n

VP
−ε

move  a back up to the yield surface. A similar problem occurs in elasto-
1n+σ

plastic algorithms where Gauss points unload and become elastic in the 
course of the iteration. Unloading is regarded as non-physical behaviour 
and steps are often taken to reverse it in some way (Holt and Parsons 
1979). 

It was found necessary to introduce an extra parameter when reverse 
plastic straining was introduced. In this case, the timestepping is 
terminated when all plastic straining has finished, and this occurs when 
all stress states actually lie on the yield surface (rather than on or 
inside it). If the timestep is allowed to become increasingly large, 
oscillation will occur and the termination criterion may never be 
satisfied. The solution is to impose an upper limit on the timestep chosen 
by the timestepping algorithm (Owen and Hinton 1980, p.277). This maximum 
timestep is often not much bigger than the initial timestep but, paradox-
ically, decreasing the maximum can improve convergence. In fact, there is 
an optimum value of maxtΔ  for a given problem, to obtain the fastest 

convergence. 
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CHAPTER 5.  RESULTS (1) 

This chapter will illustrate the numerical accuracy of the method by 
applying it to problems with axial symmetry. These results were published 
in Reed (1987). The measures to prevent undershoot described above (§4.4) 
were not used in these analyses. 

The axisymmetric tunnel problem may be defined as follows: a tunnel of 
circular cross-section, radius r0, is excavated in an infinite rock mass 
which has a hydrostatic in situ stress field of magnitude q in all 
directions. Because of the axial symmetry, the problem may be analysed in 
one dimension. If it is assumed that σz remains the intermediate principal 
stress, and if an elastic-brittle plastic rock model is used, then there 
are analytic solutions for the tangential stress θσ  and radial stress rσ  

(which are the major and minor principal stresses respectively) using both           
the Mohr-Coulomb and the Hoek-Brown yield criteria. Reed (1986a,b) has 
proposed a one-dimensional finite element formulation which is able to use 
the Drucker-Prager flow rule, among others, to predict radial displacements 
as  well  as  stresses. 

The plastic region in the solution consists of an annulus around the 
tunnel, from the tunnel radius r0 to an interface at r = R; outside this 
zone the rock remains elastic. For a brittle plastic rock the tangential 
stress is discontinuous across the interface, although the radial stress is 
continuous. The situation is sketched in fig.5.1. Analytic and numerical 
results are now summarised for two problems; one with a Mohr-Coulomb rock 
model, and the other using the Hoek-Brown model. In both cases the tunnel 
radius r0 = 4 metres, and the elastic parameters were E = 20 GPa and             
v = 0.4. 

(i)   Mohr-Coulomb problem. 
  The material properties used were:  

   σ c = 40 MPa, s = 1.0, s' = 0.25, k = k1 =3 
    so that the drop in strength at yield was from 40 MPa to 20 MPa.  

  The in situ stress q =  40 MPa. 
A  finite  element  mesh of 18 elements was used, shown in fig.5.2, with 

only one quarter of the continuum being analysed. Infinite elements were 
used at the outer boundaries of the mesh. The axial symmetry of the mesh 
means that there are sets of six Gauss-points having the same radius, which 
should all have the same major and minor principal stresses; any random 
errors introduced in the algorithm by the evaluation of D

)
 will be shown up.  

Five load increments were used, and the results are shown graphically  
in fig.5.3. Graph (a) shows the original (dashed line) and deformed (full 
line)  mesh,  using  a  distortion  factor  of  30.  Graph  (b)  indicates  the 
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Fig. 5.2 (showing typical original and 
deformed meshes)
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magnitude and direction of the major and minor principal stresses in the 
xy-plane; very good axial symmetry is obtained. Stresses are evaluated at 
the Gauss-points of each element; those points indicated by circles have 
yielded plastically during the deformation. Stresses at the same radius 
differed by less than 0.05%. Comparison with the analytic stress solution 
is made in fig.5.4, with stress plotted against radius; again there is 
excellent agreement,  
(ii) Hoek-Brown problem. 

The same problem geometry and element mesh were used, and the same 
elastic  parameters.  The  plastic  material  parameters  were: 

,1'm,5m,01.0s,1.0s,MPa50 '
C =====σ  

so   that  the  strength  dropped  from  15.8 MPa to 5 MPa on yield. 
The  in  situ  stress  was q = 20  MPa. 
 Results from the finite  element  solution, in which the load was added 

in six increments, are shown in fig.5.5. Excellent axial symmetry is again 
obtained. The principal stresses are compared with the analytic solution 
in fig. 5.6. Here it is seen that there is a small overshoot in the stress 
reduction for yielded Gauss-points. This is due to the high curvature of 
the failure surface; more accurate results would be obtained by using a 
smaller value of the fluidity parameter y. The minor principal stresses at 
Gauss-points closest to the tunnel wall have become negative during the 
deformation, and the 'no-tension' criterion  brought  into  play. 

In both problems the predicted displacements can be compared with the 
solutions from a one-dimensional finite element analysis using a much finer 
mesh (with 16 quadratic elements between r = 4m and r = 6m) . In the Mohr-
Coulomb problem, this one-dimensional analysis gave a tunnel wall displace-
ment of 17.907mm radially inwards, whereas FESTER predicted an inward 
movement of 17.795mm. In the Hoek-Brown problem, the inward movements of 
the wall were 13.661mm and 13.519mm respectively. This is excellent 
agreement considering that such a coarse mesh was used in FESTER. 

In the following results, the axisvmmetric finite element mesh was 
retained, but the rock was orthotropic, with Young's moduli of 15 GPa in 
the horizontal direction and 10 GPa vertically, a shear modulus G = 7 GPa 
and Poisson's ratio v = 0.3. The in situ stress field was also made non-
hydrostatic: the vertical in situ stress cv = 36 GPa, but the horizontal 
stress made greater or less, with lateral stress ratio K0 = 0.6 (giving 

hσ = 21.6 MPa) or K0 = 1.4 ( = 50.4 MPa). The rock was a brittle Mohr-hσ

Coulomb material, with the plasticity parameters of the previous section. 
Figure  5.7 shows displacement and stress plots when K0 = 0.6. Plastic 

yield has occurred at the sides of the tunnel, and the tunnel profile has 
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assumed a squarer shape (displacements of the deformed mesh have been 
exaggerated by a factor of 40 in fig.5.7 et seq.); the increased inward 
movement of the tunnel side is caused by the plastic yield, and that of the 
tunnel roof is a consequence of the elastic orthotropy. 

A horizontal plane of weakness was now introduced in the rock, with 
cohesion Cj = 7 MPa and angle of friction . (This is equivalent to 0

j 30=ψ

a triaxial stress factor k  = 3 and unconfined compressive strength  = j
jσ

24.2 MPa). Some sliding along the jointing plane occurred at the tunnel 
wall above the yield zone, but otherwise the results for stresses and 
displacements were little changed. 

Rather more interesting are the results when K0 = 1.4. For the case of           
a homogeneous orthotropic rock (fig.5.8), a broad plastic zone is created 
across the tunnel roof. When the horizontal plane of weakness is intro-
duced (fig.5.9), joint sliding occurs in a long narrow zone penetrating 
into the rock at about 60° to the horizontal; these Gauss points are 
indicated by a star in fig. 5.9, This has the effect of reducing the depth 
of the yield zone, so that plastic yield is now concentrated more narrowly 
at the crown of the tunnel roof. The deformed tunnel profile is also 
significantly changed, with inward movement concentrated at the tunnel 
crown. 

To analyse practical problems, with a more complicated geometry and 
using a finer mesh, a pre-processor package is desirable. This will enable 
the user to input the mesh interactively, refine it, and display mesh and 
results graphically. Such a pre-processor has been developed for FESTER, 
and its  theoretical  aspects  will  be discussed in the next chapter. 
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CHAPTER  6.   PREPROCESSOR 
 

The data file for a finite element package can often be very tedious to 
prepare and check. To overcome this problem a preprocessor is often 
available to lighten the work of preparing lists of elements and nodes. A 
small preprocessing package (PREFES) has been written specially for the 
FESTER package which guides a user through mesh preparation and which 
controls the details that make the information recognisable by FESTER. 

The preprocessor is based on a data file which it builds up itself from 
information given to it by the user. This file does not have to be 
complete for the preprocessor to be able to read it. Most of the package 
is concerned with requesting information from the user, checking that it makes 
sense, and putting it in the correct slot in the data file. The important 
parts of the package are the routines which refine a mesh and reduce 
frontwidth, and the ideas behind what they do is described below. A final 
routine performs the task of writing a file suitable for input to FESTER 
itself. To aid the user in checking the mesh and interpreting the results 
there are also graphics programs to draw the mesh and display displacements 
and stresses. Full user instructions are given in the Appendix. 

 
6.1   Refinements 

The refinement of a finite element mesh may be carried out by 
subdividing the elements into smaller but similar elements. Thus, the basic 
shape of the final mesh can be modelled using as few elements as possible 
and then a more detailed mesh can be created from this by mesh refinement. 
The original coarse mesh is usually constructed from 8-node quadrilateral 
elements which allow for curved boundaries to be modelled and are easy to 
use. In the discussion here, the new refined elements will also be 8-node 
quadrilaterals. Modifications of the discussion below allow for the 
possiblity of other types of element, in particular the 5-node infinite 
element and the 6-node joint element. 

Let S be the standard square element 

  }11,11:),{(S ≤η≤−≤ξ≤−ηξ=  

and suppose that S is mapped to the 8-node quadrilateral element S' by the 
transformation 
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i

8

1i
i X),(NX ∑

=

ηξ=                 (6.1.1) 

i

8

1i
i Y),(NY ηξ= ∑

=

 

where (xi,yi) are the coordinates of the nodes of S1 and Ni are the 
standard shape functions (2.2.1) for a 8-node quadrilateral .  Let V1,  
i = 1,..,n and Wi, i = 1,..,m be indexed collections of real numbers and define 
   

n,.....,0i,VV
21

i

1k
ki =+−=ξ ∑

=

 

  m,....0i,Ww
21

i

1k
ki =+−=η ∑

=

 

and 

  1n,....0i,v/V
2
1

iii −=+ξ=+ξ  

  1m,....0i,W/W
2
1

iii −=+η=η +  

Where 

     
∑=
=

n

1k
kVV

And 

     
∑=
=

m

1k
kWw

 
n,....,0i,i =ξ=The new element boundaries are given by mapping the lines ξ                 

and  using (6.1.1.).The nodes of the new elements are given m,...,0i,i =η=η
by mapping the points ( ) for i=l,…..n and j=1,…..m and  the points j,i ηξ

( )j,
2
1( i η+ξ ) and ( ,

2
1nj,i +ξ ) for i=0,..n-l and j=0,..m-l. 

The numbering of the nodes of the refined mesh is done for the whole 
mesh and not for individual elements as is often the case in similar mesh 
refining algorithms. The usual method is to number the new nodes element by 
element in the original mesh and then to coalesce nodes on the boundaries 
between two elements where the same node has been assigned two node 
numbers. This is done by comparing the coordinates of all pairs of nodes 
and assuming that nodes with the same coordinates are in fact the same 
single node. This is usually satisfactory, but a preprocessor for FESTER 
must be able to cope with joint elements where opposite nodes in the  
element have the same coordinates. 
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 The method used here is to decompose the original mesh into three sets 
E0, E1, and E2,..E0 contains all the points that are corner nodes, E1 

contains the edges and E2 contains the elements. Any new nodes, generated 
as above, in the interiors of members of E0, E1, and E2 can now be 
numbered, and each new node receives a unique number. For each old element, 
the numbers of the new nodes on the boundary can be obtained from the 
numberings of the members of E, which make up the boundary, and likewise 
the numbers of nodes at the ends of each member of E, can be obtained from 
the numbering of the corresponding members of E2. 
 
6.2 Frontwidth reduction 

The finite element method requires the inversion of a stiffness 
matrix. In methods for non-linear problems, such as that used in FESTER, a 
stiffness matrix may need to be inverted many times in order to solve a 
problem to a given accuracy. The matrix inversion method on FESTER is of a 
frontal type where the variables are eliminated in an order governed by the 
construction of the mesh. The number of operations required to invert a 
given matrix is bounded by the number required by a typical band solver. 
Another (better) bound is given as a function of the maximum frontwidth 
(Sloan and Randolph, 1983), where the frontwidth is the number of equations 
being used at any particular stage by a frontal solver. Fill-in during 
elimination still occurs when a frontal method is" used, but it is, in 
general, less than with a band solver. The number of operations required at 
each elimination grows as the square of the frontwidth at that stage (Sloan 
and Randolph, 1983). Taking these comments together, it can be seen that it 
is desirable to reduce the bandwidth and maximum frontwidth of the 
stiffness matrix before it is inverted and also that it is desirable to 
keep the average frontwidth as low as possible. Bandwidth reduction of a 
matrix may be carried out simply by reordering the varibles. Unfortunately, 
the problem of finding an optimal reordering seems to be hard (in the 
computational sense) since there does not exist either a simple way to 
characterize an optimum reordering or an efficient algorithm for finding 
such an order. Hence the methods that have been proposed have not been 
proved to be optimal and indeed it is usually possible to describe a simple 
example which results in a very bad ordering of the unknowns. The methods 
are justified by hand-waving argument and by trying them on a range of 
problems and comparing the results with other methods. 

Many methods have been proposed, but a review of them will not be 
attempted here since there are many already published (see, for example, 
Sloan and Randolph, 1983). Only the method used will be described.   The 
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method is due to Sloan (1986) and it incorporates several features to 
reduce the amount of work and storage required compared with earlier 
algorithms. In the next section the machinery from graph theory that will 
be needed in the discussion will be described and then the algorithm itself 
will be demonstrated. 
 
6.2.1  Graph concepts 

The concepts required by the algorithm may be expressed entirely in 
terms of the dispositions of elements of a matrix, but it is traditional in 
this field (and more lucid) to use concepts from graph theory. A graph G 
can be defined as a pair <V,E>, where V(G) is a set of objects called 
vertices and E{G) is a set of unordered pairs of members of V. In other 
words a graph here will be simple, undirected and without loops. The 
following nomenclature will be useful. Two vertices u,v are said to be 
adjacent if (u,v) E, and the degree of a vertex, )V(δ  is the number of 
vertices which are adjacent to v. A path in a graph is a sequence of 
vertices v,V2v3v4....vn where, each pair {vi,vi+,} Eε , and its length is 
number of such pairs it contains (i.e. n-1 in this case). The distance 
between two vertices is the length of the shortest path containing both of 
them. A shortest path between two vertices a maximal distance apart is 
called a diameter of the graph, and its length is also called the diameter 
of the graph. 

A numbering of a graph with n vertices is a one-to-one function f: V→  
{1,2,...,n}. The bandwidth of the graph relative to a numbering f, β f is 
defined as 

    }1)u(f)V(f1{max
Vu,Vf −∈=β

Now we relate these concepts to matrices. For any symmetric nxn matrix 
K=(kij) graph (called the adjacency graph) may be constructed by letting 
V = {v, v2,...,vn} and E = {{Vi,Vj}: kij <>0 and }ji <> . Note that a number-
ing of the adjacency graph of a stiffness matrix corresponds to an ordering 
of the unknowns and that the bandwidth of the graph is precisely the 
bandwidth of the matrix relative  to  that  ordering. 

A useful concept for bandwidth reduction is that of a level structure. 
The level structure L(S) rooted at a subset S of V is a partition of V into 
subsets 1, ,12 ,. . . ,1h where 

(i)   1, = S  

(ii)  All vertices adjacent to vertices in 1i (i<i<h) are in 1i-1, 1i or  

 1i+1.

(iii)  All vertices adjacent to vertices in 1h are in 1h-1  or  1h. 
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It can be seen that all the vertices in level i are at a distance of i-1 
from S. h is called the height of the level structure, wi =  is the   |1| i

width of level i and max {wi }is the width of the level structure. 
 
6.2.2  The algorithm 

The algorithm for frontwidth reduction proceeds by constructing the 
graph of the matrix as described above and then finds a numbering of the 
vertices which is hoped to have a smaller bandwidth. The algorithm needs a 
vertex to start from; the method of finding a good starting vertex is 
described first and then the actual renumbering method is discussed. 

The graph to which the algorithms are applied is constructed directly 
from the mesh information. Without loss of generality it is assumed that 
each node represents one degree of freedom, since there will be an entry in 
the stiffness matrix corresponding to nodes i and j if and only if they are 
in the same  element and it does not matter how many degrees of freedom each 
node has. Hence each vertex in the adjacency graph constructed from a mesh 
will correspond to a node in that mesh, and each edge to each pair of nodes 
that are in the same element. For example, the graph corresponding to a 
mesh of linear triangles is isomorphic to the grid of edges of the mesh 
itself. 

Observations by other authors (for example, Gibbs et al., 1976) suggest 
that it is good to start renumbering from what they term a pseudo-
peripheral vertex. These are vertices that are almost a maximal distance 
apart - i.e. the distance between them is close to the diameter of the 
graph. The definition of such vertices seems to be "those vertices that are 
found using the following algorithm", and an algorithm is then presented. 
An algorithm suggested by Gibbs et al is as follows. 

1.     Pick any vertex of minimal degree. 

2.    Generate the level structure L(v) = {1,,...,1h} 

3.  Take each u ∈ 1h in order of degree and generate the level structure     
L(u). If, for some u, L(u) has greater height then L(v) then v:=u and 
go to step 2. 

4.  Let u ∈ 1h be the vertex for which L(u) is the least. The algorithm 
finishes with u,v pseudo-peripheral vertices. 

 
The algorithm used here is the one suggested by Sloan(1986) and is the same 
as the above but with 2 modifications, both in step 3. Once the vertices in 
lh have been sorted in increasing order of degree, then the Sloan method 
only generates level structures for the first (m+2)/2 members of 1h, where 
m= . The other change is to keep a  record  of the minimum width of level |1| h
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structure found and only to return to step 2 if the higher level structure 
also has a width less than the minimum already found. 

6.2.3   Labelling 
Once two pseudo-peripheral vertices have been found, they can be used             

to start the relabelling algorithm. In order to describe this algorithm, we 
need a few terms. Suppose that at some stage in the process of relabelling, 
S is the set of vertices that have already received a label, and let V⊆

L(S) ={11,12,…,1h} be the level structure rooted on S. Then if v ∈  1, (= 
S), it is termed postactive, if v ∈  12 it is termed active, if v ∈  13 it is 
preactive, otherwise v is called inactive. The current degree of a vertex 
is a measure of the increase in the number of active vertices if it were to 
be labelled. It is defined as 

    VK)VC)V(d(Vn +−=  

where is the number of vertices adjacent to v which are either active or VC

postactive, and 

            1,0vk =  
       The  algorithm  assigns  a  priority  to each vertex. This is a weighted sum 
of its current degree and its distance from the end vertex. Initially, one of 
the pseudo-peripheral vertices is given preactive status. The algorithm 
continues by labelling an active or preactive vertex which has the highest 
priority (which then becomes postactive), and then updating the priority 
and status of each vertex taking this change into account. The priority is 
calculated to ensure that vertices with low current degree and which are 
far from the end vertex have a high value. This ensures that the increase 
in the number of active vertices is small (a local condition) and that the 
global structure of the graph is taken into account by labelling vertices 
far from the end vertex before those closer. The weights used to calculate 
the priority can be changed, but here we use those recommended by Sloan 
(1986). 

Once the nodes have been relabelled the elements are relabelled to 
reduce the frontwidth and the actual node renumbering is discarded. Sloan 
(1986) renumbers the elements in the order of the lowest numbered nodes in 
each element and this is what is done here. For each node a list of the 
elements containing that node is made. Then the nodes are checked one by 
one in order, and if there is any element containing the node which has not 
received a number, it is given one. This continues until all the elements 
have been renumbered. 
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CHAPTER 7.    RESULTS (2) 

A series of trial runs has been carried out in which the mesh was kept 
the same and the material properties varied. The trials were conducted to 
test the various models that are included in the program on a realistic 
mesh and in more realistic and complex combinations. The trials have also 
enabled some experience to be gained as to the choice of the solution 
parameters and also some adjustments have been made to the numerical 
techniques to improve the solutions. The example mesh was of an arched 
tunnel with a circular roof and straight sides and floor. The mesh is shown 
in fig. 7.1. 

The main problem encountered during the trials was undershoot. The 
viscoplastic constitutive law requires that plastic straining only occurs              
when the stress value lies outside the yield surface. When this was 
implemented strictly in the algorithm it was found that, for the mesh in 
fig. 7.1, the stress values at several yielded Gauss points finished well 
inside the yield surface at the end of the solution. This behaviour is what 
is refered to as undershoot. In the case at hand, the first solution to the 
problem of undershoot was to assume that it was due to the approximations 
in the implicit viscoplastic algorithm. However, attempts to improve 
accuracy showed that undershoot proved to be very persistent. Indeed, even 
trial runs with fixed small timesteps suffered from undershoot. The    
approach eventually adopted was to allow reverse plastic straining at Gauss 
points  that  undershoot - see  section  4.4. 

The  trials  have  suggested how the values of the various solution 
parameters affect the quality of the solution and the number of time steps 
needed to obtain convergence. It was found that quite small values of the 
time step control parameter τ were usually necessary. Good values for this 
mesh seem to be between about 0.1 and 0.3. Larger values lead to a decrease 
in accuracy and lowering of the rate of convergence and smaller values are 
too restrictive, greatly increasing the number of time steps required. The 
maximum magnification factor for increasing time steps was kept at 1.5 
since any larger value was found unsatisfactory. The fluidity parameter in 
the flow rule γ was in most cases fixed at 0.01. With this value of γ the 
initial timestep was usually taken as 0.01. The parameter θ was fixed at            
2/3. 

Several  examples have been chosen here to illustrate the various 
capabilities of the program. The various sets of material properties that 
were used are listed in full in table 7.1. As can be seen the values do not 
vary much between the  materials,  but any unsual values have been picked out 
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in a different type face. All materials had a Mohr-Coulomb yield surface. A 
summary of the examples that are to be discussed is given in table 7.2. 
This table gives the material that was used in the mesh, τ the time step 
control parameter, the initial and maximum allowed timesteps, the 
convergence tolerance and the number of timesteps required to attain 
convergence. The convergence tolerance is expressed as a percentage. At the 
end of each time step, the effective visco-plastic strain rates are 
calculated and summed. Times stepping ceases when this sum is less than 
TOLER% of its initial value. 

All the trials assumed a uniform hydrostatic stress field is present 
initially, and that the tunnel is at a depth of 500 metres. The increase in 
load with depth was taken to be 0.025 MPa per metre, giving an initial 
uniform stress field of 12.5 MPa. 

The tunnel represented by the mesh is supposed to have a circular 
ceiling with a radius of 2 metres, and the side wall  is  1  metre  high. 

Example 1 is the 'standard' example that has been used to test the 
program. Figure 7.2 shows a plot of the distorted mesh and of the principal 
stresses at the Gauss points. The small circles at some of the Gauss points 
denote the points that have yielded. The pricipal stress plot reveals that 
there is a discontinuity in the stress component parallel to the ceiling 
and side wall, and that the stresses parallel to the floor have become             
tensile. 

Figure 7.3 shows similar plots for example 2. The material here yields 
more easily because of a lower triaxial stress factor. Hence more points           
have yielded, especially around the corner where the side wall meets the 
floor. This has changed the distribution of the resulting displacements, 
notably in the floor, but not their magnitudes (the centre of the floor has 
risen by about the same amount as in example 1). Example 3 has a smaller 
residual yield surface than example 1. This can be clearly seen as smaller 
principal stresses at yielded points in fig. 7.4. The displacements are         
larger all round the tunnel in this case and the more pronounced bulge in           
the side wall seems to be caused by the increase in yielded points in that 
region. Example 4 is not illustrated because it has no striking new            
features. The interest in this example lies in the solution. This example              
used a different value of the dilation parameter α in the flow rule. Table 
7.2 shows that it was possible to use a much larger maximum time step than 
in the other examples, and that it required relatively few time steps to 
achieve convergence to the given tolerance. 

The next example (number 5) is of an anisotropic material. The solution 
obtained by FESTER does not seem much different  to  example  1.  The 
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displacements can be seen to be smaller (fig- 7.5), but the distorted shape        
of the tunnel is not very different. The yielded points were in the same 
positions. However, more time steps were required to achieve convergence        
and the solution parameters had to be adjusted to improve the speed of 
convergence (see table 7.2). A small value (0.01) of the maximum time step 
was used in this particular example. 

Example 6 uses the model for laminated material. In this material, the 
mass yield strength of the rock has been set high to deter this yield 
mechanism. Figure 7.6 shows the results obtained with this material. Points 
at which slippage of the laminations has occurred are marked by a star. The 
strength of this material  has been made large to preclude any other cσ
yielding than the slippage of the laminations. The pattern of yielded           
points is very different to those in the previous examples. The yielded 
region at 45° in the ceiling is similar in orientation to yielding found in         
an axisymmetric tunnel with horizontal laminations. The displacements 
around the tunnel show large deformation occurring in the straight sides 
next to the corner, and this is associated with lines of yielded points             
deep into the rock emanating from the corner. It can also be seen that the 
ceiling has become distorted, with larger displacements in the 45°              
direction  where the yielding has occurred. 

The  final  example combines materials from two previous examples, 
material 1 being confined to a layer through the middle of the mesh, and 
material 6 making up the rest of the mesh. The mesh had to be slightly 
modified to make this realistic and the situation is illustrated in fig.
7.7. The pattern of yielded points and tunnel wall displacements are shown             
in fig. 7.8. The stars represent the slipping of the laminations, the
circles failure of the rock, and the triangles show points at which the              
stress has exceeded the maximum tensile stress. The pattern of points in
the laminated material is only slightly disturbed, but the pattern in
material 1 is very different from that shown in fig. 7.2, since more points in 
the floor have yielded. The displacements show a further distortion of
the ceiling compared with the laminated material on its own (fig. 7.6), and
a distortion can be seen below the floor where the two materials meet. In          
this mesh there is no interface between materials and it would be more
realistic to use joint elements between strata. This would alter the 
displacements in that  part  of  the  mesh. 
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Material number 
 

 1 2 3 4 5 6 
Constant       
E (GPa) 10 10 10 10 20 10 
Ν 0.25 0.25 0.25 0.25 0.25 0.25 

)GPa(2E  - - - - 10 10 
2

G (GPa) 
ν  - - - - 0.25 0.25 

- - - - 2 2 
)o(β  - - - - 0 0 

)MPa(cσ  18 18 18 18 18 40 
K 3.2 2.8 3.2 3.2 3.2 3.2 
S 1 1 1 1 1 1 
Α 0 0 0 0.1 0 0 
'k  3.2 2.8 3.2 3.2 3.2 3.2 
's  0.25 0.25 0.09 0.25 0.25 0.25 
Γ 0.01 0.01 0.01 0.01 0.01 0.01 

jϕ (radians) - - - - - 0.524 

jc (MPa) - - - - - 3 

jψ  - - - - - 0 

jγ  - - - - - 0.01 
σten (MPa) 5 5 5 5 5 5 

(MPa)en to'
 

3 3 3 3 3 3 
Table 7.1.   Material  constants  for  the  materials  used  in  the examples. 

 
 
 

Example number 
 1 2 3 4 5 6 7 

Material 1 2 3 4 5 6 1,6*

Τ 0.2 0.2 0.2 0.2 0.2 0.2 0.2 
Initial        
time step 0.01 0.01 0.01 0.01 0.005 0.01 0.01 
Maximum        
Time step 0.015 0.015 0.015 0.05 0.01 0.11   0.015 
TOLER 0.1 0.1 0.1 0.1 0.1 1.0 1.0 
Number of        
Time steps 22 30 48 21 37 37 44 
 

*In the laminated material (6) the joint fluidity jγ  had a value of 0.02  

Table 7.2.   Some parameters and results for the examples. 
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CHAPTER 8.  CONCLUSIONS 

This report has described the nonlinear finite element program FESTER. 
It is based on the theory of elasto-viscoplasticity, with full provision
for using the implicit algorithm, and has a number of distinctive features 
particularly suited to mining applications, namely: 
(i) mapped infinite elements; 
(ii) modelling of in situ stress field, and excavation loading;  
(iii) one-dimensional joint element;  
(iv) small-tension rock model;  
(v) modelling of a plane of weakness in the rock, with orthotropic 

elasticity; 
(vi) Modr-Coulomb yield surface; 
(vii) account taken of large displacements. 
Other features are believed to be new developments, such as:  
(viii) use of the Hoek-Brown yield criterion in 3D stress space;  
(ix) a Drucker-Prager-type plastic  potential  with  these yield surfaces; 
(x) brittle plastic rock model. 

A more comprehensive programme of testing the effects of the above 
features on a set of standard problems should now be undertaken, as well as 
the program's application to practical mining situations. 
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