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Abstract  

In this paper, based on the combined finite element method and bidirectional evolutionary structural 

optimization algorithm, we perform the topological optimization of phononic crystals to obtain 

ultrawide band gap between two special adjacent bands for both the in-plane and out-of-plane wave 

modes. The influences of matrix/scatter materials, material volume fraction, and initial topological 

design on the unit cell optimization are discussed in detail. The results show that the strategy 

proposed in this paper is effective and efficient to obtain better optimization results under the similar 

optimization condition, solutions with ultrawide band gaps can be easily obtained within 30 

iterations. Several new patterns for phononic band gap crystals with optimized band gaps are 

presented. This work provides useful guidance in topological optimization design of phononic 
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crystals. 
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1. Introduction 

As one kind of functional periodic structures, phononic crystals (PnCs) were firstly proposed in 1993 [1]and had 

become a hot research topic due to their distinctive physical features for numerous practical applications. One of the 

most important and useful physical properties of PnCs is the existence of the absolute band gaps (ABGs)[2], within 

which the elastic waves propagation is prevented or significantly weakened. Due to this special physical 

characteristic, phononic crystals attract increasing attentions in multi-functional fields[3-7], particularly in acoustic 

fields where tuning of bandgap in PnCs becomes more and more essential.  

For a given filling fraction, apart from the contrast of physical parameters between the scatter and the matrix, the 

topological structure of the unit cell is also a key issue to the formation of ABGs in PnCs[8-13]. Up to now, many 

efforts have been paid to design PnCs aiming to find optimized ABGs based on optimized topological structures. 

Liu et al.[14, 15] analyzed the influence of the lattice transformation and lattice structures on the ABGs in PnCs, and 

noticed a significant influence of cell topology on ABGs. Yang et al.[16] analyzed the spherical three- dimensional 

(3D) nano-scale silicon PnCs and the influence of the porosity is considered as well. Wang et al.[17-19] proposed a 

Sierpinski triangle fractal and grading strategies in the topological structure design and obtained some larger band 

gaps. Optimized unit cell with excellent bandgap performance arouses a great deal of interest on the design of PnCs 

[20-22]. 

Since the pioneering topology optimization work was developed by Kikuchi and Bendsoe [23], a lot of effective 

optimization algorithms were proposed, such as level set method (LSM)[24, 25]; solid isotropic material with 
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penalization (SIMP)[26, 27]; evolutionary structural optimization (ESO)[28]; bi-directional evolutionary structural 

optimization (BESO)[29, 30]; and the moving morphable components method (MMC)[31, 32], which have been 

widely used to deal with topological problems including structural, optical or acoustic performances[33, 34]. 

Recently, ABG optimization in PnCs attracts great attention. Using the method of moving asymptotes, Sigmund and 

Jensen[35] studied the topology optimization work of PnCs. Diaz et al.[36] performed the maximal design of ABGs 

and they discussed the influence of the skew angle of the underlying grid structure on band gaps. Halkjer et al.[37] 

combined FEM with moving asymptotes method and they maximized the band gap in a Mindlin plate. Based on the 

genetic algorithm which was proposed by Holland[38], various work has been devoted to optimize topological 

structure of PnCs. Hussein et al.[39, 40] conducted a series of optimization studies for maximizing band gaps in one-

dimensional PnCs, PnC-based filter design and a vacuum/solid porous PnC, respectively. Based on a “coarse to fine” 

two-stage genetic algorithm, Dong et al.[41] conducted a PnC optimization with the unconstrained problem. Based 

on BESO, Huang and Li[42] performed the band optimization in PnCs using a modified SIMP model[43]. More 

effective and efficient algorithm is always the frontier in band optimization of PnCs. 

Focusing on the robustness and computational efficiency, a combined BESO and finite element scheme is 

proposed to perform the topology optimization in 2D square-latticed solid PnCs for the maximum ABG between 

two specified adjacent bands. The BESO procedure is programmed as a part of the finite element method (FEM) 

software package and become very simple and easily implemented. The advantage of this new BESO/FEM combined 

strategy to other optimization algorithm is discussed in detail. At last, the conclusion is given. 

2. Waves in phononic crystals 

Figure 1 shows a typical representation of a 2D solid-solid phononic crystal and the corresponding first Brillouin 

zone. Circular scatters which are made by Material 2 (denoted by A) periodically located in the matrix which is made 

by Material 1 (denoted by B). A unit cell is marked out by the dashed lines with a lattice length a. The irreducible 
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Brillouin zone of the lattice ΓXΜ is marked as the shaded area.  

 

Fig. 1. Diagrammatic sketch of a representative 2D solid-solid phononic crystal and the first Brillouin zone of the 2D square lattice. 

  The z-coordinate is set parallel to the scatter. In this case, the elastic waves propagate in the xoy plane can be 

decoupled into the anti-plane shear mode and the mixed in-plane mode. Due to the z coordinate and the xoy plane 

are perpendicular to each other, displacement vectors in the in-plane mode are independent of the z-coordinate, which 

are given as 

 -ρ(r)ω2ue=∇∙[μ(r)∇ue]+∇∙ �μ(r) ∂
∂xe

u�+ ∂
∂xe

[λ(r)∇∙u]  (e=x, y),                      (1)  

-ρ(r)ω2uz=
∂
∂x
�μ(r) �∂uz

∂x
��+ ∂

∂y
�μ(r) �∂uz

∂y
��.                                  (2) 

Here, ∇=(∂x, ∂y) and u=(ux, uy) is the transverse plane displacement vector. In a periodic structure, based on the 

Bloch theorem, the displacement filed can be expressed as follows [44].  

 𝐮𝐮(𝐫𝐫) = ei(𝐤𝐤∙𝐫𝐫)𝐮𝐮𝐤𝐤,                                        (3) 

where i is the imaginary unit, uk(r) is a periodical vector function with the same periodicity as the crystal lattice, and 

k= (kx, ky) is the Bloch wave vector, which is limited to the first Brillouin zone of the reciprocal lattice. 

  In the unit cell, the eigenvalue equations can be expressed as 

(K-ω2M)U=0,                                        (4)  

where U is the nodes displacement, K is the global stiffness matrix, M is the global mass matrix of the unit cell,  
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Following Bloch conditions on the two opposite boundaries of a unit cell, the displacement field are given as： 

U(r+a) =ei(ka)U(r),                                     (5) 

where r is the position vector at the boundary nodes, a is the lattice basis vector associated with the PnCs.  

  By applying Eq. 5. into the complex boundary condition, we used COMSOL with MATLAB to solve the 

eigenvalues of Eq. (4). The model was built in FEM and then saved as a MATLAB-compatible ‘.m’ file. Triangular 

Lagrange quadratic elements were utilized to mesh the unit cell. The direct SPOOLES (SParse Object Oriented 

Linear Equations Solver) was used under Eigen-frequency analysis. We programmed the ‘.m’ file to let the wave 

vector k sweep along the edges of the irreducible Brillouin zone. Then the dispersion relations of PnCs can be 

obtained. Based on the secondary development of the FEM program, we can obtain the width of the aimed ABG and 

then make the bandwidth optimization based on the BESO algorithm.  

3. BESO/FEM combined strategy 

The basic concept of BESO is that it can evolve structures towards an optimum by systematically adding efficient 

elements meanwhile removing inefficient ones. BESO has been successfully used in solving problems in many fields 

which demonstrated the reliability and efficiency of BESO in structural optimization. In the following section, we 

introduce the proposed BESO/FEM combined strategy with the aim to opening and maximizing the ABG between 

two specified bands for given matrix/scatter materials. 

3.1. Statement of objective and constraint functions  

As a kind of functionally periodic structures，the topology of 2D solid-solid phononic crystal can be expressed 

by one of the repeating unit cells. The optimization aim here is to obtain the optimized unit cell which has the 

maximum ABG between two given adjacent bands. The ABG bandwidth is transformed to the dimensionless form 

by its central frequency. Thus, this optimization problem can be mathematically described as an objective function 
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as follows: 

Maximize: f(∑)=2*
min

k
:ωn+1(∑,k)- max

k
:ωn(∑,k)

min
k

:ωn+1(∑,k)+ max
k

:ωn(∑,k)
,                           (6) 

where f denotes the relative dimensionless ABG which is simplified by the central frequency between the given pair 

of adjacent bands, ∑ is the topological distribution of one repeating unit cell. ωn is the frequency of the nth energy 

band. The orders of the aim bandgaps are extracted by n.  

In this work, we only consider the repeating unit cell within a square lattice. The unit cell can be molded by N×N 

square pixels. We define the discrete design variable xp (p=1, 2, 3...) for each pixel to describe the topology structure 

of the unit cell. xp =0 represents the pth pixel being made of Material 1 (matrix), and xp=1 for Material 2 (scatter). It is 

known that due to the interpolation, the discrete design variable may appear intermediate values, which may result 

in ‘grey’ elements in the resulted structures[34]. In order to avoid this problem, in our algorithm, xp is set to be 1 or 

0 so that the optimized solutions will convergent to absolute values, 1 or 0, avoiding the ‘grey’ element as shown in 

our numerical examples.  

For practical application of phononic crystals, proportioning of different materials in PnCs always needs to be 

considered. In this case, volume fraction of Material 2 was selected to be the constraint function. 

Subject to  ( )
N

1
N  V    0 or 1

V
i i i

f i
v x x∗=∑

= =，                         (7) 

where vp denotes the volume of element p, N is the total number of the square pixels in the unit cell. V𝑓𝑓
∗  is the 

prescribed volume fraction of Material 2.  

3.2. Volume evolution and sensitivity analysis 

In our procedure, the BESO algorithm starts from a unit cell made from Material 1. Based on the volume evolution, 

the volume fraction of Material 2 will increase from 0 to the prescribed volume V𝑓𝑓
∗  following:  

 

http://www.baidu.com/link?url=rZpNZYG4s_nY9Dzh2VqfXKywOzxAjPNZOGnpZgTKZ5OyZu-XBsi-uS66RnwVmK_B7P7wM2aMg42cGabzklhATksgWXtGg_7DE5zlOB3EKee&wd=&eqid=877208930002f7db000000025ac1777f
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where h is the iteration number, ER denotes the evolutionary volume ratio and. Vh is the current volume of Material 

2 in the hth iteration. In our BESO procedure, the there is no Material 2 in the initial design which means V1=0. In 

order to start the volume evolution and control the minimal evolution speed of the procedure, ER is set to 2 and the 

minimum variation of the structure is set to 2 square pixels. At the updated volume Vh+1, optimization iterations are 

made until both the objective function and volume constraint function are stably converged and satisfied.  

In analyzing a design structure ∑ ={x1, x2,…, xp …, xn }T to have the function f(∑), where ∑ is the material distribution 

defined by discrete design variable xp, if there is a disturbance Δxp on the pth design variable, a new design structure 

∑+Δ∑={x1, x 2, …, x p+Δx p …, x n }T would be obtained. The sensitivity of the structure can be expressed as:  

 

 

In order to simplify the calculation of sensitivity numbers, consider the centrosymmetry of the unit cell, only a 

quarter of the unit cell is modeled. We applied one perturbation to the structure on each square pixel with xp =0 

(made of Material 1). Based on Eq. (9) and FE calculation, the initial sensitive number of all square pixels with xp 

=0 could be obtained.  

In BESO method, material can be removed and added simultaneously. Material removal and addition scheme 

ranks all pixels together based on their sensitive numbers. xi of pixels with high sensitive numbers will be set to 1 to 

add Material 2; meanwhile xi of pixels with low sensitive numbers will be set to 0 to add Material 1. Due to the 

symmetry, there may be some same highest sensitive numbers occurs at the same iteration, when it happens, the 

proposed BESO/FEM procedure will randomly select one of the largest ones to add material meanwhile break the 

symmetry. Eq. (9) gives sensitive numbers for square pixels with xi =0 (made of Material 1). A filter scheme is 

further used here to extrapolate sensitivity numbers for pixels with xi =1.  
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3.3. Filter scheme and BESO/FEM procedure 

As a smoothing strategy, Filter technique can not only calculate sensitivity numbers, but also suppress some 

numerical instability such as mesh-dependency or checkerboard [45-47]. Before applying the filter scheme[48], we 

calculate the nodal sensitivity numbers of each pixel with xp =0 as follows: 

 αp
n= ∑ ωj

M
j=1 αj

e                                   (10) 

where M is the total number of pixels which are connected to the pth pixel with xp =0. αj
e is the initial sensitive 

number obtained by Eq. (9). ωj donates the weight factor of the jth pixel defined as 

ωj=
1

M-1
(1- rpj

∑ rpj
M
j=1

),                                 (11) 

where rpj is the distance between the centers of the pixel p and pixel j (Fig.2). 

Based on the nodal sensitivity numbers obtained from Eq. (10), the modified sensitivity number of the pth pixel is 

given as[48]: 

αp
m=

∑ ω(rpj)αp
nN

j=1

∑ ω(rpj)N
j=1

,                                    (12) 

where ω(rpj) is the linear weight factor with the form 

ω(rpj) = �
rmin-rpj     for    rpj < rmin

     0        for    rpj > rmin  ,                  (13) 

where rmin denotes the radius of the filter, which identifies the nodal sensitivity numbers which will influence the 

sensitivity of the pth element. As shown in Fig. 2. nodes located inside the circular shadow area will be used in the 

filter scheme for the ith element (red one). 
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Fig. 2 Diagrammatic sketch of filter scheme 

In order to ensure a stability of the iteration process, after the first iteration, the sensitivity number is further 

modified as[7, 47, 48]： 

α�p,h= 1
2

(αp,h
m +α�p,h-1) ,                                 (14) 

where αp,h
m  is the sensitivity number of the pth pixel in the hth iteration which is given by Eq. (12). The design variable 

xp will be reset to 0 or 1 according to the their sensitivity number (α�p,h) rankings. When Vh is equal or larger to Vf
∗, 

BESO/FEM procedure will stop if the following convergence criterion is achieved: 

error = 
�∑ fh-i+1−fh-N-i+1

N
i=1 �

∑ fh-i+1
N
i=1

 ≤ τ ,                                (15) 

where N is an integer number defined to be 3 which means that the fluctuation of the mean optimized results in the 

last 6 iterations is within acceptable limits. f is the proposed objective function and τ=0.1 is allowable convergence 

tolerance; h is the iteration number. The flow chart for the BESO/FEM algorithm used in the PnCs topologic 

optimization is outlined as 
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Fig. 3. Flow chart of BESO/FEM procedure for PnCs topological optimization 

4. Numerical results 

In order to show the robustness and computational efficiency of the BESO/FEM method, we conducted the 

bandgap optimizations of the 2D square-latticed solid PnCs with different material combinations (Au/Epoxy and 

Pb/Epoxy). In the optimizations program, the unit cell was divided into 20 ×20 4-node quadrilateral elements. Due 

to the computational simplification and the square-symmetry of the unit cell, only a quarter of the unit cell was 

modeled. In order to illustrate clearly, different colors (green and red) were used to denote the Material 1 and 2 in 

unit cells, respectively. The BESO procedure parameters used in this paper are given as follows: the filter radius rmin 

is √2a/10, where a is the lattice constant (|a|=0.02 m). The evolution rate ER is 0.02. ω indicates the normalized 

frequency ωnorma/2πVt , where Vt =1160 m/s is the transverse wave velocity in the epoxy (matrix material). For the 
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Au/Epoxy system, the physical properties are: ρ1 =1.18 g/cm3; λ1= 4.43 GPa; and μ1= 1.59 GPa, ρ2 = 19.5 g/cm3, λ2= 

160.3 GPa; μ2= 29.9 GPa. For the Pb/Epoxy system, the physical properties are ρ1 =1.18 g/cm3; λ1= 4.43 GPa; μ1= 

1.59 GPa; ρ2 =11.6 g/cm3; λ2=42.03 GPa and μ2=14.9 GPa.   

The optimizations for PnCs started from a cell only made from matrix material (Material 1, Epoxy), which is 

shown in Fig. 4a. The corresponding initial and filtered sensitivity numbers of first two bandgaps for in-plane and 

out-of-plane modes are shown in Fig. 4b and 4c. The negative values indicate no band gap appears at that moment. 

As shown in Fig. 4, for both of the in-plane and the out-of-plan modes, filter scheme shrunk the distribution of 

initial sensitivity numbers (red and green curves) by about 40 percent to obtain filtered sensitivity numbers (black 

and blue curves with symbols). Meanwhile, the initial sensitivity numbers are more oscillatory than the filtered ones, 

which could be seen from Fig. 4c. There are some small mutations appearing in the initial sensitivity curve (red 

curve), which could be filtered out as shown by the black curve with symbols. This ability of filter scheme 

significantly benefits the convergence of the proposed BESO/FEM program.  

 

                       

Fig. 4 (a) Initial design made of 4-node quadrilateral elements and the corresponding sensitivity numbers of each element for (b) 

Au/Epoxy system in-plane mode and (c) Pb/Epoxy system out-of-plan mode. 

4.1. In-plane mode band gap optimization 

4.1.1 Topological optimization of PnCs in different material volume fraction 
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Firstly, with the aim to show the effect of the volume fraction on the optimization results, a comprehensive 

optimization of Pb/Epoxy PnCs system is made between the volume fractions (Material 2) 0 to 1. The objective of 

the optimization is the first bandgap (between 3rd to 4th bands). The initial design used in this optimization is the full 

design made of matrix material (Material 1, Epoxy) as shown in Fig. 4a.  

The upper and lower edges of the 3rd to 4th bands are plotted in Fig. 5 by black dash line and black solid line. In 

the same volume fraction, if the upper edge is higher than the lower edge, there will be an ABG formed which is 

marked out by shadow parts. The optimized dimensionless gap size represented by the relative ratio of the bandgap 

width and the central frequency is shown by blue solid line. As shown in Fig.5, the ABG begins to appear at the 

volume fraction 0.06. As the increase of the volume fraction, the ABG becomes wider and reaches the maximum 

value 0.474 at the volume fraction 0.38，which is more than 1000% larger than it when volume fraction is 0.06. 

Meanwhile, the dimensionless gap size also achieves its maximum value 0.6447, after which, the ABG is closed at 

the volume fraction 0.85. The results in Fig. 5 indicate that there exists an optimized volume fraction, at which the 

ABG has the maximum value and largest dimensionless gap size.  

 

Fig. 5. The 3rd to 4th bandgaps of Optimized Pb/Epoxy PnCs in different volume fractions. 

4.1.2. Topological optimization of PnCs in different matrix/scatter materials. 

With the aim to examine the effect of different material combinations on the optimization, we conducted the 
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optimization work of the first bandgap in Pb/Epoxy system and Au/Epoxy system. It is known that at the Γ point 

(Fig. 1), the first two eigenmodes are rigid one and the minimum eigen-frequencies at the first and second bands are 

both zero. Consequently, there is no bandgap between the first and second bands. Here the ABG between the 2nd -

3rd bands are optimized to maximize the band gap width. To verify the availability of our algorithm, the in-plane 

mode optimizations for the first absolute band gap (ABG) in both Pb/Epoxy and Au/Epoxy PnCs are made. The 

optimized results obtained by other optimization algorithm[41] are also given for comparison. The volume fraction 

of Material 2 was set as V𝑓𝑓∗=0.11. Optimized topologies of Au/Epoxy PnCs with its band structure are shown in Fig. 

6. 

In Fig. 6a, the resulted unit cell of Au/Epoxy PnCs and the corresponding 3 × 3 lattice are shown, in which red 

shadows represent Material 2 (Au) and the green part is Material 1 (Epoxy). The optimized unit cell is one rectangle 

Au inclusion with four round corners and a slightly longer longitudinal axis embedded in Epoxy matrix. Figure 6 

shows the corresponding band structures for the optimized Au/Epoxy PnCs. The shaded stripe represents the 2nd-3rd 

ABG. The gap ratio of the bandgap ∆ω to its center frequency ωc for the the 2nd-3rd ABG is up to 0.166, it is higher 

than 0.151 obtained in the same volume fractions for the Pb/Epoxy system shown in Fig.5.  

  

Fig. 6. Optimized Au/Epoxy PnCs structures (a) and the corresponding band structure (b) for the 2nd-3rd ABG with V𝑓𝑓∗= 0.11. 

Fig. 7 shows the evolution histories of the band size with corresponding cell topologies. The left vertical axis 

shows the dimensionless frequency meanwhile the right one is the filling fraction of Material 2. Negative values of 
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∆ω mean that there is no bandgap at that point. In Fig. 7 blue line shows the filling fraction of Material 2 while 

black and red ones represent the gap width (∆ω) and the gap ratio ∆ω/𝜔𝜔𝑐𝑐. It is seen that as the volume fraction 

gradually increasing to the predefined reference value V𝑓𝑓∗=0.11, the gap width ∆ω and the gap ratio progressively 

grow from negative values to positive ones which means that the ABGs is opened. The values are gradually increased 

with the increase of the filling fraction of Material 2, which corresponds that an Au inclusion starts from a single 

spot in the center of the lattice to an optimal topology. As shown in Fig. 7, volume constraint condition is satisfied 

at 0.11 at the 6th iterations, after which, ∆ω (black line) and ∆ω/𝜔𝜔𝑐𝑐 (red line) tend to constant values which means 

that volume fraction is no longer changed and the convergence criterion is achieved to obtain the optimized topology. 

The results are also shown that BESO/FEM procedure is robust enough to converge to the expected value with the 

20 × 20 4-node mesh. 

 

Fig. 7. Evolution histories of the 2nd-3rd bandgap and the volume fraction of material 2 for Au/Epoxy PnCs 

For the purpose of validating the optimized results, the transmission spectra of the optimized Au/Epoxy PnCs 

structures along ΓX direction are displayed in Fig. 8. It can be seen that the transmission spectra of the obtained 

structures coincide well with the band structures, which is further indicates the accuracy of the calculation. 
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Fig. 8. The band structure (a) and transmission spectra (b) of the optimized Au/Epoxy PnCs structure along ΓX direction. 

 In the previous section, we know that the max first dimensionless gapsize of Pb/Epoxy PnCs is achieved in the 

volume fraction 0.38, the corresponding the optimized topologies of PnCs and the corresponding band structure are 

displayed in Fig. 9.  

As shown in Fig. 9a, in the optimized unit cell, there are two trapezoidal Pb inclusion symmetrical embedded in 

Epoxy on opposite sides of the unit cell. Fig. 9b shows the corresponding band structures, with the shaded broad 

stripe representing the 3rd-4th bandgap. It is seen that the ABG bandwidth of the optimized structure is 0.6447. It is 

41.69 % bigger than the result, 0.455, obtained by a genetic topological optimization algorithm[41] with the filling 

fraction 0.35. 
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Fig. 9. Optimized Pb/Epoxy PnCs structures (a) and the corresponding band structures (b) for the 3rd-4th bandgaps with the constraints 

of V𝑓𝑓∗= 0.38. 

Fig. 10. shows the evolution histories of the proposed BESO/FEM optimization for maximizing the width of the 

3rd-4th ABG. As shown in Fig. 10, before the 16th iteration, both the bandgap width (∆ω) and the dimensionless gap 

ratio (∆ω/𝜔𝜔c) increase along with the increase of the filling fraction of Material 2. It is noted that at the 16th to the 

18th iterations, there is a drop in the dimensionless gap ratio. This is because of a relative increase of the center 

frequency at the 16th to the 18th iterations which leads to the drop of the dimensionless bandwidth. Volume constraint 

condition is satisfied at 0.38 at 19th iterations, after which, the bandgap width (∆ω) and corresponding dimensionless 

gap ratio (∆ω/𝜔𝜔c) tend to be stable with minor fluctuations at the next ten iterations until convergence criterion is 

achieved and then the optimization program is stopped.  

Due to the complexity of the optimization work in wave propagation problems, local optimal solutions is easy to 

occur in the iterative process; those fake ‘optimal’ structures may lead the whole optimization process to a path away 

from the optimal results in evolutionary algorithm. As shown in Fig. 10, at early iterations, there is a scatter in the 

center of the unit cell which is marked out by black dotted lines. Compared to the final optimized structure, it is 

obvious that this scatter is a temporary fake ‘optimal’ structure; BESO/FEM procedure deletes it at the 8th iteration 

and converges at the 20th iteration. By the remove of this scatter in the center, BESO/FEM can generate a more 

optimized structure with a larger bandgap in a more accurate way. Compared with other optimization method such 

as Evolutionary Structural Optimization (ESO)[28], deleting existing structures in BESO method is a key ability to 

solve such problem in the optimization procedure to guarantee the stability of the convergence of the optimization 

process to optimal direction. For the topological optimization of Pb/Epoxy PnCs, GA algorithm also got the similar 

results[41]. But compared to approximately a thousand iterations in the same task needed by the genetic topological 

optimization algorithm, the proposed BESO optimization displays its higher computational efficiency.  
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Fig. 10. Evolution histories of the 3rd-4th bandgap and the volume fraction of material 2 for Pb/Epoxy PnCs 

4.1.3. Topological optimization of PnCs from different initial designs.  

To further show the robustness and effectiveness of the proposed BESO/FEM procedure, it is informative to 

consider the influence of different initial designs on the optimized results. 

Here, three initial designs of Au/Epoxy PnCs, which are shown in Fig. 11, are used to start the cell optimization. 

Initial design a (Fig. 11a) was the one used in the previous calculation started from a pure cell made from material 

1. Initial design b (Fig. 11b) was an initial design based on the resulting topology of Au/Epoxy PnCs for the 2nd - 3rd 

ABG. Initial design c (Fig. 11c) is based on the initial design b with the central Au scatter divided into two parts. To 

start the optimization procedure, the volume fraction V𝑓𝑓∗= 0.39 was applied to Material 2.  

 

Fig. 11. Initial designs for maximizing the 3rd-4th bandgap of Au/Epoxy PnCs 

Fig. 12 shows the finial optimized topologies for the 3rd- 4th ABGs of Au/Epoxy PnCs from the initial designs a, b 

and c, respectively. It is seen that different initial designs lead to the same optimized results, that is, a rectangular 

Au scatter embedded in Epoxy matrix. The corresponding band structures for the optimized Au/Epoxy PnCs are 
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given in Fig. 12 b, d and f. It is clear that the band structures of the three optimized unit cells from the different initial 

designs are almost the same as expected. The bandgap ratio are up to 0.912, which is very close to 0.902 given by 

genetic topological optimization algorithm[41].  

                                         

 

 

Fig. 12. Optimized Au/Epoxy PnCs structures and the corresponding band structures for the 3rd-4th bandgaps from different initial 

designs with the constraints of V𝑓𝑓∗= 0.39. 

Figure 13 shows evolution histories of the proposed BESO optimization for maximizing the bandgap from the 

initial designs a (Fig. 11a), b (Fig. 11b) and c (Fig. 11c) respectively. As shown in Fig. 13a, the width of bandgap 
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(black curve) from the initial design a is increased along with the increase of the filling fraction of Material 2. It 

should be noted that a temporary attenuation of the dimensionless bandgap width occurred at the 3rd-4th iterations, 

the proposed BESO procedure deleted some elements and separated the scatter to two parts and moved them to the 

side of the unit cells. After that, volume constraint condition is achieved at the 20th iterations, the convergence 

criterion is satisfied the after 5 more iterations.   

For the optimization procedure from the initial design b, scatters in the center of the unit cell gradually grow lager, 

volume fraction evolves to the constraint condition 0.39 at the 15th iterations and the procedure convergence criterion 

is achieved at the 20th iterations. As the optimization procedure from initial design c (Fig. 11 c), both of the bandgap 

width ∆ω (black line) and the corresponding dimensionless value ∆ω/𝜔𝜔c (red line) increase with the increasing of 

the filling fraction of Material 2. Scatters in the center of the unit cell gradually evolve to the optimized structures 

within only 20 iterations. It is seen that although started with different initial designs, the proposed BESO/FEM 

procedure can efficiently converge to the desired value within 25 iterations.  
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Fig. 13. Evolution histories of the 3rd-4th bandgap and the volume fraction of material 2 for Au/Epoxy PnCs; (a), (b) and (c) are the 

results started from initial design a, b and c, respectably.  

4.2. Out-of-plane mode band gap optimization  

In this section, the out-of-plane mode bandgap optimization in Pb/Epoxy system is made. In the calculation, the 

volume constraint is set as V𝑓𝑓∗= 0.32, initial design is a full design made of material 1 shown as Fig4 a. The optimized 

structures for the first to the fourth ABGs and their corresponding band structures are shown in Fig. 14. The 

corresponding 3 × 3 lattice is given with the central unit cells marked out by the black dash lines. 

The results show that along with the increase of the ABG band order, the optimized topologies also become 

complicated. As illustrated in Fig. 14a, the optimized unit cell corresponding to the first ABG is a rectangular Pb 

scatter in matrix. When the objective band turns to the second ABG as shown in Fig. 14b, there are one lager square 
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scatter in the central of the unit cell with other four 1/4 square scatters at the four unit cell corners. For the optimized 

third ABG shown in Fig. 14c, there are two smaller approximately elliptical scatters in the central of the unit cell 

with two half larger ones on the two horizontal opposite sides. Fig. 14d shows the optimized 3 × 3 lattice structures 

corresponding to the fourth ABG and its band structures. Two approximately circular scatters are symmetrically 

distributed in the center with four half scatters distributed on the upper and lower boundaries. It is found that the 

scatter number in one unit cell equals to the ABG band order. The predicted structures for the optimal PnC structures 

in Pb/Epoxy system based on BESO algorithm are similar to those given by Sigmund[49] and Dong[41].  
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. 

Fig. 14. Optimized 3 × 3 lattice structures of Pb/Epoxy system and the corresponding band structures for the first to fourth bandgaps 

in out-of-plane motion. 

5. Conclusions 

In this paper, a combined BESO/FEM optimization algorithm is proposed for maximizing the ABG bandwidth 

between a given pair of adjacent bands for both the in-plane wave and out-of-plane modes. Summarizing the results 

above, we can conclude that： 

1. In the proposed BESO/FEM procedure, no specific guess (seeding) designs are needed. By adding and 

removing material simultaneously in the evolutionary process, BESO/FEM gradually evolved the topology 

of unit cells to optimal ones in a high robustness and computational efficiency way. Ultrawide ABG is 

obtained in both in-plane and out-of-plane wave modes. 

2. Filter scheme proposed based on the statics is integrated into the proposed BESO/FEM procedure, results 

proved that it is also highly effective in solving the elastic wave optimization problems. 

3. Based on the proposed BESO/FEM procedure, topological optimization from different initial designs will 

result in the same maximum bandgap.  

4. Volume fraction of material have a significant influence on the optimized bandgaps, for the case that 

maximizing the bandgap without considering a specific volume constraint, there exists an optimized volume 
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fraction, at which ultrawide ABG can been obtained. 

5. Compared to the results obtained by other optimization approaches under the same or similar volume fraction, 

the proposed BESO/FEM optimization algorithm can result in larger dimensionless bandgaps which will be 

useful for the design of acoustic materials.  
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