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ABSTRACT

In this report the numerical integration of elliptic
partial differential equations under Robbin's boundary
conditions is attempted by means of the Extrapolated
form of the Alternating Direction Implicit methods.

A set of varying extrapolation parameters is determined
along with Douglas' cycle of acceleration parameters and
a comparison between the above two sets of iteration

parameters is performed.




INTRODUCTION

In [7] the author employed an Extrapolated Alternating Direction
Implicit (E.A.D.IL.) procedure for solving numerically Robbin's problem
on a unit square by determining a fixed acceleration parameter as well
as a varying one of Samarskii and Andreyev (S-A) type,

A comparison between the two alternative parameters was carried out
and the superiority of the S-A set was clearly established. Thus, the
results obtained in [10], wherein only the fixed acceleration parameter
was considered, were supplemented.

In the present report the problem is studied on a rectangle and two
other alternative sets of accelerating parameters are defined. These are
the Douglas parameter cycle [1] and an accelerating set based on
Richardson's method [12] as finalised by Young [13]. The last set
can be easily shown to be equivalent to using a varying extrapolation
parameter whereas all the other sets, mentioned above, assume it to
be fixed. Finally, a comparison between the two alternative iterative

parameters considered in this report is carried out,

STATEMENT AMD DISCRETISATION OF THE PROBLEM

The Robbin's boundary value problem here consists of Laplace's

equation

< 2 - (1)

considered on the region R= {(X,,X,) ‘ 0<X,<8,0<X,<8,}

and subject to the boundary conditions
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along the boundary 0R of R. The parameters pj, qi, 1 = 1,2
are real quantities and the function H(X,,X3) is continuous on 0R .

To discretise the problem, a uniform grid of lines parallel
to the sides of the rectangle and of spacings h; and h; respectively
is superimposed on the region R. The number of grid points at
which the unknown function u has to be determined is
(M;+ 1)-(My+ 1) with M; , and M, given by

S

M. =

L=i=12,
h;

and the co-ordinates of a typical grid point (X, ,X; ) are

X =(i-Dhy,ie {1,2, ..M, + 1} I

Xi=(-Dhyje {1,2, ..M, + 1} J

If we let u; , represent the difference approximation to



the function u at the grid point (lh; ,mh;), then the
Laplacian operator can be replaced by the following five-point

discretisations

(62, + 083, )u,, =0,

withifiel, jel,oc=h, %1 2 and 8"1 ,0,  the usual centred
2

)

difference operators in the designated direction.
In the same way the derivative boundary conditions (2) are

replaced by the following difference equations :

Uy —Uo;— 2h1p1u1,j=2h1H(O,jh2 - h,),

,]
Ui, =W » _thpzui,l =2h,H(ih; —h;,0),

u*M1,j —Umy,j +2h1qluM1+1,j = 2hH(l, jh, —h,),

Ui M, —Uim, T 200005 v,4 = 2h,H(ihy —hy, 1),
with iel, and j € J. It is readily seen that the values of u

which correspond to grid points lying outside the region and of

number {(M;+]1) + (M,+1)} are easily traoed, because of the negative

subscript that they bear, and they can be eliminated by use of
(3) and (4).

In this manner the boundary conditions are incorporated
into the difference analogue of the problem (1), (2) which

yields (M+1) . (M,+1) linear equations, one for each grid point,

€)

(4)



which is written in matrix form as
(H+Vyju = K.
In (5),

(p1-9y) ve GU(pz,qz)

H= Ty Mp+D) © T (My+D) (M+1)

with I the unit matrix of order K, and UK(p %) g tridiagonal

matrix of order K given by

_2(1+pihi) -2

-1 2 -1

UK(Pi,Qi) - i=12,

and the vectors u and K are

1

{ul,la oUW M+ s s e W Mypar s UMl 9"'u,M2+1,M2+1}

and

{Kl.l"" Kimp+r sKap, KZ,M1+1 s Koy gpoes Koy +1,M1+1}

2 2

respectively. The vector u represents the unknown values of u;
that we seek, while the vector K depends on the mesh sizes and on
the values of H(X,,X>) at the grid points on the perimeter of

the region [see 7,8].

©)
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(7)



From the definition of the matrix Ux®? in (7), it is
apparent that neither U nor H is symmetric; similarly from
(6) neither is V. However, as was shown in [7], it is always
possible that a similar equation to (5) can be obtained by
means of a similarity transformation, wherein the matrices
involved are symmetric. To avoid repetition of this work we
refer the reader to [7] and [11] and assume that in (5) the
two matrices, H and V are symmetric.

The above assumption is painless because of the similarity
transformation through which it is carried out and thereby
the eigenvalue spectra remain unchanged.

THE E.A.D.I.SCHEME

For the numerical solution of (5) we make use of the

following Extrapolated A.D.I, procedure

(+rH)u* = [(I+rH) - orH+V)]u™ + orK
(8)
V™™ =u" + rvu® |
where

(™" is the approximating solution vector at the nth

u
iteration (u'® is arbitrary); u* is an intermediate vector
iterate; I is the unit matrix of order (M;+1) (My+1);
ois the extrapolation constant and r is the accelerating
parameter.

In the following we shall focus our attention on the

cases where o is kept fixed while the acceleration parameter r

is allowed to vary in a cyclic way thus getting the known



extrapolated form of the A.D.I, procedures [5]; and the

case where r is kept constant while ® varies in a cyclic fashion
which case, in fact, corresponds to a Peaceman-Rachford scheme
with a built-in Richardson's accelerating process [4].

Before proceeding with the evaluation of the iterative
parameters involved in both cases, we point out the results
obtained in [7] whereby the evaluation of the upper and lower
eigenvalue bounds of the typical matrix (7) is always attainable
with any desired accuracy. Accordingly we could well assume
that the eigenvalue spectra of H and V, are known and given by
(L1,U1), (L2,U2) respectively.

We now examine the two cases.

Case 1. Fixed o and varying r

A "good" parameter sequence {r,} of Douglas type may be
defined on the basis of either spectra. For the moment let us
proceed on the spectrum of H.

So, we start off by setting

¢ =1Ll

and define recursively the following two finite sequences

" {H}n—l
 u/e™ = LI v n=12..n9

é(n+l) — Xg(n) = Ll(%)n with n as above.
u

The common length of the sequences n, is determined by

L00) _ gy o 0D

©)

(10)



and the positive parameters p, and v are such that

p<l< v (11)

ITA
ITA

Clearly, because of (10) we have

|ft3(l)’ (tj(n0+1)J =) [Ll,Ul] :

in addition, it can be proved that the sequence {r,} is such

(1’10+1)

that for any & e [ﬁ(l),ﬁ Jthere is at least one index

ie{l,2,... ,no} =N, say i*, such that

Hfri*éiva

whereas for any other i # i* the relationship

E<rF,<E
”Ul ' ILLL1

holds.

Furthermore, if we consider any pair of eigenvalues
D, 2?) where AV and A* belong to the spectra of H,
and V respectively, then it can readily be shown that if we
iterate ny times with the parameter sequence r, , n = 1,2,...,ny

there exists an index n = n" N for which the inequalities

(11)
RER

hold; while for any other index n we have



u%ll <A < u[LJ—ll *

o Ua neN —{n"} (117%%)
TR WU G TE

Ul L1

Finally, from the inequalities (10) we can get the

following explicit formula for evaluating the cycle length ny,

mf E n (B} <ny <mn [t [B) 41 (12)
Ul v) = Ul Y

from which an additional restriction on p and v can be

imposed because of the requirement for a cycle length greater
than 1 as was effectively observed by Hadjidimos [5].
Now, the reduction matrix for the procedure (8) at the

n+1 iteration is given by
Ty =1 = oty (0 H)Y (0 V) (HAV)

and therefore its amplification factor is
pl,_] = l'wf )
with
0" ) G+ 2 O, O L, ) (13)
Further, the error vectors in two consecutive iterations,

say the n™ and the n+1" , are associated with the equation

e T o



.which easily can be put in the form

n+l

) _T T, e©

i=1

and therefore the error reduction within a whole cycle is

successively given by

||e(110) || no 10
.. = ||HT1 || =max |Hpi,j(marn)| =
i=1

[[e@ )] = 0] nel

max |pi,j (rn*am) ‘ maX H |pi,j (rn a(D) | i

1] 1 neN
) ) ~{n*}

max{|1=03f;1| , | 1-of, |} H

neN—{n*}

{1=ofy| .| 1-of, ||

where f,,,f,, stand for the maximum and minimum value of f under

(11*) and fyv fi, denote the extremes of funder (11*%*).

Moreover, if we set

pr (V) = max {| 1-ofy |, 1-of |}

and require that

{1-ofy |, 1-of, |} <1



10.

then the error reduction within a cycle becomes

[1e" |

W < pp (V) e

Furthermore, because of (12) the number of iterations

needed for the above reduction is

o)/ o)

Obviously, the number of cycles required for an error

reduction below an assigned amount € > 0 is determined by

Py (WS =~ €

and by virtue of (14) we get as the total number of

iterations for the completion of the task above the quantity

In LI In(e)
Ll
Il ~

ln(%)ln pr (u,v)

(15)

From the expression (15) it is evident that the quantity

I;, is minimised when the function
_1al B *
Z(p,v) = ln(;j Inp;  (u,v)

has a maximum.

In fact, the maximisation of Z (p,v) minimises the

calculation needed to reach the preassigned accuracy in the



solution of the problem at hand, and determine the

optimum x and v.

On the other hand, the optimum m will be given by

. 1 1
w=2miny ————- , —

and consequently for determining the optimum iteration

parameters we need the extremes of f for the regions given

in (11*) and (11**), After some algebra, we get

f;\k/I =max {f(lua ﬂﬂa f(V, /Uh)}

Ll Ul
. L U
f =min {f(u, u—=, f(v, u—=
m { (u ﬂUl ( /JLl }

fyy = max {f(,uh, ,u&), f(Vﬂa ﬂh)}
U, L, L, U,

The above forms for the extremes of f clearly indicate
that a new restriction on the parameters x4, and v can be
imposed through the equalisation of the two terms involved
in each one of them. However, the extensive analysis made
in [9] comes out rather emphatically for the equalisation
of the terms in f, which results in faster convergence.

If we comply with this finding we get as the new

restriction the equality

,_ H(uFDU2(UL+ 4L2) — g (UL+L2) (L1+uU2)
1 (UL+L2) (L1+xU2) — (u+1)L2(Ul+ uL2)

11.

(16)



Obviously the same procedure can be carried out on
the basis of the second spectrum, which ends up with the

following relationships

L2
) In (6) In (e)

u
In (;) In P*z (wv)

And

_ w(p+DHULUL+pLl ) — p(U2+L1)(L2+puUI)
~ w(U2+L1YL2+pUl) — (u+1)L2(U2+pLl)

giving approximately the number of iterations for

attaining the same accuracy €, and the extra restriction

on the parameters p, and v.

CASE II. Varying ® and constant r.
Let us assume that the extrapolation parameter ®
varies and that it takes on values from the finite

sequence {0y} with length Ky while the r remains fixed

during the iterations.

The iteration matrix for scheme (8) during the K+1'h
iteration will be given this time by

T

-1 -1
K+l = I—O)K+1 r (I+rH) = I+rV) " (H+V)

while the error in the end of the first cycle is associated

12.

(17)

(18)

(19)



13.

with the initial error by

Accordingly we obtain the following error reduction

within a cycle

10y
e T T I = 1] fe ()]
I
(20)
with
Ko

fK(X) = Ig] (l—OJKX) a polynomial of degree Ky,
and

A = r(I+rH) ' (I+rV) '(H+V) .
Since the matrix A is symmetric we have

g A =20 T (] (21)
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Where

)
a = min
i | @ M+ @)

. rM® + 22
b = min I >N
ij | @ Mm@

By definition we get.

f(0) = 1, and f (——) =0, i=1,2.... Ko+ (22)
.

1

Furthermore, from (20), (21) and (22) we easily see that
our problem has now been transformed to the minimization

problem

max ‘f ‘
min a<x<b K(X) . (23)
fK € PKO ==

where PK is the set of all real polynomials fx(x) of
0

degree Ky satisfying fx(0) = 1+

The solution of problem (23)is unique and given



by [3]

with Ty (x) denoting the ordinary normalised Chebyshev
0

polynomial of degree Ky*

The extrapolation sequence is given by

on =2(b+a-(b-a)ty} ', n=12..K,

where t, signifies the zeroes of the Koth Chebyshev
polynomials

Finally, the optimum r turns out to be the same as
that used in the Peaceman-Raohford scheme with one
acceleration parameter [2] and which as we shewed in [6]
is as in table 1. The error reduction achieved in the

end of the first cycle of Kq iterations is given by
T

(b+aj_1
K() b-a ’

while after m successive cycles with the same sequence

the factor of convergence becomes

b+ra) ™
T .
Ko (b—aj

15.

(24)

(25)

(26)



16.
If we now want to obtain an accuracy €, then the
number of iterations It required can easily be found to be

approximately equal to

Ine

e e T
InTK( )
‘\b-a

. (27)

The properties of the Chebyshev polynomials and the
expression (25) clearly suggest that the larger the length
of the extrapolation sequence, the more rapid the convergence;
consequently one is tempted to think of using sequences with
a large length, e.g. a sequence of K¢o.m extrapolation
parameters instead of using m-times the same sequence with
length Ko. Although the above argument is backed up by the
inherent property of the process to be independent of the
length of the parameter sequence to be used, this may not be
so from the computational point of view, because an
appreciable building up of round-off errors makes the whole
procedure quite susceptible to instabilities. Sometimes
this round-off error growth may severely decrease the length
of the sequence. For example, in [2] the author claims
that in some cases he was getting poor round-off results
with even a pair of extrapolation parameters. In [13]
and elsewhere, ways of controlling this round-off error
accumulation are suggested for alleviating its effect on

the actual convergence of the scheme, yet this growth



seems to be a real Achilles' heel for Richardson’s

acceleration device.

NUMERICAL RESULTS

To compare the efficiency of the two different E.A. D. I.
schemes discussed in this report, we set up several
computer programs for the evaluation of the optimum parameters
and produced effective comparison tables for the two problems
considered in [7]. Thus, the comparison tables 2 and 3.
one for each problem, were compiled by incorporating the
measures of calculation CVD and CTK, (for the Douglas
parameter cycle and the Chebyshev set respectively) derived
from formulae (15), (17) and (27)-

In the second set (the Chebyshev one), cases of various
sequence lengths are displayed to the effect of obtaining
better convergence for these sequences than the Douglas set,
up to a number of subdivisions. For example, if we assume
a Chebyshev set of length two, then from tables 2 and 3 we
conclude that it is best up to 16 and 7 subdivisions
respectively for problems I and II. Further, if we increase
the cycle length by one,then the Chebyshev set becomes best
up to 25 and 12 subdivisions respectively for problems I and
Il; and it is a sequence of six extrapolation parameters which
for the case of 25 subdivisions can restore for the second
problem, the supremacy of the Chebyshev set against the
Douglas one. Finally, if we suppose that our region is

covered by a grid of 50 subdivisions in each direction, then

17



18
varying extrapolation parameter sequences of lengths 6 and 15
are required so that the supremacy of the Chebyshev set may
be retained for this case of mesh.
Before closing this report we would like to stress
the point that for a fixed vazying extrapolation parameter
cycle length the efficiency of the set falls off when compared

with Douglas' cycle as we move on to finer nets.



TABLE 1. The Optimum Acceleration Parameter

Cases Optimum acceleration parameter
L1<L2<U1<U2 oF = Ul + U2 - LI - L2
UlU2 (L1 +L2) - LIL2 (Ul + U2)
L1<L2<U1<U2 As above.
L1U2 = L2U1 The r* is given by the positive root

of q(x) below.

q(éj >0
r* as above
L1U2<L2U1
1 0 r* = L
L1<Ul<L2<U2 U412 2 L2
1 * 1
q—|(>0 r o= —
L2 Ul
L1Uu2>L2U1
qfl_j<() The r* 1s given by the positive
L2 root of q(x)

g(x) = {2 - L2)UlLl — (U1 — L1)u2L2}x*> + 2(L1U2 — L2U1)x + U2 — U1
+ L1 — L2

Note: The cases not included in this table can easily be reduced to those

given above.

61



TABLE 2. COMPARISON OF THE METHODS

Problem I. p;=1+0, q; =10, 1 =1.2
Sub- CD CT2 CT3 CT6
divisions

3| 1.65173 0.86049 0.78339 0.71840

4| 197500 1.08397 0.96612 0.86924

5| 222607 1.29880 | 1.13631 1.00488

6 | 243069 1.50799 1.29798 1.12977

7| 2.60331  1.71347 1.45367 1.35765

8 2.75266  1.91647 1.60504 1.35765

9 288396 2.11726 1.75280 1.46349
10 3.00126 2.31648 1.89782 1.56525
11 3.10737 2.51481 2.04088 1.66377
12 3.20422 | 2.71242 2.18230 1.75951
13 | 3.29282 | 2.90832 2.32157 1.85233
14 | 3.37547 | 3.10526 2.46077 1.94378
15 | 3.45176 | 3.30012 2.59781 2.03262
16 3.52335 | 3.49527 2.73446 2.12012
17 3.59034 | 3.68940 2.86987 2.20585
18 3.65379 | 3.88415 3.00525 2.29066
19 3.71361 | 4.07810 3.13967 2.37404
20 3.77022 | 4.27135 3.27324 2.45614
21 3.82462 | 4.46647 3.40777 2.53813
22 3.87547 | 4.65759 3.53926 2.61762
23 | 3.92458 | 4.85057 3.67176 2.69713
24 | 3.97284  5.04867 3.80752 2.77802
25 4.01755 | 5.23996 3.93841 2.85549
26 4.05959 | 5.42695 4.06617 2.93064
27 4.10272 | 5.62630 4.20218 3.01017
28 | 4.14185 | 5.81388 4.33001 3.08450
29 | 4.18123 | 6.80948 4.46314 3.16152
30 | 4.21779 | 6.19732 4.59085 3.23503
31| 4.25382 | 6.38858 4.72077 3.30947
32| 428905 | 6.58171 485183 3.38423
33 | 4.32315 | 6.77454 4.98258 3.45849
34 | 4.35575 | 6.96449 5.11128 3.53129
35| 4.39039 | 7.17254 5.25213 3.61065
36 | 4.41891 | 7.34879 5.37137 3.67759
37 | 4.44890 | 7.53961 5.50039 3.74978
38 | 4.48081 | 7.74719 5.64065 3.82799
39 | 450961 | 7.94034 577109 3.90048
40 4.53482 | 8.11346 5.88795 3.96524
41 | 4.56667 | 8.33800 6.03943 4.04893
42 | 4.58897 | 8.49909 6.14805 4.10877
43 | 4.61818 | 8.71501 6.29359 4.18875
44 | 4.66271 | 8.90081 6.41877 4.25735
45 | 4.66838 | 9.09970 6.55272 4.33059
46 | 4.68846 | 9.25848 6.65961 4.38890
47 4.71640 | 9.48435 6.81163 4.47164
48 | 4.73833 | 9.65561 6.93357 4.53786
49 | 4.76116 | 9.85821 7.06311 4.60807
50 | 4.78499 | 10.06348 7.20113 4.68271

20.



TABLE 3. COMPARISON OF THE METHODS

Problem II. p;.= - 0.25, qi=1.0, 1=1,2.
Sub- CD CT2 CT3 CT6 CT15
divisions

3| 248349 156779 | 1.34358 1.16435 1.07740

4 | 2.79943 1.98545 1.65358 1.16435 1.27153

5| 3.04546 2.39690 | 1.95597 1.60551 1.44478

6 | 3.24683 2.80475 | 2.24804 1.80350 1.60324

7| 3.41712 3.21003 2.53453 1.99173 1.75043

8 3.56451 3.61319 2.81677 2.17234 1.88864

9 3.69420 4.01404  3.09532 2.34662 2.01935
10 3.81013 4.41357 3.37132 2.51599 2.14400
11 3.91524 4.81323 3.64613 2.68180 2.26387
12 4.01220 5.21668 3.92249 2.84609 2.38064
13 | 4.10096 5.61797 4.19650 3.00686 2.49307
14 | 4.18174 6.01203 4.46487 3.16252 2.60029
15 | 4.25737 6.40778 473380 3.31692 2.70512
16 4.33061 6.81754 5.01172 3.47500 2.81096
17 4.39471 | 7.19897 5.27002 3.62071 2.90724
18 4.45820 | 7.59909 5.54060 3.77223 3.00614
19 451983 8.01006 5.81816 3.92659 3.10566
20 457796 8.41912 6.09413 4.07908 3.20284
21 4.63053 8.80806 6.35628 4.22313 3.29357
22 4.68189 9.20620 6.62442 4.36971 3.38496
23 | 473112 | 9.60556 6.89318 4.51594 3.47520
24 | 477710 9.99503 7.15511 4.65784 3.56193
25 4.81860 | 10.36064  7.40085 4.79046 3.64226
26 4.86347 | 10.77166  7.67697 4.93893 3.73139
27 4.90219 | 11.14004 7.92432 5.07148 3.81029
28 | 4.94384 | 11.55091 8.20009 5.21879 3.89385
29 | 4.98889 | 12.01313 8.51018 5.38389 3.99385
30 | 5.02527 | 12.40041 8.76990 5.52176 4.07384
31 | 5.06421 | 12.82932 9.05743 5.67400 4.10149
32 | 5.09179 | 13.14235 9.26723 5.78482 4.22485
33| 5.13594 | 13.65998 9.61404 5.96759 4.32860
34 | 5.16746 | 14.04244 9.87021 6.10227 4.40445
35| 5.20089 | 14.46008 10.14988 6.24902 4.48656
36 | 5.21840 | 14.68400 10.29980 6.32756 4.53028
37 | 5.25518 | 15.16596 10.62243 6.49631 4.62370
38 | 5.27453 | 15.42602 10.79648 6.58721 4.67373
39 | 5.31540 | 15.99053 11.17423 6.78416 4.78149
40 5.33703 | 16.29779 11.37980 6.89117 4.83967
41 | 5.35954 | 16.62418 11.598.3 7.00469 4.90113
42 | 5.38301 | 16.97149 11.83044 7.12533 4.96614
43 | 5.43318 | 17.73934 12.34393 7.39152 5.10855
44 | 543317 | 17.73919 12.34383 7.39147 5.10852
45 | 5.46008 | 18.16559 12.62893 7.53900 5.18635
46 | 5.48836 | 18.62508 12.93610 7.69776 5.27070
47 551818 | 19.12248 13.26858 7.86937 5.36033
48 | 5.54970 | 19.66297 13.62982 8.05559 5.45806
49 | 554970 | 19.66297 13.62982 8.05559 5.45806
50 | 5.58312 | 20.25336 14.02435 8.25871 5.56315

21.
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