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Abstract

The route to turbulence in the boundary layer on a rotating broad cone is investigated using hot-

wire anemometry measuring the azimuthal velocity. The stationary fundamental mode is triggered

by 24 deterministic small roughness elements distributed evenly at a specific distance from the

cone apex. The stationary vortices, having a wavenumber of 24, correspond to the fundamental

mode and these are initially the dominant disturbance-energy carrying structures. This mode is

found to saturate and is followed by rapid growth of the non-stationary primary mode as well

as the stationary and non-stationary first harmonics, leading to transition to turbulence. The

amplitudes of these are plotted in a novel way to highlight the continued growth after saturation

of the fundamental stationary mode.
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The transition to turbulence in the rotating-disk boundary layer has been investigated

since the 1940’s [1, 2]. In experiments one observes the development of stationary, with

respect to the disk, co-rotating vortices in the boundary layer before transition to turbu-

lence. Linear stability theory suggests that above a certain critical Reynolds number such

vortices grow due to an inviscid convective cross-flow instability. The quite distinct transi-

tion Reynolds number found experimentally was suggested by Lingwood [3, 4] to be due to

an absolute instability. Since then several researchers have studied this and other rotating

flows in the BEK-family (Bödewadt, Ekman, Kármán) and a comprehensive review up to

2015 can be found in Ref. [5]. Slightly later the transition scenario on the disk was further

investigated experimentally [6] and via direct numerical simulations (DNS) [7], and it was

conjectured that an absolute secondary instability on top of the primary vortices was likely

to be the trigger for transition.

Here, we consider the flow driven by a cone rotating at a rate Ω∗ in a still fluid (∗ denotes

a dimensional quantity). The flow geometry is defined by the apex half-angle ψ as shown in

Fig. 1; ψ = 90◦ gives the rotating-disk case. When the cone (or disk) rotates, the fluid at the

surface is forced to move circumferentially. Fluid in the boundary layer is also transported

radially resulting in an inflectional radial velocity profile. On a broad cone, where the cone-

apex angle is large (ψ & 50◦), experiments show co-rotating vortices as for the disk case

(ψ = 90◦)[8]. On the other hand, for sharp cones (ψ . 40◦) centrifugal effects result in a

Görtler type instability that dominates the flow [9]. Also for broad cones stability theory has

shown that an absolute instability exists (see for instance Refs. [10, 11]), similar to the one

for the disk as suggested by Lingwood [4]. However since the stationary co-rotating vortices

always exist in a physical experiment the role or importance of this absolute instability with

respect to transition is not clear [12].

As shown in Fig. 1, an orthogonal coordinate system (x, θ, z) is defined on the cone

surface with the origin located at the apex, where x, θ and z are the coordinates along the

generating line of the cone (herein, the radial direction), the circumferential direction and the

wall-normal direction. Lengths are normalized by a viscous length, δ∗ν =
√
ν∗/(Ω∗ sinψ),

where ν∗ is the kinematic viscosity of the fluid and x = x∗/δ∗ν is the square root of the

Reynolds number.

The experiments were conducted on a solid aluminium alloy cone, having a base diameter

of 474 mm and an apex half-angle ψ = 60◦. The cone surface has a smooth finish (surface
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roughness

FIG. 1. The coordinate system (x, θ, z) on the rotating cone.

roughness of approx. 1 µm). It was mounted on an air bearing and rotated by a d.c.-motor at

Ω∗ between 900 rpm and 1800 rpm around a vertical axis. The azimuthal velocity component

was measured at a constant wall height z = 1.2 using a single hot-wire probe with its sensing

element parallel to the x-direction at fixed points in the laboratory frame. The length and

diameter of the wire were approximately 0.5 mm and 2.5 µm, resepectively. The signals from

the anemometer and the tachometer attached to the spindle of the cone were simultaneously

recorded for 1200 cone revolutions at a sampling rate of 720 data points per revolution. The

velocity signal was post-processed using a high-pass filter (ω∗/Ω∗ > 3.5), where ω∗ is the

disturbance angular frequency (in the laboratory frame). Note that if the vortices are fixed

with respect to the cone surface, then ω∗/Ω∗ gives the azimuthal wavenumber. In the

following, the measured velocity was normalized by the local wall velocity Ω∗x∗ sinψ. From

the azimuthal velocity fluctuation v(t; θ, x), the stationary component ṽ(θ;x) was evaluated

by phase averaging the fluctuation for every 5 revolutions. Further details of the setup as

well as the mean flow can be found in Ref. [12].

The basic-flow characteristics of the cone flow are similar to that of the rotating disk (see

Ref. [12]) except the most unstable wavenumber for the primary stationary disturbance, at

the critical Reynolds numbers, is 22 for the disk and 19 for the 60
◦
cone. The corresponding

critical x-values are 286 and 268, respectively. Here, we mounted 24 roughness elements uni-

formly in the azimuthal direction at a fixed radial location x∗ = 115.7± 0.5 mm to trigger

the primary instability deterministically. We chose 24 roughness elements since experiments

on the clean cone showed 20 to 26 vortices. As in Ref. [6] dry transfer lettering LetrasetR©

(Ref. 13045) was used, for the roughness, each was circular with a diameter of approxi-
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FIG. 2. Transition locations xtr against non-dimensional roughness height h = h∗/δ∗ν . Black, blue,

green and red markers correspond to 900, 1200, 1500, and 1800 rpm.

mately 2 mm. The deterministically introduced disturbance gives a fixed fundamental wave

number on the entire cone [12] and its initial development compares well with linear stability

analysis. In the case without deterministic disturbances, e.g., a clean cone or with randomly

distributed roughness elements, the wavenumber may vary but the disturbance development

is still well predicted by linear theory [13].).

We present data from two different experiments: i) for a given rotational speed, varying

the roughness height h∗; and ii) for a specific roughness height, varying the rotational speed.

In case i) the height is varied by layering elements, giving h∗ of approximately 4, 8, 13 and

17 µm. In case ii) h∗ ≈ 8 µm and Ω∗ was 900, 1200, 1500 or 1800 rpm. A case without

roughness elements was also conducted, at the same four rotational speeds; the “clean” case.

Figure 2 shows the transition position, xtr for all cases against the non-dimensional rough-

ness height h = h∗/δ∗ν . Determining the transition position makes use of spectral information

as described below. The clean case corresponds to h = 0 and xtr is seen to be rather in-

sensitive to Ω∗ although increasing Ω∗ leads to slight decreases in xtr. As expected, with

increasing h∗ (case i), at a given rotational speed (here 900 rpm), the location of transition

moves upstream (decreasing xtr), whereas the behavior with an increasing rotational speed

and fixed roughness position and height (case ii), is non-monotonic; this will be explained

below.

The development of the disturbances will first be discussed using the power-spectrum

development with x as shown in Fig. 3. Here the power-spectrum density log(E) of the

azimuthal velocity component for the cone rotating at 900 rpm with a) 2 layers and b) 4 layers

of LetrasetR© and also in c) the case with 1800 rpm with 2 layers are presented. The ordinate
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FIG. 3. Power-spectrum density log(E) for the cone with 24 roughness elements: (a) h∗ = 8 µm,

900 rpm, (b) h∗ = 17 µm, 900 rpm, and (c ) h∗ = 8 µm, 1800 rpm. The solid line shows the

neutral curve for stationary disturbances from linear stability theory. The dashed lines at (a) and

(b) x = 267, and (c) x = 377 locate the roughness elements. The black arrow on the abscissa

indicates the transition location for the respective case, as in Fig. 2.

shows normalized frequency ω∗/Ω∗. The solid line shows the neutral curve based on local

stability analysis. The dashed lines indicate the location of the roughness elements. There

is no unique way to determine the transition position. Here we use the spectral information

to calculate the mean spatial (in x) growth rate of all wavenumbers. The position where the

mean growth rate reaches its maximum is taken as the transition location, xtr.
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FIG. 4. (a) Rms and (b) spatial growth rate (−αi) of the azimuthal velocity fluctuation with

different roughness heights (900 rpm): h∗ = 4 µm (black), 8 µm (blue), 13 µm (green), and 17 µm

(red). The rectangle at x = 267 indicates the roughness elements. The dash-dotted and solid lines

show the stationary components of the fundamental and the first harmonic (ω∗/Ω∗ = 24 and 48),

respectively. In (a), the solid marker (upper right) indicates the total rms level for the turbulent

flow. The arrows on the abscissa in (a) show the transition locations as in Fig. 2; in (b), the thin

line shows the growth rate based on LLSA.

The roughness elements initially introduce disturbances at multiple harmonics (ω∗/Ω∗ =

24, 48,...). In case i), comparing Fig. 3(a) and (b), most of disturbances disappear below

x ≈ 300 except the fundamental (ω∗/Ω∗ = 24). Although the fundamental disturbance also

decays, it begins to grow when entering the unstable region (beyond the neutral curve, i.e.

x > 286). Further downstream (i.e. larger x) higher harmonics appear and at a distinct

x the spectrum fills up indicating that transition has occurred. The comparison between

Fig. 3(a) and (b) shows that increasing h∗ makes the harmonics appear at smaller x-locations

and the transition shifts upstream.

Another way to study the transition scenario in more detail is to plot the development of

the fundamental (ω∗/Ω∗ = 24, dash-dotted lines) and first harmonic (ω∗/Ω∗ = 48, solid lines)

as in Fig. 4(a). As h∗ increases, the initial transient coupled to the disturbance increases.
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After a short transient for x . 295, the fundamental grows and the spatial growth rate

shows good agreement with local linear stability analysis (LLSA) up to x ≈ 380 in Fig. 4(b).

In the linear region, the roughness height does not affect the growth rate but slightly affects

the x-location where the growth rate begins to deviate from LLSA. The deviation occurs

when ṽrms of the fundamental reaches a certain magnitude ṽrms, 24 ≈ 10−2 (or the first

harmonic reaches ṽrms, 48 ≈ 10−4), similar to what Appelquist et al. reported (figures 8 and

9 in Ref. 7) for the rotating disk. Around the deviation point, the first harmonic (solid line)

has its maximum growth rate which is nearly double that of the fundamental, indicating

a quadratic nonlinear process [14]. After nonlinear saturation, both the fundamental and

first harmonic reach their maxima in the range 484 . x . 512, nearly corresponding to the

transition locations marked by the arrows on the abscissa. Increasing the roughness height

shifts the whole process upstream.

We now focus on the power-spectrum density for case ii) in Fig. 3 with a fixed roughness

height (h∗ = 8 µm), but different Ω∗: (a) 900 rpm and (c) 1800 rpm. When increasing

the rotational speed the characteristic length scale δ∗ν decreases, which brings two effects: i)

increasing the amplitude of the initial disturbance h∗/δ∗ν ; and ii) shifting the location of the

initial disturbance downstream (with respect to the normalized x-location). In Fig. 3(c), the

roughness is within the unstable region and the fundamental begins to grow directly however,

since the roughness element is at a larger x, the disturbance amplitude does not catch up

with that introduced at smaller x despite the non-dimensional height of the roughness being

larger. This leads somewhat counterintuitively to transition occurring around x = 497

compared to x = 487 at the lower rotational speed.

To get a better picture of the development of the amplitude of the fundamental and first

harmonic of the stationary mode, we plot these as in Fig. 4. Figure 5 shows the development

for the cases with different rotational speeds with fixed roughness height (h∗ = 8 µm). Here,

it is clearly seen that for 900 rpm the fundamental decreases after the initial transient before

it starts to amplify according to LLSA. However, for 1200 rpm (where the roughness element

is within the unstable region), the fundamental does not decay but amplifies directly after

the initial transient from a larger amplitude than that of the 900 rpm case at the same x

and, therefore, its amplitude leads the 900 rpm case. For the two other cases (1500 and

1800 rpm), the initial transient becomes larger and they also amplify directly. In the case of

1500 rpm, by chance, the fundamental initially almost perfectly overlaps with the 900 rpm
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FIG. 5. (a) Rms and (b) spatial growth rate (−αi ) of the azimuthal velocity fluctuation for

different rotational speed cases (h∗ = 8 µm): 900 rpm (black), 1200 rpm (blue), 1500 rpm (green),

and 1800 rpm (red). The rectangles at the bottom indicate the roughness elements. The dash-

dotted and solid lines show the stationary components of the fundamental and the first harmonic

ω∗/Ω∗ = 24 and 48, respectively. In (a), the solid marker (upper right) indicates the total rms

level for the turbulent flow. The arrows on the abscissa show the transition location as in Fig. 2; in

(b), the thin solid and dashed lines show the growth rate for the fundamental and first harmonic

based on LLSA.

case. For 1800 rpm, the initial transient is slightly higher but the development is shifted

downstream compared to the others.

Just after the transient of each first harmonic, the initial decay rates follow LLSA

(ω∗/Ω∗ = 48) for all cases shown in Fig. 5(b). Then, the growth rates follow a similar

pattern as for the fundamentals and their maximum growth rates are typically twice those

of the fundamentals, except for 1800 rpm, which is slightly smaller. The transition positions

shown by the arrows at the bottom of the figure seem to be coupled to the largest maxima

of the harmonics.

From what has been shown above, it is clear that the stationary vortices have a role

in the transition scenario and initially they are the dominant disturbance-energy carrier.
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In order to investigate the nonlinear interaction and transition process it is possible to

plot harmonics as functions of this fundamental stationary mode (instead of plotting them

against x). Some examples are shown in Fig. 6(a-c) where the fundamental non-stationary

mode as well as the first harmonic of the stationary and non-stationary modes are shown.

The non-stationary component v′ was obtained by subtracting the stationary component

from the total fluctuation signal. Here, we show data for four different Ω∗ and, after the

initial transient, the disturbance amplitudes collapse for all three modes, albeit the highest

rotational rate (red) has a slightly smaller slope (see also Fig. 5(b)). The growth rate of the

first harmonic of the stationary disturbance is double that of the fundamental as indicated

by the slope of 2 in the figure. A similar behavior can be seen for the non-stationary

components.

Figure 6(d-f) shows the ratio of the amplitude of each mode to that of the fundamental sta-

tionary mode ṽrms, 24. As can be seen initially the non-stationary fundamental disturbance

grows at the same rate as the stationary disturbance, i.e. the ratio of the non-stationary to

the stationary fundamental disturbance remains a constant, nearly 10% shown in Fig. 6(d).

However, the first harmonic of the stationary disturbance as well as the non-stationary dis-

turbances (both the fundamental and first harmonic) continue to grow when the fundamental

mode has saturated (ṽrms, 24 ≈ 8× 10−2). Eventually the non-stationary disturbances take

over and dominates the disturbance energy; the amplitude ratio exceeds unity in Fig. 6(d)

and (f), however at that point transition has already occurred and disturbance energy has

spread over the whole spectrum.

This behavior can, of course, also be observed in Figs. 4(a) and 5(a) however, by plotting

the harmonics against the amplitude of the fundamental disturbance, this development

becomes clearly illuminated.

The results presented here seem to indicate that as the stationary mode saturates, a

mean-flow modification with a three-dimensional base flow establishes. At this stage, a

clear change in energy growth is seen, from growth of the primary stationary vortices to a

growing unsteady primary mode as well as stationary and non-stationary harmonics. These

become the dominant growing energy carriers during this stage of transition to turbulence.

Whether this is the same as the absolute secondary instability discussed in Ref. [7] or a

different mechanism needs further investigation.
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FIG. 6. Amplitude of different disturbance components as a function of the amplitude of the

fundamental disturbance: a) v′rms, 24, b) ṽrms, 48, c) v′rms, 48 and its ratio to the amplitude of

the fundamental disturbance: a) v′rms, 24/ṽrms, 24, b) ṽrms, 48/ṽrms, 24, c) v
′
rms, 48/ṽrms, 24 for Ω∗:

900 rpm (black), 1200 rpm (blue), 1500 rpm (green), and 1800 rpm (red). The squares indicate the

location of roughness elements and the circles the transition position. The anti-clockwise arrows

show the direction of increasing x.

ACKNOWLEDGMENTS

We thank Dr Antonio Segalini for providing the local linear stability analysis results. This

work was supported mainly by the Swedish Research Council (VR) through the ASTRID

project, supporting the first author.

[1] N.H. Smith, “Exploratory investigation of laminar-boundary-layer oscillations on a rotating

disk,” NACA Report No. TN 1227 (1947).

10



[2] N. Gregory, J. T. Stuart, and W. S. Walker, “On the stability of three-dimensional boundary

layers with application to the flow due to a rotating disk,” Phil. Trans. R. Soc. A 248, 155–199

(1955).

[3] R. J. Lingwood, “Absolute instability of the boundary layer on a rotating disk,” J. Fluid

Mech. 299, 17–33 (1995).

[4] R. J. Lingwood, “An experimental study of absolute instability of the rotating-disk boundary-

layer flow,” J. Fluid Mech. 314, 373–405 (1996).

[5] R. J. Lingwood and P. H. Alfredsson, “Instabilities of the von Kármán boundary layer,” Appl.
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