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ABSTRACT 

In  this  paper  we   study  the   stability  and  convergence  properties  of  Bergman 

kernel  methods,   for  the  numerical  conform al  mapping  of  simply  and  doubly- 

connected  domains.     In  particular,  by  using  certain  well-known  results of 

Carleman,   we  establish  a  characterization  of   the  level  of   instability   in 

the  methods,   in  terms   of   the  geometry  of   the  domain  under  consideration. 

We   also   explain  how  certain  known   convergence   results   can  provide   some 

theoretical  justification  of   the  observed  improvement   in  accuracy  which 

is  achieved  by  the  methods,  when  the  basis   set  used  contains   functions 

that  reflect  the  main  singular  behaviour  of  the  conformal  map. 



 



1.       Introduction

Let  əΩ  be  a  closed  piecewise  analytic  Jordan  curve  in  the  complex  z-plane, 

assume  that  0  is  in Ω  =  Int(əΩ ),   and  let  f  be  the  function  which  maps  conformally 

Ω  onto  the  unit  disc  {w :  |w|  < 1}   so  that  f(0)  =  0  and  f ' (0)  >  0.    Also,   let  L2 (Ω) 

be  the  Hilbert  space  of  all  square  integrable  analytic  functions  in Ω,  denote  by 

<.,.>  the  inner  product  of  L2 (Ω),  i.e. 

                                                   ∫∫=<
Ω z ,dsv(z)u(z)v)u,                                          (1.1)

and  let  K(.,0)  be  the  Bergman  kernel  function  of  Ω.  Then,  the  kernel  K(.,0) 

is  uniquely  characterized  by  the  reproducing  property 

                          <  g,  K(.,0)  >  =  g(0)   ,        ∀   g ∈   L2(Ω)                                             (1.2) 

and   is   related  to   the   mapping   function  f  by  means  of 
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see  e.g.   [1,7,8,12].  

Let  nj ; =  1,2,3,...,  be  a  complete  set  of  functions  of  L2(Ω).     Then 

the  reproducing  property  (1.2)  and  the  relation  (1 .3)    suggest  the  following 

procedure  for  approximating  the  mapping  function  f.  The  set  { }n
1jj =η   is 

orthonormalized  by  means  of  the  Gram-Schmidt  process  to  give  the  orthonormal 
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and  finally  equation   (1.3)   is  used  to  give  the  approximation 
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to  the  function  f.     In  other  words  the  approximation  f n  is  obtained  after 

first  determining  the  least  squares  approximation,   in 

(1.5) 

 
,},......2,1{span nn ηηη=∧  (1.6) 
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to  the  Bergman  kernel  function  K( . ,0 ) .      This  method  of  approximating  f  is  the 

well-known  Bergman  kernel  method  (BKM);   see  e.g.   [1,2,4,7,8,10,12-14]. 

Let  now əΩ1  and  əΩ2  be  two  closed  piecewise  analytic  Jordan  curves  such 

that   əΩ1  ⊂   Int(əΩ2)   and  0    Int(əΩ1),   denote  by  Ω  the  doubly-connected  domain 

 Ω= Ext(əΩ1)  ∩  int (əΩ2) , (1.7) 

and  let  f  be  the  function  which  maps  conformally  Ω  onto  a  circular  annulus 

{w :  1 <  |w|  < M}  so   that   f (  ζ 1 )    =  1,  where  ζ1   is   some   fixed  point  on  əΩ1.  Also 

let 

H(z)  =  f ' ( z ) / f ( z )   -  1/z  , (1.8) 

and  denote  by  L (Ω)   the  Hilbert  space  of  all  functions  in  LS
2 2(Ω)  which  also 

possess  a  single-valued  indefinite  integral  in  Ω.  Then,   it  can  be  shown  that 

for  η ∈  L  (Ω) S
2

                       dzzziH ||log)(
21

, ηη ∫ Ω∂Ω∂=>< U                                                (1.19) 

provided  that  the  function  η  satisfies  certain  boundary  continuity  requirements; 

see  [7,p.249]   and  the  remark  in  [15,§2,p.686].     In  other  words,  the  determin- 

ation  of  < η,H >  does  not  require  the  explicit  knowledge of  H  and,  because of 

this,  an  approximation  fn    to  f  can  be  determined  by  means  of  (1.8),   in  a  manner 

similar  to  the  BKM.     That  is,   the  approximation  fn  to  the  conformal  map  of  the 

doubly-connected  domain   (1.7)   is  determined  from  the  least  squares  approximation 

of  the  function  H  in  Λn, where  now Λn is  an  n-dimensional  subspace  of  LS
2  (Ω). 

Also,   an  approximation  to  the  outer  radius  M  of  the  annulus,   i.e.   to  the  con- 

formal  modulus  of  Ω,  may  be  determined,  from  the  least  squares  approximation 

of  H  by  means  of 

,2/||H||dz|z|log
2
1

i
1Mlog 2 π
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                            (1.10) 

where   ||  •  ||2    =  <.,.>  The  above  method  for  approximating  f  and  M  is  the  ortho- 

normalization   method  ONM considered  recently  in  [15,17]; see  also   [7,§53,p.249]. 
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The  purpose  of   this  paper  is  to  consider  the  stability  and  convergence 

properties  of   the  BKM  and   the  ONM,   in  relation  to   the  basis   set   {η j.}  used 

and  to  the  geometry  of   the  domain  Ω  under  consideration.     In  particular,  we 

consider  the  effect   that   the  geometry  of  Ω  has  on  the   stability  and  convergence 

of   the  methods  when  the  "monomial"  basis   sets  

                                                                                       (1.11) ,....,.........2,1j;z 1j
j ==η −

 
and 

,.......,2,1j;1jz/1j2,1jz1j2 =+=η−=−η                                                    (1.12) 

are  used  respectively  in  the  BKM  and  ONM.     We  also  consider  how  the  use  of 

"augmented"  basis   sets,   of  the   type  considered  in  [10]   and   [13-18],   affect 

the   stability  and  convergence  properties  of   the  two  methods.     These  augmented 

sets  are  formed  by  introducing  into  the  monomial   sets   (1 .11)    and   (1.12) 

"singular"  functions  that  reflect  the  main  singular  behaviour  of   the  conformal 

maps  on əΩ  and  in   compl(ΩUəΩ). 

The  details  of   the  presentation  are  as   follows: 

In  Section  2  we  consider  various  ways   of  measuring  the  level  of   instability 

in  the  Gram-Schmidt  process  and,   in  particular,   we  define  an  instability  . 

indicator  which  can  be  computed  easily  during  the  orthonormalization. 

In  Section  3  we  consider  the  stability  properties  of   the  BKM  and  the  ONM. 

In  particular,  we  establish  a  geometrical  characterization  of  the  degree  of 

instability  in  the  orthonormalization  of  the  monomial  basis  sets  (1.11)   and 

(1.12),   by  using  certain  well-known  results  of  Carleman   [5].      (It   is,   of  course, 

well-known  that  the  Gram-Schmidt  process  is  numerically  unstable.   However,  for 

the  applications considered  here,  we  are  not  aware  of  any  detailed  study  regard- 

ing  the  dependence  of  the  level  of  instability  on  the  basis  set  used  and  on 

the  geometry  of  Ω.) 

Section 4 concerns the convergence properties of the BKM and ONM. Here, 

we discuss the significance of certain known convergence results contained in 

[7,8,11,20],     In  particular,   we  indicate  how  the  results   in  [7,8]   can  be  used 
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to  provide  some  theoretical  explanation  of  the  observed  improvement  in  accuracy 

which  is  achieved  when  the  monomial   sets   (1 .11) and (1.12)   are  augmented  by 

introducing  appropriate  singular  functions. 

Finally,   in  Section  5  we  present  several  numerical  examples,   illustrating 

the  stability  and  convergence  results  of  the  previous  sections. 

2.        Instability   Indicators

In  what  follows  the  function  g  and  the  Hilbert  space  Λ  have  the  following 

meanings,   depending  on  whether  the  domain Ω   under  consideration  is  simply  or 

doubly-connected. 

(i)     When Ω is  simply-connected  then  g  is  the  Bergman  kernel  function  K(.,0) 

of  Ω,    and  Λ  is  the  space  L2 (Ω) • 

(ii)     When  Ω  is  doubly-connected  then  g  is  the  function  H  of   (1.8),   and  A 

is  the  space  L  (Ω) S
2

Let  η j;     j   =  1 ,2 , . . . ,    be  a  complete  set  of  Δ  and  let 

An  =  span{η1,η2...,η n}  (2.1) 

Then,  with  the  notation  introduced  above,   in  both  the  BKM  and  ONM  the  approx- 

imation  fn  to   the  mapping  function  f   is  determined  after  first  computing  the 

least  squares  approximation ∧∈∧∈ gandg nn  
That  is, 

                                                     ,                                                      (2.2) *
j

*
j

n

1j

,ggn η>η<= ∑
=

where   { }n
1j

*
j =

η   is the orthonormal set  obtained  from  { } ,n
1jj =

η    by means  of   the  Gram- 

Schmidt  process.     Of   course , the  approximation  (2.2)   can  also  be  expressed  as 
 

                                                                                                                   (2.3)∑
=

=
n

1j
,jηj,ncng

where  the  coefficients  cn, ;  j  =  1(1)n,   satisfy  the  Gram  linear  system 

                                                                              (2.4).n)1(1i;,gc, ij,ni

n

1j
j =>η=<>ηη<∑

=

Let 

Gn =  {<ηj,η i >} .   (2.5) 
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denote  the  coefficient  matrix  of   (2.4)   and  let  C(Gn)  be  the  spectral  condition 

number  of  Gn ,   i.e. 

                                                                              (2.6) ,)G()G()G(C 1
nnn
−ρρ=

where  we  use  ρ (·)   to  denote  the  spectral  radius  of  a  matrix.     Then,   a  small 

C(G n  )   implies  that  the  Gram  linear  system  (2.4)   is  well-conditioned,  and 

suggests  that  there  is  no-excessive  build-up  of  rounding  errors  in  the  corres- 

ponding  orthonormalization  process.     Conversely,   a  large  C(Gn )   suggests  ill- 

conditioning  and  a  rapid  build-up  of  errors.    However,  a  large  C(G n  )  may  be 

simply  due  to  a  badly  scaled  Gram  linear  system.     For  this  reason,   it  is  more 

appropriate  to  use,   as  a  measure  of  instability,   the  condition  number  )Ĝ(C n

corresponding  to  the  normalized  Gram  matrix 

 

 where                                                    (2.7)                     

⎪
⎪
⎭

⎪⎪
⎬

⎫

ηη=η

>ηη<=

.||i||/iiˆ

},iˆ,jˆ{nĜ

Of  course,   the  condition  number 

                                         ,)1
nĜ()nĜ()nĜ(C −ρρ=                                                          (2.8)

depends  on  the  basis  set  {nj.}  used  and  on  the  geometry  of  the  domain  Ω  under 

consideration.     However,   it   is  very  difficult  to  obtain,   directly  from  defin- 

ition  (2.8),  any  information  regarding  the  dependence  of  C(Ĝ n  )  on  {η j.}  and 

on Ω . Furthermore,   the  determination  of   C(Ĝ n  )   involves  considerable  comput- 

ational  effort.     Ideally,   we  require  an  easily  computable   instability  indicator, 

which  can  also  be  used  to  provide  a  characterization  of  the  degree  of  instability 

in  terms  of  the  basis   set   {η j.}  and  the  geometry  of  Ω.  Such  an  indicator  emerges 

from  the  result  of  the  following  theorem,  which  is  due  to  Taylor   [24]. 

Theorem  2.1     (Taylor   [24,p.p.46-47]) 

Let  Ni ;     i  =  1(1)n,  denote  the  (n-l)-dimensional  subspaces 

}n,......1i,1i,.......2,1{spaniN η+η−ηηη=                                                  (2.9) 
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of  Λ n  ,   and  let  e i  be  the  ith  column  of  the  n × n   identity  matrix.     Then,  for 

any  i  =  1,2,...,n, 

                                             ,II~)}G(C{ i,ni,n
1

n ≤≤−                                                      (2.10)
where 

                                                    ,ie1
nGH

iein,I~ −=                                                          (2.11)

and 

                                               .2||uiˆ||min
iueNi,nI −η=                                                                   (2.12 )

As  was  remarked  by  Taylor  [24],   the  deviation  of  the  quantity 

                                                          (2.13) iIn,min
ni1nIS ≤≤=

from  zero  measures  the  deviation  of  the  set   {η i}  from  linear  dependence.     (If 

the  are  linearly  dependent,   i.e.  if iss'ˆ iη { }n 1iiˆ
=η

  
not  a  basis,  then  In,i  =  0, 

whilst  if { }n 1iiˆ
=η   is  an  orthonormal  set  then  I  n-i  =  1;  i  =  1(1)n.)     This 

means  that  the  deviation  of  the  numbers  IS n   from unity  gives  a  measure  of  the 

level  of  instability  in  the  orthonormalization  process.     However,   a  more  easily 

computable  instability  indicator  can  be  defined,  by  using  (2.9)-(2.10),   as  follows. 

We  recall  that  the  Gram-Schmidt  process  generates  a  triangular  array  ai j ; 

i  = 1(1)n,  j  <  i,  with  diagonal  elements  a ii  >  0,   so  that  each  orthonormal 

function   is  of  the  form *
iη

                            i   =1,2,……n.                                       (2.14) ∑
=

η=η
i

1j
;jjia*

i

Let  A    be  the  n x n  lower  triangular  matrix  formed  by  the  coefficients  ai j,   in 

(2.14),     Then,   the  orthonormality  property     implies  that ji
*
j

*
i , δ>=ηη<

 

                                                     ,nAH
nA

1
nG =
−

                                                       (2.15) 

where  Gn  is  the  Gram  matrix  (2.5).     Therefore,   from  (2.7),   (2.11)   and  (2.15) 

we  have  that 

                                          
,|a|||||

||||/)eA()eA(I~

12n

1j
ji

2
i

2
iin

H

ini,n

−

=

−−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

η=

η=

∑
                                              (2.16) 
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i.e. 

           ,1n)1(1i;1)i,1nI
~/12|ina|2||i{||i,nI

~ −=−
−+η=  

 

(2.17a) 

and       

                       n,nIn,nI~ =  

                                                                                                               (2.17b).2
|nna|2||nn||/1=

 
Let 

                                                  .in,I~
ni1

minnSI~
≤≤

=                                                               (2.18)

Then,   from   (2,10), 

                                              ,nIsnsI~1)}nG(C{ ≤≤−         (2.19) 

and this shows that, like ISn , the number ĨSn may also be regarded as an 

instability indicator. However, unlike ISn , the indicator (2.18) can be 

computed  easily  during  the  orthonormalization,  by  means  of   (2.17). 

We  end  this  section  by  considering  briefly  another  instability  indicator. 

This   is  the  so-called  Bauer's  condition  number  of  the  Gram  matrix  G n ,  which 

is  defined  by 
                      )).i(diagnG)i(diag(C

0i
inf)nG( γγ

>γ
=β                                                  (2.20) 

i.e.   β (G n  )   is  the   spectral  condition  number  corresponding  to  the  best  possible 

re-scaling  of   the  matrix  G n .     Clearly,   it   is  very  difficult  to  determine   (G β n ) 

and,   for  this  reason,   the  measure   (2.20)   is  of  mainly   theoretical  value.     How- 

ever,   we   must   state   here  an  important  result   due   to   Švecova   [23],   concerning 

the  condition  number  β(Gn  )   of  the  matrix  G n   corresponding  to  the  monomials 

zj-1 ;     j=1,2,.,.,n.      Švecova  has   studied  the  asymptotic  behaviour  of   this 

β (G n )   and  has   shown  that,  unless  Ω   is  a  disc  with  its  centre  at   0, 

                                                         .)nG(nlim ∞=β∞→                                                        (2.21)

3.        S t ab i l i t y   P rope r t i e s

 We  examine  first  the  stability  properties  of   the  BKM  with  monomial  basis 

(1.11),   i.e.   with 

                             η j (z)=  z j-1 ;    j   =   1,2,3,. . .    ,                                              (3.1) 
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for  the  mapping  of  a  simply-connected  domain  Ω.     More  specifically,  we  examine 

the  rate  of  decrease  of  the  sequence  {I n,n }  where,   from  (2 ,12)    and   (2.17)-(2.19), 

                                                                                      (3.2) ,n,nInISnSÎ1)}nĜ(C{ ≤≤≤−

and  where,   for  the  set   (3.1), 

                                                                        (3.3) }2||nz||/2||unz{||
numin1n,1nI −∧∈=++

with

  ∧ n=  span{1,z,z2,..., z n -1}   .                                        (3.4) 

Our  main  result   is  Theorem  3.2,  which  gives  a  geometrical  characterization  of 

the  rate  of  decrease  of  {I n,n }  and   hence,  because  of   (3.2),   of  the  level  of 

instability  in  the  orthonormalization  of  the  set   (3.1).     The  theorem  is  estab- 

lished  by  using  two  preliminary  lemmas,   concerning  the  sizes  of   ||  z n  ||2  and 

    .2||unz||
numin −∧∈

Lemma  3.1       let  ∂Ω  be  a  closed  piecewise  analytic  Jordan  curve  without  cusps, 

a n d   l e t  

    d  =  max{ | z|   :   z ∈  ∂Ω}  .                                               (3.5)  

Then,   there  exists  a  constant  α > 0  so  that,   for  all  n> 0, 

                                              .
)1n(
2nd||z||

)1n(n
d 2

2n
2n2

+
+π

≤≤
+

α +

                                           (3.6)                    

Proof       Let  D  =  {z   :   |z[   <  d}.     Then,Ω ⊆ D  and  the  upper  bound  follows   since 

    ∫∫ +π= +

D

2n2
z

2n ).1n/(ddS|z|

To  establish  the  lower  bound,   let  z 0  ε   ∂Ω  be  such  that  d  =   |z 0|   and  assume, 

without  loss  of  generality,   that  Ω  is  orientated  so  that  z 0   =  (d,0).     Then  the 

assumptions   concerning  the  geometry  of  ∂Ω imply  that  there  exist  numbers  r 1  > 0 

and  θ1 ,θ2 ,   with  θ1 +θ2  > 0,   so  that   the   sector 

 )}()dzarg()(,r|dz:|z{A 211 θ+π<−<θ−π<−=  

is  contained  in  Ω. This  means  that 
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                          ∫∫ ∫ θ−∫
θ+π
θ−π≥≥ A 1r ,rdrdn2)rd(2
1

zdS2|nz|2||nz||
0

 

 
and  the   lower  bound   follows.

            The  next  lemma  contains  essentially  one  of  the  results  of  Carleman     [5], 

on  asymptotic  properties  of  orthonormal  polynomials;     see   [7,p.136],   [8,p.20] 

and   [21,p.288],     The  result   of  the  lemma  is  given  in  terms  of  the   so-called 

capacity  of   the  curve  ∂Ω , which  is  defined  as  follows.     Let  f E  be  the  function 

which  maps  conformally  Ext (∂Ω)   onto  {w :  |w|  >  1},   so  that  fE(∞)   =  ∞  and 

.0)z(flim '
Ez

>
∞→  

Then, 

.)}z(f{lim)Ω(cap 1'
Ez

−

∞→
=∂                                           (3.7) 

Lemma  3.2   Let  Ω Ω  be  as  in  Lemma  3.1 and let ∂U

      c  =  cap (∂Ω) 

  be     the    capacity    of    ∂Ω   as   defined     by   (3.7).        Then 
,)1/(||||min 222 +≤− +

∧∈ ncuz nn

nu π                                     (3.8) 

where  Λn    is  the  polynomial  space   (3.4).

The  lemma  can  be  established  by  modifying  trivially  the  proof  of  Theorem 

2 of  Gaier  [8,p.20-22].    More  precisely  in  [8]  Gaier  establishes  the  sharper result 

            ,c0r),2n
00(r1)/(n22nπc2||unz||

numin <+++=−∧∈                   (3.9) 

of   Carleman    [5],   under  the  assumption  that   ∂Ω is   an  analytic curve.  (To recog- 

nize  the  connection  between   (3.9)   and  the  result  proved  in  [8],   recall  that 

,1,12/12||||min ++=−∧∈ nnaunz
nu

 

where  a n+l, n+l   is  the  coefficient  of   z n    in  the   (n+1)th  orthonormalized  poly- 
nomial,   and  observe  that  Gaier  denotes  this  coefficient  by  k n ) 

Theorem  3.1       Let  ΩUəΩ    be  as  in  Lemma  3.1,   let  I n+l,n+l  be  defined  by  (3.3), 

and   let 
        δ   =  {c/d}2 (3.10) 

where,  as  before  d  =  max{|z|  :  z ∂∈ Ω}  and  c  =  cap (əΩ) . Then,   there  exists  a 

constant  β > 0  so  that,   for  all  n  > 1, 
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nn1n,1nI δβ≤++ .                                                   (3.11) 

Furthermore,   if  əΩ    is  analytic  then  there  exist  constants  β > 0,γ >0  and 

0 < r0 < c  so  that,   for  all  n > 1, 

                                .                             (3.12)

 

nn1n,1nI
n2

c
0r11n δβ≤++≤

⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
γ−+δ

(Observe  that    δ <  1 ,  unless  Ω  is  a  disc  {z : | z |  < R}   in  which  case  δ = 1.) 

Proof       The  result   (3.11)   is  a  direct  consequence  of   (3.8)   and  the  lower  bound 

in  (3.6).      The  lower  bound  in  (3.12)   is  established  by  using  (3.9)   and  the  upper  

bound   in   (3.6). 

 Finally,   the  upper  bound  in  (3.12)   is  obtained  from  (3.8),  by  observing 

that  if  ə Ω  is  analytic  then  the  lower  bound   in  (3.6)   can  be  replaced  by 

ad2n+Z/{√n(n+1)}.   

It follows from (3.2) and the results (3 .11)-(3.12) that the quantity 

δ may be regarded as a "geometrical" indicator, whose deviation from unity 

measures the level of instability in the orthonormalization of the monomial 

set (3.1). Because of this, the theorem provides theoretical justification 

for some intuitively apparent results, concerning the relation between the 

stability properties of the BKM with monomial basis and the geometry of Ω. 

For  example,  we  have  the  following. 

(i)       For  the  purposes  of   stability,   the  origin  0  should  be  positioned 

so  that   its  maximum  distance  from  ∂Ω   is  as   small   as  possible. 

(ii)     Best   stability  occurs  when ∂Ω  is  nearly  circular  and  0  is  positioned 

properly  so  that  δ  is  close  to  unity.  Conversely,  when  Ω  is  a  "thin"  domain 

then  δ   is  small  and  the  orthonormalization  process  is  very  unstable. 

We  consider  now  the  use  of  the  ONM with  "monomial"  basis   (1.12),   for  the 

mapping  of  a  doubly-connected  domain  . Ω  As  before,  we  define  the  quantities 

In,n by  means  of 
                                                      (3.13) ,2||||/2||{||

1
min, nun

nunnI ηη −
−∧∈=

 

where 
  ∧ n - 1   =span{η1, η2,.......,η n- 1 },                    (3.14) 
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and  assume  that  the  basis  functions   (1.12)   are  introduced   in  the  order 

  ,.......2,1j;1jz/1j2,1jz)z(1j2 =+=η−=−η                                 (3.15) 

Then,  corresponding  to  Theorem  3.1  we  have  the  following. 

Theorem  3.2       Let Ω be  a  doubly-connected  domain  whose  inner  and  outer  boundary 

components  ∂Ω1 and  ∂Ω2  are  closed  piecewise  analytic  Jordan   curves  without  cusps. 

Assume  that  0  ∈   Int(∂Ω1 ),  and  let 

 d1  =  min{|z| :  z ∈  ∂Ω1 } ,  d2  =  max{|z| :  z ε  ∂Ω 2}. (3.16) 

and 

c2  =  cap(∂Ω2). (3.17) 

Also,   let  R1, be  the  conformal   radius  of  Int(∂Ω1)   at  0,   i.e. 

  R 1   =  1 /  (0) , (3.18) '
1f

where  f 1   is  the  function  that  maps  conformally  Int(∂Ω1)   onto  {w :  |w|  <  1}, 
so  that  f1(0)   =  0  and  '

1f   (0)  >  0.     Then,   there  exist  constants α >0  and  β >0 

so  that,   for  all  n > 1, 

                                               
n

d
C

nnnI
2

2
2

1,12 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤++ α                                               (3.19)

and 

.
2n

2R
2d

βn22n2,2nI
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≤++        (3.20)

Proof       Let 

                                 },z,.....,z,z,1{spanA 1n2
n

−=

                                 },z/1,.....,z/1,z/1{spanB 1n32
n

+=

and  observe  that An ⊂ ^   2n  and  ßn⊂Δ 2n+1 . where,  because  of  the  ordering   (3.15) 

                              ^2n   =   span {1,1/z2 , z, …,z n-1 ,1/z n+1} 
 

and 

  ^2n+1  =  span {1,1/z2,z,…..zn-1,1/zn+1,zn } . 

Also,   let  .   be  the  image  of  Ext(əΩ*
1Ω 1)   under  the  inversion  w= 1/z  ,and 

observe   that 



12 

cap    = 1/R)( *
1Ω∂ 1 (3.21) 

and 

   max{| w|  :  = 1/d . *
1w Ω∂∈ (3.22) 

Then,   by  using  Lemma  3.2,   we  have  that 

               (3.23) ,)1n/(2n2
2czdS2|unz|)2(Int

nAu
min2||uzn||

n2u min ++π≤
⎭
⎬
⎫

⎩
⎨
⎧ −∫∫ Ω∂∈

≤−∧∈

and 
   

{ }∫∫ −+
∈

≤−+
+∧∈ Ω zdS2|u2n1/z|

nBu
min2||u2n1/z||

12nu min

 
                                                

(3.24)1)./(n2)(2n
1πR

wdS
2

*
1Ω

|unw|
nAu

min

++−≤

⎭
⎬
⎫

⎩
⎨
⎧

∫∫ −
∈

≤

The  results   (3.19)   and   (3.20).  follow  at  once  from  (3.23)   and   (3.24),  by 

observing  that  the  lower  bound  of  Lemma  3.1   also  holds  when  the  domain  is 

doubly-connected  and  d  is   the  distance  of  0  from  the  outer  boundary.

We  consider  next  the  use  of  the  BKM  or  ONM  with  augmented  basis,   for 

the  mapping  of  simply  or  doubly-connected  domains  respectively.  That  is, 

we  consider  the  case  where  the  basis   set   is  formed  by  introducing  into  one 

of   the  monomial   sets   (3.1)   or   (3.15)   a  fixed  number  m  of  "singular"  functions 

of  the  type  used  in   [10,13-18].     As  before,  we  denote  the  basis  set  by  {ηj} 

and  assume  that,  corresponding  to  the  ordering  η1,η2...,    the  m  singular 

functions    are 
.msη,,.........

2sη,1sη                                                           (3.25) 

Then,   it  follows   immediately   that  the  level  of   instability  in  the  orthonormal- 
ization  of   the  set  { } ,isn,n

1jj ≥
=

η   is  at  least  as  serious  as   in  the  ortho- 

normalization  of  the  n-i  monomials  in  (3.1) or (3.15).For  this  reason,  we 

cannot  expect  to  improve  significantly  the  stability  of  the  BKM  or ONM  by 

introducing   singular  functions   into  the  monomial  basis   sets. In  fact, the 

use  of   an  augmented  basis  may   lead  to  a   substantial   deterioration  of   the 
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stability,  when  one  or  more  of  the  singular  basis  functions ηS I. are  "nearly" 

linearly  dependent  on  the  other  basis  functions. The  situation  is  character- 

ized  by  a  rapid  decrease  of   the  sequence  {In ,si}  where,   as  in  (2.12), 

                                                                  (3.26).2||u
isη̂||

isNu
min

i
sn,I −

∈
=

For  this  reason,  when  an  augmented  basis  is  used  it  is  essential  to  measure 

the  level  of  instability  by  means  of  the  indicators  IS n  or defined  by ,SÎ n

(2.12)   and   (2.18),   rather  than  by  the  size  of  the  quantities  I n,n.

To   illustrate  the  deterioration  in  stability  that   the  introduction  of 

singular  functions  may  cause,  we  consider  the  use  of  the  BKM  and  assume  that, 

due  to  the  presence  of  a  pole  of  f  at  a  point  p ∈ comp1, Ω∂Ω U ,the  basis  set 

used  is 
η1 (z)   =   p/ (z-p)2,  η j (z)    =  z j-1        ;   j  =  1 ,  2 ,…. .    ; (3.27) 

see  [10,§2.1],   [13,§4.1]   and  [18,§5].     In  this  case,   if  p  is  "far"  from əΩ   

then  the  singular  function η1  has  the  series  expansion 

                                             ∑
∞

=

−=η
0j

j
1 ,)p/z(j

p
1)z(                                                   (3.28)

which  converges  rapidly  in Ω. That  is,   if  p  is  far  from əΩ  then  there  is  "near" 

linear  dependence  between η1,   and  the  first  few  monomials   1,z,z2,...  and,  because 

of  this,     the  sequence  of   indicators   {I n,1 }tends  rapidly  to  zero.     More  gener- 

ally,   the  above  situation  arises  when  singular  functions  are  used  to  reflect 

pole  type  singularities,   of  the  form  described  in   [18,§5],at  points  which  are 

far  from  the  boundary.  In  general,  however,   such  weak  singularities  do  not 

affect  seriously  the  rate  of  convergence  of  the  numerical  methods, and  do  not 

require  special   treatment . 

4.       Convergence  Properties

Let  Ω  be  either  a  simply  or  doubly-connected  domain,   and  let  f  denote  the 

associated  mapping  function.     Also,   let  fn   be  the  nth  approximation  to  f, 

obtained  by  applying  to  an  appropriate  basis  set  either  the  BKM  or  the  ONM. 
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Then,   it   is  well-known  that  for  each  of   the  two  methods  the  sequence  {f n} 

converges  uniformly  to  f  on  any  compact  subset  of  Ω.    Furthermore,   the  two 

books  of  Gaier  [7,8]  and  the  papers  by  Simonenko  [20]  and  Kulikov  [11]  con- 

tain  a  number  of  results  which  establish  the  uniform  convergence  in Ω∂Ω=Ω U  

of  the  approximations  {fn},  obtained  by  using  as  basis  one  of  the  monomial 

sets   (1.11)  or  (1.12).     The  purpose  of  this  section  is  to  discuss  the  signif- 

icance  of  the  convergence  results  of   [7,8,11,20],   and  to  indicate  how  they 

can  be  used  to  provide  some  theoretical  explanation   of  the  experimentally 

observed  improvement  in  accuracy,  which  is  achieved  when  the  monomial  basis 

sets  are  augmented  by  introducing  appropriate  singular  functions. 

 We  consider  first  the  use  of  the  BKM  for  the  mapping  of  a  simply-connected 

domain  Ω =  Int(∂Ω)  and,  as  before,  we  let  f E be  the  function  which  maps  con- 

formally  Ext(∂Ω)  onto  {w :  |w|  > 1},   so  that
 
Then,  .0)z('

Efzlimand)(Ef >∞→∞=∞

the  level  curves  of  the  region  Ext(əΩ)  are  defined  by 

CR  =  {z :  | fE(z) |    =  R  ,     R> 1}. (4.1) 

Assume  that  there  exists  an  R > 1   so  that  f  is   analytic in  Int(CR),  and 

observe  that  this  assumption  holds  whenever  ∂Ω  is  an  analytic  curve  or  more 

generally,  whenever  the  mapping  function  f  is  analytic  on  ∂Ω.  Then  the  theory 

of  maximal  convergence  of  polynomial  approximations  of  Walsh  [25,pp.77-79] 

leads  to  the  results  contained  in  the  following  theorem. 

Theorem  4.1      Assume  that  the  mapping  function  f  is  analytic  on  əΩ,  and  let 

R̂  =  sup{R : f  is  analytic  in  Int(C R }}   . (4.2) 

Also,   let  f n   denote  the  nth  BKM  approximation  to  f,   corresponding  to  the  monomial 

basis   (1.11).     Then,   the  following  results  hold: 

 (i)       For  each  R,   1 < R< ,   there  exists  a  constant  M(R),   independent  of R̂

n,   so  that 

 

.nM(R)/R|(z)nff(z)|
Ωz

max ≤−
∈

                                                  (4.3)
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(ii)     An  inequality  of   the  form  (4.3)   cannot  hold  with R> R̂  

(iii)    .R̂/1n/1|)z(f|
z
maxnLim =

⎭
⎬
⎫

⎩
⎨
⎧

Ω∈∞→                                                                                                                        

(4.4) 

A  detailed  proof  of  Theorem  4.1   can  be  found  in  Gaier  [8,pp,33-35]; 

see  also  [7,p.125]   and  Ellacott   [6].     The  theorem  states  that  if  f  is  analytic 

on  ∂Ω,  and  hence  analytic  in  the  interior  of  some  level  curve  CR,  then  the 

convergence  of  the  sequence  of  polynomial  approximations  {fn}  is  maximal   in 

Ω ,  in  the  sense  that 

                              .R̂R1R,),n0(1/R|(z)nff(z)|
Ωz

max <<∀=−
∈

                            (4.5) 

It  follows  that  we  have  maximal  convergence,   of  the  form  (4.5),  whenever  the 

boundary  ∂Ω of Ω  is  an  analytic  curve.     It  also  follows  from  the  results   of 

Lehman   [9],   concerning  the  asymptotic  expansion  of   the  mapping  function  in 

the  neighbourhood  of  a  corner,   that  we  may  have  convergence  of  the  form  (4.5) 

in  some  other  cases  where  ∂Ω  is  piecewise  analytic  and  involves  only  corners 

with  interior  angles  π /q,   q  =  2,3,4,,.,;   see   [18,§4],      For  more  general  piece- 

wise  analytic  boundaries  we  have  the  following  two  theorems: 

Theorem  4.2       Let   the  boundary   ∂Ω  of Ω be  a  piecewise  analytic  Jordan  curve 

with  parametric  equation 
                   z = p(s)   ,      0 ≤ s ≤ L ,  p( j ) (0)  =  p( j) (L)   ;     j  =   0,1   ,                      (4.6 ) 

where  s   denotes are   length,   and  assume  that,   for  some   k >1,   p   is   of  Lipschitz )k
)s

(
(

class   1   in  the  interval   [0,L],     Then,   there  exists  a  constant  C,   independent 

of  n,   so  that 

                       ,1kn/nlogC|(z)nff(z)|
Ωz

max +≤−
∈

                                         (4.7) 

where,   as   in  Theorem  4.1,   f n  is   the    nth  BKM  approximation  to  f  corresponding 

to  the  monomial  basis   ( 1 . 1 1 ) ,   

Theorem  4.3       If   the  boundary  ∂Ω of  Ω  is  a  piecewise  analytic  Jordan  curve 

without  cusps  then  there  exist  constants  C>0  and  γ >0, independent  of  n, 

so  that 



16 

                                    ,γC/n|(z)nff(z)|
Ωz

max ≤−
∈

                                               (4.8) 

where  fn  is  as   in  Theorem  4.1.

 Theorem 4.2  is  a  special  case  of  a  slightly  more  general  result  due  to 

Suetin  [22];     see  Gaier   [8,p.40]   and  compare  with  Walsh   [25,Theor.1,p.371]. 

The  theorem  applies  only  to  domains  bounded  by  curves  with  continuously 

varying  tangents.      For  example,   let Ω be  the  domain  whose  boundary  consists 

of  the  half  circle 

Γ2={z = x +iy :  |z| = 1, x  ≤ 0}                                            (4.9) 

and  the  half  ellipse 

  Γ2 ={z = x + iy:x2/a2+y2 = 1,x > 0 ,   a> 1}   .                                  (4.10) 

In  this  case,   Theorem  4.1   is  not  applicable,  because  f  has  branch  point  singular- 

ities  at  the  points  ± i,   where  the  two  curves  r j;  j   =   1,2,   meet  each  other. 

This  follows  from  the  results  of  Lehman  [9],  which  show  that  the  asymptotic 

expansions  of  f  at  the  points  z1 = i  and  z2  = -i  involve  respectively  the  singular 

functions 

g j(z) = (z j-z)2 Log(z j-z)    ;    j  = 1 , 2 .                                        (4.11) 

However,   the  boundary ∂Ω  =  Γ1  ΓU 2   satisfies  the  smoothness  condition  of  Theorem 

4.2  with  k = 1,   and  thus   (4.7)   gives 

              .2logn/n .const |(z)nff(z)|
Ωz

max ≤−
∈

                                           (4.12) 

It  is  of   interest  to  observe  that  the  Maclaurin  series  expansion  of  the  singular 

functions   (4.11)   satisfy 

{ } .2,1j;1)1/n/(n
n

0r
|rz(0)/r!(r)

jg(z)jg|
1|z|

max =−∑
=

≤−
≤

                        (4.13) 

In  other  words,   the  Maclaurin  expansions  of   (4.11)  display  a  similar  type  of 

convergence   as   the  sequence{ }. nf

Theorem  4.3   is  a  recent  result  due  to  Simonenko   [20].     This  important 

theorem  establishes  the  uniform  convergence  in Ω =  ΩUəΩ of  the  BKM  polynomial 

approximations  to  f,  associated  with  any  piecewise  analytic boundary  without  cusps. 
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Unfortunately,     however,   the  theorem  does  not  provide  any   information  about  the 

magnitudes  of  the  constants  C  and  γ in   (4.8).    A  more  recent  result  of  Kulikov 

[11]   gives  a  domain  dependent  constant γ1  >  0  such  that   (4.8)   holds  for  all 

γ ε ( 0 ,γ1) .   However,   this  constant  γ1 of   [11]   cannot  exceed   1/16  for  any  domain. 

For  this  reason,   the  estimate  of  the  rate  of  convergence  implied  by  the  result 

of   [11]  can  be  very  pessimistic;   see  §5,Ex.5.3. 

As  was  remarked  by  Ellacott  [6,p.189],   in  some  special  cases,  Theorem  4.1 

can  be  used  to  explain  the  improved  convergence  which  is  achieved  when  rational 

functions,   that  reflect  the  dominant  pole  singularities  of  f   in  Ext(∂Ω),   are 

introduced  into  the  basis  set   (1.11).      To  see  this,  we  let  f  be  analytic  on ∂Ω, 

and  assume  that  its  analytic  extension,   across  ∂Ω,  has  simple  poles  at  the  points 

p j ∈ Ext(∂Ω)   ;       j   = 1(1)k  , (4.14) 

where 

|fE (p1) |  =  |f E (p2)|  =  ...  =  |fE (pk) |. (4.15) 

We  also  assume  that the other  singularities  of  the  analytic  extension  of  f 

occur  at  the  points  pk+1 ,pk+2,......,where 

.........|)p(f||)p(f|)p(f| 2kE1kE1E ≤≤< ++                                    (4.16) 

Then,   from  Theorem  4.1  we  have  that 

,R̂R1R,,)n0(1/R|f(z)|
Ωz

max <<∀=
∈

                                                 (4.17a) 

where 

.|)p(f|R̂ 1E=                                                    (4.17b) 

                           

We  now  let  )A(
nf  be  the  nth  BKM  approximation  corresponding  to  the  augmented  basis 

  ηj (z)  =  - p j  / ( z - p j ) 2    ;   j   =  1(1)k  , 

  (4.18) 

ηk+j (z)  =  2j-1  ;                        j =  1,2,...  , 

which reflects the dominant singularities of f; see [10,§2.1] and [18,§5]. 

Then the k functions ηj; j = 1(1)k, "cancel out" the nearest singularities 

of   f  at   the  k  points   (4,14)   in  the  sense  that  the  approximations   )A(
nf  satisfy 
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                           (4.19a) AR̂R1R,,)n0(1/R|(z)(a)
nff(z)|

Gz
max <<∀=−
∈

where  G  is  any  compact  subset  of  Ω  and 

                                                 (4.19b) .R̂)1k(pEf|AR̂ >+=

  In  fact  our  numerical  results  in  Section  5  suggest  that,   in  some  cases, 

(4.19)  might  also  hold  with  G  replaced  by Ω ,but  we  have  not  been  able  to  prove  this. 

The  above  discussion  explains  the  improvement  in  convergence  which  is 

achieved  by  using  an  appropriate  augmented  basis,   in  cases  where  f  is  analytic 

on  əΩ  and  the  singular  functions  in  the  basis  set  reflect  exactly  the  dominant 

singularities  of  f  in  compl )(Ω , In  general  however  the  situation  regarding 

the  convergence  of  approximations  obtained  by  using  an  augmented  basis  is  not 

clear.     For  example,   the  numerical  experiments  of   [10]   and   [13,14]   indicate 

clearly   that  substantial   improvement  in  accuracy  is  achieved  when,   in  the 

presence  of  a  "singular"  corner  at  z 0 ε əΩ,   the  basis  set  contains  functions 

of   the  form 

{ } ,m)0zz(Log)0zz( −β−  

where  the  real  number β  >  0  and  the  integer  m > 0  depend  on  the  size  of  the 

angle  at  z 0 .However,   such  singular  functions  do  not  reflect  exactly  the 

corner  singularities  of  f  on ∂Ω. For  this  reason,  when  ∂Ω  involves  singular 

corners  we  do  not  expect  the  BKM  approximations  to  f  to  satisfy  convergence 

results  of  the  form  (4.5),   even  when  an  augmented  basis  is  used.    We  can  only 

speculate  that  in  the  presence  of  corner  singularities  the  convergence  is 

always  of  the  type  described  in   (4.8),   and  that  the  use  of  an  appropriate 

augmented  basis  leads  to  a  larger  exponent  γ. 

  We  consider  next  the  convergence  of  the  ONM  approximations  to  the  function 

f,  which  maps  conformally  a  finite  doubly-connected  domain  Ω onto  a  circular 

annulus  {w :  1 <  |w|  <M}.    As  before,  we  let  ∂Ω1  and  ∂Ω2  be  respectively  the 

inner  and  outer  components  of  the  boundary  ∂Ω,  and  assume  that  0 ∈ Int (∂Ω1). 

We  also  recall  that  in  the  ONM  the  approximations  to  f  are  obtained  after  first 

determining  a  least  squares  approximation  to  the  function 
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 H(z)   =  f ' ( z > / f  ( z )    -   1/z . (4.20) 

Then,   in  the  case  where  both  ∂Ω1  and  ∂Ω 2 are  analytic  Jordan  curves  we  have 

a  result  due  to   Gaier  [7,p.250],   which  establishes   the  uniform  convergence 

in Ω  =  ΩU ∂Ω  of   the  ONM  approximations  corresponding  to  the  use  of  the  monomial 

basis   (1.12).    More   precisely,   the  result  of   [7]   states  that   if   ∂Ω1 and  ∂Ω 2  are 

analytic  Jordan  curves   then,   for  some   p<1,   there  exists  a  constant   A  independ- 

ent   of  n  so  that 
,|)()(|max nAznHzH

z
ρ≤−

Ω∈
                                                  (4.21) 

where Hn denotes the nth ONM approximation to H, corresponding to the monomial 

basis (1.12). (We point out that Gaier in his book does not consider the ONM, 

but  an  equivalent  variational  method.) 

Our  purpose  here  is  to  express   the  above  convergence  result  of   [7]   in 

a  slightly  more   detailed  form,   analogous   to  that  of  Theorem  4.1.     In  order  to 

do  this  we  need  to  make  the  following  four  observations: 

(i)     The  function  H  of   (4.20)   can  be  expressed  as 

H  =  HI  +  HE   , (4.22) 

where  HI  is  analytic   in  Int (∂Ω2),   and   z2 HE(z)   is  analytic    in  Ext(∂Ω1)   including 

the  point  at   infinity.     This  means   that   the  function 

                                               
(4.23) 2(1/z)/zEH(z)*

EH =

is  analytic  in  Int , where    is  the   image  of   ∂Ω),( *
1Ω∂ *

1Ω∂ 1 under  the  inversion 

z→ 1/z. 

(ii)     If  the  mapping  function  f  is  analytic  on  ∂Ω = ∂Ω1 U ∂Ω2   then  the 

function  H  is  also  analytic  on  ∂Ω. 

(iii)     Because  of   (i),   the  least  squares  property  of  the  ONM  approximation 

H2 n  implies  that 

                    (4.24)         ,)*
1ΩInt(||*

uRH||
nAu

inf)2ΩInt(||uIH||
nAu

infΩ||2nHH|| ∂−∈
+∂−

∈
≤−

where  An  =  span{ 1 ,z,z2,. . . ,z n-1},   and  where  we  used || • || G to  denote  the  norm 
 

of  the  space  L2(G). 
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(iv)     If  G  is a bounded  domain  of  finite  connectivity  then  convergence 

in  the  norm  of  the  space  L2(G)   implies  uniform  convergence  in  every  compact 

subset  of  G. 

 We  also  need  to  define  the  two  families  of  curves 

     
CR1  =  {z : | fI 1 (z) | = R ,  R < 1}                                              ( 4.25) 

and 

    CR1 = {z :| fE2(z)| = R,R >1}                                    (4.26) 

where   f I    is   the   interior  mapping  function  associated  with  Int (∂Ω1), and 

f E2   is   the  exterior  mapping  function  associated  with  Ext(∂Ω 2). Then,   the 

observations   (i)-(iv)   in  conjunction  with  the  theory  of  maximal  convergence 

of  polynomial  approximations  lead  easily  to  the  following  theorem. 

Theorem  4.4       Assume  that  the  mapping  function  f   is  analytic  on  ∂Ω,   and  let 

   1R̂  =  inf {R : H  is  analytic  in  Ext (CR1 ) ∩ Int (∂Ω2)}    (4.27) 

and 

    =  sup{R : H  is  analytic  in  Int (CR2R̂ 2) ∩ Ext(∂Ω1)} .   (4.28) 

Also,   let  f k denote   the  kth  ONM  approximation  to  f,   corresponding  to  the  monomial 

basis   (1.12).      Then,   for  each  R, there  exists  a  constant ),R̂,R̂/1min(R1 21<<

M(R),   independent  of  n  so  that 

.nR/)R(M)z(n2f)z(f|
z
max ≤−

Ω∈
�                                       (4.29) 

Theorem  4.4  applies  only  to  a  slightly  wider  class  of  domains  than  the 

class   of   doubly-connected  domains  whose  boundary  components  ∂Ω1 and  ∂Ω2  are 

both  analytic  Jordan  curves.     Unfortunately,  we  do  not  know  of  any  results, 

similar  to  those  of  Theorems  4.2  and  4.3,  which  establish  the  uniform  con- 

vergence  of  the  ONM  approximations  in  Ω ,  when  ∂Ω1  and  ∂Ω2  are  more  general 

piecewise  analytic  Jordan  curves.     Regarding  the  use  of  augmented  basis   sets, 

the  remarks  we  made   in  connection  with   the  BKM  also  apply  to   the  ONM.    In   the 

case  of   the  ONM  however,   it  has  been  shown  in   [17]   that   it   is  not  possible  to 

reflect  exactly  the   singularities  of  H,   even  when  the  singular  points  are  in 

compl  ( ). Ω∂Ω U
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5.       Numerical  Examples

In  this  section  we  present  four  numerical  examples,   illustrating  the 

stability  and  convergence  results  of  Sections  3  and  4.     The  computational 

details  of  the  BKM  and  ONM  procedures  used  in  these  examples  are  as  described 

in  [10,§3]  and  [15,§5]   respectively.   In  particular,  when  Ω  is  simply-connected 

then  the  estimate  E n , of   the  maximum  error  in  the  modulus  of  the  nth  BKM  approx- 

imation   f n , is  given  by 

 ,|)z(f|1maxE jnjn −                                                     (5.1) 

where  {z j}  is  a  set  of  "boundary  test  points " on  ∂Ω.     Similarly,  when Ω is 

doubly-connected  then  the  estimate  E n  ,   corresponding  to  the  nth  ONM  approx- 

imation  f n , is  given  by 

{ } ,|)z(f|Mmax,)z(f|1maxmaxE j,2nnjj,1njn −−=                          (5.2) 

where  {z i,j}  and  {z 2,j}   are  two  sets  of  boundary  test  points  on  ∂Ω 1  and ∂Ω 2  

respectively,   and  M n  is   the  nth  ONM  approximation  to the  conformal  modulus  M 

of  Ω.  As  was  remarked  in  Section  1,  the  approximation  M n  is  computed  by  using 

formula   (1.10). 

Each  of   the  BKM  and  ONM  algorithms  computes   recursively  a  sequence of 

approximations     f n. Also,   each  algorithm  includes  a  termination  criterion 

for  terminating   the process at   some  "optimum"  value  n = Nopt,   which  gives  a 

"best"  approximation  f Nopt  in  some  pre-defined  sense.  In   [10,13,15],  the 

number  Nopt  is  determined  by  using  essentially  the  following  procedure: 
  A  minimum  number  n min  of  basis  functions  to  be  used  is  defined  and. for 

each  n > n min,  the  error  estimate  E n is  computed.  If  at  the   (n+1)th  stage the 

inequality 

En+1  <  En                                                                  (5.3)               

is  satisfied  then  the  approximation  f n+2   is  computed.     When  for  a  certain 

value  of  n,   due  to  numerical  instability,   (5.3)  no  longer  holds  then  the  process 

is  terminated  and  n   is  taken  to  be  the  optimum  number  Nopt  of  basis  functions. 

Naturally,   the  number  Nopt  depends  critically  on  the  precision  of   the  computer 
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arithmetic   used,   and  on  the  stability  and   convergence  properties   of   the  numerical 

method.     Regarding  the  choice  of   the  parameter  n min , when  a  monomial  basis is 

used  then  n min =2  is  appropriate.   However,  when  an  augmented  basis  is  used  then 

n min  should  always  be  chosen  sufficiently  large  so  that  the  basis   set  {η1, η2,

...,
minnη .}   includes  the  "main"  singular  functions. 

A  drawback  of  the  above  procedure  for  determining  Nopt  is  that  it  does  not 

take  into  account  the  possibility  of  non-monotonic  convergence.  (Even  with  exact 

arithmetic,   there  is  no  guarantee  that  sequence  {E n}  will  decrease  monotonically.) 

In  the  present  paper  we  attempt  to   remedy   this   shortcoming,   by  determining  the 

numbers   Ẽn   defined  by 
   2,.......,minn,1minnn;}1nE~,nE~min{nE~,

minnE
minnE~ ++=−==                      

 
(5.4) 

and  taking  as  Nopt  the  first  n > n min  for  which 
 

.3,2,1j;E~E~ njn ==+                                                        (5.5) 

In  general,   the  procedure  for  determining  Nopt  also  includes  a  termination 

criterion  which  safeguards  against  "slow"  convergence. In  the  present  paper 

however,   because  of   the  nature  of  our   investigation,   we   introduce   such  a  criter- 

ion  only  in  Ex.   5.3,  where  we  anticipate  very  slow  convergence. More  precisely, 

in  this  example  we  take  Nopt  to  be  the  first  n >  n min for  which  either  the 

equalities    (5.5)   or  the  inequality 

     
nE~0.95nE~ >+                                                 

(5.6) 

are  satisfied. 

 For  comparison  purposes,  we  present  numerical  results  obtained  by  implement- 

ing  our  BKM  and  ONM  Fortran  algorithms  on  each  of  the  following  three  computers, 

in   the   p rec i s ion   ε   i nd ica ted .  

COMP1   :    Honeywell  level  68  computer.

    Single  precision:    ε   =  2-26   ~    1.5x  10-8 .         (5.7) 

C0MP2   :     CDC  7600  computer.

    Single  precision:     ε   =  2 -47  ~     7.1  x  10-15   .  (5.8) 

C0MP3   :     IBM  Amdahl  computer.

   Extended  precision:  ε =  2-100  ~      3.1  x  10-33   .              (5.9) 
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In  presenting  the  results,  we  use  the  abbreviations  BKM/MB  and  BKM/AB 

to  denote  respectively  the  BKM  with  monomial  basis   (1.11)   and  with  augmented 

basis.Similarly,  we  use  ONM/MB  and  ONM/AB  to  denote  the  ONM with  monomial 

basis   (1.12)   and  with  augmented  basis.    Also,   in  the  tables  of  results  we 

use  the  abbreviation  a(-M)   to  denote  a 10-M  . 

Example  5.1       BKM  for  ellipse 

                                       Ω  =  {(x,y)  : x2 / a2 + y2  < 1,   a > 1 }  .                                       (5.10) 

Monomial basis.     Because Ω  has  two-fold  rotational symmetry about  the  origin, 

the  monomial  basis  is  taken  to  be 

    η j  (z)   =   z 2( j,-1)    ;        j   =  1,2,3               (5.11) 

Augmented basis.     In  this  case,   the  exact  mapping  function  f  is  given  by  an 

elliptic  sine;     see  e.g.   [12,Eq.51,p,296].     From  this   it  follows  that  f  has 

simple  poles  at  the  infinite  array  of  points 

,....,2,1,0k;))}1a/(a2(sinh)1k2sinh()1a(iz 212
1

2 ±±=−+−= −                                   (5.12) 

on  the  imaginary  axis. 

The  augmented  basis  is  formed  so  that  it  reflects   the  two  dominant  singular- 

ities  of  f,   i.e.   the  two  simple  poles  at  the  points  ± ip1, where 

p1  =  2a /(a2-1) 2
1

 .              (5.13) 

Because  of  the  symmetry,   this  is  done  by  introducing  into  the  monomial  set 

(5.11)   the  single  singular  function  {z/(z2 + p1
2)}'.  That   is,   the  augmented  basis   is 

   
(                             (5.14) ;,........3,2,1j;,)}'pz/(z{)z( )1j(2

1j
2
1

2
1 =η=η+=η

−

+

see    [ 10 , Ex.5 ]. 

Optimum results. The  values  of  Nopt  and  E Nopt   obtained  by  applying  the  BKM/MB 

and  the  BKM/AB  to  the  four  ellipses  corresponding  to  the  values  a  =   1.2,   2.0,  4.0 

and   8.0  are  listed  in  Table  5.1.      For  each  geometry,   the  table  contains  the 

results  obtained  by  carrying  out  the  computations  on  each  of  the  three  computers 

COMP1,   COMP2  and  COMP3,   in  the  precision  given  respectively  by   (5.7),   (5.8) 

and   (5.9). 
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TABLE  5.1

Values of Nopt and ENopt 

  
COMP1 

ε  =  1.5(-8) 

COMP2 

ε  =  7.1(-15) 

COMP3 

ε  -  3.1(-33) 

a BKM/ Nopt         NoptE Nopt      NoptE Nopt    NoptE

1.2 
MB 

AB 

8         6.7(-8) 

2         3.4(-7) 

15         5.0(-14) 

 3          5.8(-13) 

32           8.3(-31) 

6            2.9(-28) 

2.0 
MB 

AB 

11         1.7(-5) 

4          1.0 (-7) 

19         2.6 (-9) 

  6         3.5(-13) 

42           5.1(-19) 

12           5.6(-28) 

4.0 
MB

AB 

8          1.7(-2) 

7         2.2(-7) 

14         1.2(-3) 

11         7.5(-12) 

32            5.9 (-7) 

21            3.0(-23) 

8.0 
MA 

BA 

7          1.7 (-1) 

9          1.5(-5) 

12         6.6(-2) 

16         5.6(-8) 

27            1.5(-3) 

  27           8.2(-15) 

From  the  table,  we  observe  that  in  the  case  a =1.2  the  optimum  BKM/MB 

approximations  are  accurate  to  almost  machine  precision.    We  also  observe 

that,  for  all  four  values  of  a,   the  use  of  the  augmented  basis   (5.14)   improves 

considerably  the  rate  of  convergence  of  the  method.   However,  when  a =1.2 

the  optimum  BKM/AB approximations  are  not  as  accurate  as  those  obtained  by 

using  the  monomial  basis   (5.11).     For  the  other  three  values  of  a  the  use  of 

(5.14)   leads  to  a  substantial   improvement  in  accuracy.  In  what  follows,  we 

shall  attempt  to  explain  the  above  observations  by  examining  the  stability 

and  convergence  properties  of the BKM/MB and BKM/AB. 

Stability. The  exterior  mapping  function  f E  associated  with  Ext(∂Ω)   is 

.)1a/(})1az(z{)z(f 2
1

22
E ++−+=                                                 (5.15) 

Thus,  cap (∂Ω)  =(1+a)/2  and,  since  max {|z|  : z ∈   ∂Ω}  =  a,  the  quantity  δ defined 

by  (3.10)   is  given  by  δ  =  {(1 + a)/2a}2. 

In  this  example,  because  of  the  symmetry  of  Ω ,  the  monomial  set  (5.11) 

involves  only  the  even  powers  of  z.    For  this  reason,   it  follows  from  Theorem  3.1 
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that  the  rate  of  decrease  of  the  sequence  of  indicators  {In,n },  associated 

with  the  set  (5.11),  is  at  least  as  rapid  as  that  of  the  sequence 

                              (5.16) .}a2/)a1{(where,})1n2{( 42n +=δ=ΔΔ−

Furthermore,   since  in  this  case  ∂Ω  is  analytic  and  the  bound  (3.12)  holds, 

we  expect  the  rate  of  decrease  of   (5.16)   to  reflect  closely  that  of  {In,n  }. 

 We  note  that  for  all   a >  1, 

1/16  <  Δ  <   1   , (5.17) 

where  the  limiting  values  Δ = 1   and  Δ = 1/16,    for  "perfect"   and  "worst"  stability, 

correspond  respectively  to  the  cases  where  Ω  is  the  unit  disc  and,  by  rescaling, 

the  straight line  slit  joining  the  points  ± 1. We  also  note  the  following  in 

connection  with  the  limiting  value Δ  = 1/16.    As  a→∞  the  matrix  G  ˆ
n of  (2.7), 

corresponding  to  the  set   (5.11),   tends  to  the  Gram matrix  L̂ n associated  with 

the  construction  of   even  degree  Legendre  polynomials.    As  is  well-known,   the 

condition  number  of   the  matrix   L̂ n   increases  with  n  at  least  as  rapidly  as 

the  sequence  {16 n };     see  e.g.   [24]. 

For  the  values  a =1.2,  2.0,  4.0  and  8,0,  considered  in  this  example,  the 

corresponding  values  of  Δ  are  respectively 

0.706  07   ,     0.316  41   ,     0.152  59    and     0.100   11   .  (5.18) 

Thus,  we  expect  the  level  of  instability  in  the  case  a =2.0  to  be  substantially 

higher  than  in  the  case  a =1.2.    Similarly,  we  expect  the  levels  of  instability 

in  the  two  cases  a =4.0  and  a = 8.0  to  be  higher  than  in  the  case  a = 2.0. 

In  Table   5.2  we  list  COMP3  values  of  the  instability   indicators  I n,n, 

  nSI~ and
 
associated  with  the  use  of  both  the  monomial  and  augmented ,)}G(C{ 1

n
−

basis  sets   (5.11)   and   (5.14).   The  values  I n,n and nSI~ are  determined  during 

the  orthonormalization  process  from  (2.17b)  and  (2.17)-(2.18),  by  allowing 

when  necessary  the  process  to  continue  after  the  value  Nopt  is  reached.  The 

values  of are   determined  from  (2.8),  by  computing  the  largest   and 1
n )}Ĝ(C{ −

smallest eigenvalues  of by  means  of  the  NAG  Library  Subroutine  F02AAF.    In nĜ
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the  table  we  also  compare  the  observed  and  theoretical  rates  of   decrease  of 

the  sequence   {I n,n }, associated  with  the  monomial   set   (5.11).   We  do  this  by 

comparing   the  computed  values 

,}I)1n2/(I)3n2{( 1n,1nn,nn −−−−=Δ                                           (5.19) 

with  the   exact  values  of  Δ  given  in   (5.18). 

TABLE  5.2 

Instability -indicators  

  I n,n I~ S n {C( Ĝ n)}-1   

a n MB         AB MB         AB MB         AB Δ n Δ 

1 .2 
6 

12 
18 

9(-1)        5(-3) 
1(-1)        1(-3) 
4(-2)        2(-2) 

4(-1)       4(-10) 
2(-2)        3(-22) 
1(-3)        1(-31) 

1(-1)        8(-5) 
  3(-3)        4(-23) 
  5(-4)        2(-32) 

0.639 
0.676 

  0.687 
0.706 

2.0 
6 

12 
18 

 2(-2)        7(-3) 
 3(-5)        9(-6) 

  3(-8)         l(-8) 

4(-3)        1(-4) 
 3(-7)        5(-10)
 2(-11)     1(-15) 

1(-5)        1(-5) 
2(-8)        2(-11) 
5(-13)     4 (-17) 

0.292 
0.303 
0.308 

0.316 

4.0 
6 

12 
18 

  7(-4)        2(-3) 
  1(-8)        3(-8) 
  2(-13)      5(-13) 

  1(-4)        3(-4) 
  5(-11)    1(-10) 
  2(-17)   4(-17) 

1(-5)       4(-5) 
2(-12)     6(-l2) 
4(-19)     9(-19) 

  0.139 
0.146 
0.147 

0.153 

8.0 
6 

12 
18 

  1(-4)        9(-4) 
  2(-10)      1(-9) 
  3(-16)      2(-15) 

2(-5)        2(-4) 
6(-13)      6(-12) 
1(-20)      1(-19) 

2(-6)        2(-5) 
2(-14)     3(-13) 

*                 * 

0.092 
0.096 
0.097 

0.100 

*    The eigenvalues of    cannot be computed to sufficient accuracy. nĜ

The  results   of   Table  5.2  confirm  completely  the   theoretical  predictions 

made   in   Section  3.     In  particular,   we  observe  that   the  use  of   the  augmented 

basis   (5.14)   causes   the   level   of   instability  to  increase   substantially   in  the 

case  a =1.2.     The  reason  for  this   is  that  when  a =1.2   the  two  points  ± ip   are 

"far "  from  əΩ  and,   because  of   this, there is   "near"  linear  dependence  between 

the   singular   function
   

and  the  first   few  terms   of   (5.11).     The )}'2
1p2{z/(z +

same  remark,   but  to  a  much  lesser  extent, also  applies   to  the  case  a = 2.0.     By 

contrast,   in   the   two   cases  a =4.0  and  a =8.0,   when  the  points  ±i p1   are  close 

to   ∂Ω  and  the  singularities  are  much  more   serious,   the   introduction  of  the 

singular  function  into  the  set   (5.11)   does  not   lead  to  a  deterioration  of 

the   stability. 
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Convergence,       As  before,  we  let ± ip    be  the  singular  points  of  f  nearest  to 

∂Ω,  and  observe  that  the  next  nearest  singular  points  are  ± ip    where 

                                                                                             (5.20);)}1a/(p43{pp 22
112 −+=

see  Eq.   (5.12).    We  also  let  f E  be  the  exterior  mapping  function  (5.15). 

Then,   it  follows  from  Section  4  that  the  BKM/MB  and  BKM/AB  approximations 

of  f  satisfy  respectively 

                 ,1R̂R1,R,)n0(1/R|(z)nff(z)|
Ωz

max <<∀=−
∈

                      (5.21)

and 

                                        (5.22) ,2R̂R1,R,)n0(1/R|(z)nff(z)|
Gz

max <<∀=−
∈

where  G  is  any  compact  subset  of  Ω  and  where,  because  the  basis  sets   (5.11) 

and  (5.14)  reflect  the  symmetry  of  Ω, 

                                                                  (5.23a),)1a/()1a()ip(f|R̂ 2
1E1 −+=±=

and 
 

                     .)1a/(})1ap{|)ip(f|R̂ 222
1

22
2

2
2E2 +−+=±=                            (5.24b)

For  the  four  cases  a  =  1.2,   2.0,   4.0  and  8.0,   the  values  of  the  constants 

(5.22)  and (5.23)   are  as  follows: 

)24.5(

,33651.3ˆ,57128.1ˆ:0.8)(

,6018.12ˆ,66766.1ˆ:0.4)(

,0.243ˆ,0.3ˆ:0.2)(

,0.051161~,0.11ˆ:2.1)(

21

21

21

21

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

===

===

===

===

RRavi

RRaiii

RRaii

RRai

 

Therefore,   for  the  geometry  under  consideration,   the  theory  indicates  clearly 

the  serious  effect  that  singularities  close  to  ∂Ω  have  on  the  rate  of  convergence 

of  the  BKM/MB.  Also,   (5.22)   provides  some  explanation  for  the  observed 

improvement  in  convergence  which  is  achieved  when  the  monomial  basis  set 

(5.11)   is  replaced  by  the  augmented  set   (5.14) 

In  Table  5.3  we  examine  further  the  rates  of  convergence  of  the  BKM/MB 

and  BKM/AB  by  listing  values  of  the  ratios 

  rn  =  En / E n -1    ,n≃Nopt / 2+2 ,                                                      (5.25) 



28 

TABLE  5.3

Convergence ratios  

a BKM/MB BKM/AB 

1.2 
 r18  =11.000  000  000  3 

0.11R̂1 =  

r5    =  1.619(5) 

2R̂   =  1.6 11(5) 

2.0 
r 24 =2.999  999  999   7 

1R̂  = 3.0 

r9    =  243.9 

2R̂   =  243.0 

4.0 
 r18   =1.666   1 
 

1R̂     = 1.666  6 7 

r12   =12.94 

2R̂   =12.86 

8.0 
r l8   =  1.276 

1R̂    =  1 

 r18  = 3.29 

2R̂  = 3.51 

where  the  E j   are  COMP3  error  estimates,   and  comparing  them  with  the  correspond- 

ing  values     and    given  in   (5.24).  The  results  of   the  table  suggest   that, 1R̂ 2R̂

for  the  ellipse  under  consideration,   Theorem  4.1   gives  a  sharp  estimate  of 

the  rate  of  convergence  of  the  BKM/MB.     The  results  also  suggest  that,   in  this 

case,   the  BKM/AB  approximations  satisfy   (5.22)   with  G  replaced  by  Ω . 

Example  5.2   BKM  for  rectangle 

   Ω = {(x,y)  : |x| < a ,  |y| < 1  , a ≥1 }                                  (5.26) 

Monomial basis.  Because  of  the  rotational   symmetry  the  monomial  basis   set  is 

taken  to  be 

,,.....3,2,1j;z)z( )1j(4
j ==η

−
                                  (5.27a) 

when  a = 1,   i.e.  when  Ω  is  a  square,   and 

,........,3,2,1j;z)z( )1j(2j ==η
−

                                  (5.27b) 

when  a  >  1. 

Augmented basis.      In  this case,   it  follows  at  once  from  the  Schwarz  reflection 

principle  that  the  mapping function  f  has  simple  poles  at  the  mirror   images  of 

the   origin  with  respect  to each  of  the  four  sides  of  Ω,   i.e.   at  the  four  points 
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z   =   ± 2i       and       z  =  ±2a . (5.28) 

More  precisely,   the  repeated  application  of  the  reflection  principle  shows  that 

f  has  simple  poles  at  all  points 

z   =  2ma  +   i2n   ;     m,n  = 0 ,±1,±2, . . . ,      m + n  =  odd . (5.29) 

The  augmented  basis  is  formed,  as  in  Levin  et  al   [10,Ex.1],  by  introducing 

into  the  appropriate  monomial  set   (5.27)   the  functions  that  reflect  the  singular- 

ities  of  f  at  the  four  points   (5.28).     However,  when  a > 1  we  also  consider  the 

use  of  the  augmented  basis  that  reflects  the  singularities  of  f  only  at  the  two 

points  ± 2i  nearest  to ∂Ω Thus,  because  of  the  symmetry,   the  two  augmented 

basis  sets  considered  are  as  follows: 

AB:        (i)     When  a = 1 , 

.........,2,1;)(,')}16/{)( )1(4
1

2
1 ==+=

−

+ jzzzzz j
jηη                  (5.30a) 

(ii)     When  a>  1, 

;z)z(,)}'a4z/z{)z(,)}'4z/(z{)z( )1j(2
2j

22
2

2
1

−

+ =η−=η+=η  

j   =  1 ,2 , . . .     .     (5.30b) 

AB’:     When  a > 1, 

                  (5.31) ......,2,1j;z)z(,)}'4z/z{)z( )1j(2
1j

2
1 ==η+=η

−

+

Optimum results.       The  COMP1,   COMP2,   and   COMP3  values  of  Nopt  and  E Nopt  obtained 

by  applying  the  BKM/MB,   BKM/AB  and  BKM/AB'   to  the  four  domains  corresponding 

to  a   =   1,2,4  and  8  are  given  in  Table  5.4.      (We  observe  that  when  a = 1   the 

value  of  E Nopt (COMP2)   given  in  Table  5.4   is  considerably  less  than  the  corres- 

ponding   value  obtained  by  Levin  et  al   [10,Ex.1],   also  on  COMP2.  This  discrepancy 

must  be  due  to  the  slightly  different  methods  used  by  Levin  et  al  for  performing 

the  orthonormalization  and  for  determining  Nopt.) 

S t a b i l i t y .   L e t  

)a1/()}(cap{ 22 +Ω∂=δ                                       (5.32) 

and  observe  that  for  any  value  of  a,   cap(∂Ω)   can  be  determined  from  the  exact 

formula  of  Bickley   [3].     Then,   it  follows  from  Theorem  3.1   that  the   sequence 
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TABLE  5.4 

Values of Nopt and E Nopt 

 
COMP1 

e  ≃  1.5(-8) 

COMP2 

e  ≃  7.(-15) 

COMP3 

ε  ≃  3.1(-33) 
a              BKM/ Nopt    NoptE Nopt    NoptE Nopt   NoptE  

MB 
1 

AB 

 7         8.8(-7) 

  3          1-2(-6)  

13         6.3(-12) 

5         2 .1(-11)  

26          1.0(-24) 

11          1.9(-24) 

MB 

2               AB 

                 AB' 

11        7.6(-4) 

  6          2.1(-6) 

 9          3.0(-6) 

 22         2.5(-6) 

 10         1.0(-10) 

 15         2.3(-10) 

   45         3.3(-13) 

   21          2.1(-20) 

   19         6.3(-22) 

MB 

4                AB 

                  AB' 

8           4.9(-2) 

7 1.6(-5) 

8 2.0(-6) 

 18         2.4(-3) 

 11          2.3(-8) 

 13         2.0(-10) 

   37         3.5(-6) 

   24         3.7(-17) 

   28         2.4(-21) 

MB 

8               AB 

                 AB' 

   8           2.0(-1) 

 8           2.1(-4) 

  8           1.2(-4) 

 12 9.0(-2) 

 14           7.6(-6) 

 13 7.9(-7)  

   31          2.4(-3) 

   27         3.4(-12) 

   31          1.2(-13) 

of  indicators  {I n,n,},   associated  with  the  BKM/MB,   decreases  at  least  as  rapidly 

as   the   sequence 

{N Δ n}                                                                         (5.33) 

where, because of the form of the sets (5.27),N = 4n-1 and Δ= δ4 when a-1, 

and N = 2n-1 and Δ = δ 2 , when a >1. The values of Δ  corresponding to a =1,2,4 

and  8  are  respectively 

0.235  47   ,     0.374   74   ,     0.222  22     and     0.138   91   .                  (5.34) 

In  Table  5.5  we  list  COMP3  values  of  the  instability  indicators I~ S n 

associated  respectively  with  the  use  of   the  basis  sets   (5.27),   (5.30)   and 

(5.31).     In  the  table  we  also  compare  the  observed  and  theoretical  rates  of 

decrease  of   the  sequence  {I n,n },  associated  with   (5.27),  by  comparing  the  exact 

values  of  Δ,   given  in  (5.34),  with  the  computed  values Δ where,  when  a-1, 

                                 10/1
15,1525,25 }I99/I59{~ =Δ                                                         (5.35a)
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and  when  a >  1 , 

                                            10/1
15,1525,25 }I49/I29{~ =Δ                                             (5.35b)

TABLE  5.5

Instability -indicators SnI~   

a n MB AB AB’ Δ~  Δ 

1 
5 

15 
25 

2.4(-2) 
8.4(-10) 
8.3(-18) 

4.0(-7) 
3.4(-25) 

* 

- 
- 
- 

0.236 0.235 

2 
5 

15 
25 

3.2(-2) 
1.6(-8) 

   2.5(-15) 

3.5(-4) 
5.1(-17) 
3.7(-30) 

3.0 (-2) 
2.2(-9) 
2.8 (-16) 

0.377 0.375 

4 
5 

15 
25 

1.8(-3) 
  7.2(-13) 
   3.4(-22) 

6.0(-5) 
4.1(-21) 

* 

5.4(-3) 
1.8(-12) 
3.1 (-22) 

0.222 0.222 

8 
5 

15 
25 

3.4  ( -4) 

8.5(-16) 

1.0(-29) 

2.1(-5) 
5.8(-24) 

* 

    2.8(-3) 
6.8(-15) 
 3.4(-26) 

0.134 0.139 

*    The value is  less  than  ε  ~  3.1(-33),   the precision of COMP3. 

Convergence.       Let  f E   be  the  exterior  mapping  function  associated  with  Ext (∂Ω), 

and  recall   that  the  singularities  of   f   in  comp (Ω)   occur  at   the  points   (5.29). 

Then,  since  f  is  analytic   on  ∂Ω,  the  BKM/MB  and  BKM/AB  approximations   to 

f   satisfy  respectively   (5.21)   and   (5.22)   where,  because  of   the  form  of  the 

sets   (5.27),    (5.30)   and   (5.31),   the  values  of     and     are  as   follows: 1R̂ 2R̂

BKM/MB:   = |f 1R̂ E (2i) | 4 when  a= 1 and R̂  1  =   |f E (2i) | 2  when  a = 2,4,8. 

BKM/AB :      =   |f 2R̂ E (2a + 4i) | 4  when  a= 1,      =   | f2R̂ E   (2a + 4i) |2  when  a = 2,   and 

2R̂    =   | f  E (6 i ) | 2   when  a = 4,8. 

BKM/AB ' :       | f  1R̂ E (2a) | 2   when  a = 2,   and  =   | f  2R̂ E ( 6 i ) | 2   when  a = 4,8. 

 In  Table  5.6  we  compare  the  values  of   and  , determined  from  the 1R̂ 2R̂

expressions  given  above,  with  the  observed  rates  of  convergence  given  by 

the  ratios 
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TABLE  5.6

Convergence ratios  

a BKM/MB BKM/AB BKM/AB' 

1 
 r 16   =  8.8820 

1R̂     =  8.8839 

 r l0   =  257.5 

2R̂     =  205.9 
_ 

2 
   r 25   =  1.9866 

1R̂      =  1.989 

    r13   =  11.31 

2R̂    =  10.45 

r 17  =  4.623 

2R̂   =  4.664 

4 
   r 21   =  1.4839 

1R̂   =  1.4862 

 r 15  =  5.600 

   2R̂   =5 .596

r17  =  5.422 

2R̂   =  5.596 

8 
r18  =  1.2713 

1R̂    =  1.2422 

 r16  =  2.785 

2R̂   =  2.813 

r18   =  2.758 

2R̂    =  2.813 

            n ≃   Nopt/2+3  ,                                   (5.36)            ,1/6}6n/En{Enr −=

where  the  E j   are  COMP3  error  estimates.   (In  this  case,   the  mapping  function 

f E  is  not  known  in  closed  form.    For  this  reason,   the  values  of  R  listed  in 

the  table  are  only  estimates,  obtained  by  computing  BKM  approximations  to fE 

in  the  manner  described   in   [14,Ex.3.2].) 

All  the  remarks  made  in  connection  with  the  results  of  Ex.5.1   also  apply 

to  the  results  of  the  present  example.  In  particular,  we  observe  that   in  all 

three  cases  where  a > 1   the  level  of   instability  in  the  BKM/AB  is  substantially 

higher  than  in  the  BKM/AB’,   This  is  of  course  due  to  the  fact  that  when  a = 2,4 

and  8  the  points  ± 2a  are  "far"  from  ∂Ω,   and  there   is  near  linear  dependence 

between  the  singular  function η2  in  (5.30b)   and  the  first  few  monomials  in 

(5.27).    Furthermore,  the  convergence  of  the  BKM/AB  is  noticeably  faster  than 

that  of  the  BKM/AB' only  in  the  case  a = 2.  However,  even  when  a = 2  the  improve- 

ment  in  convergence  is  not  sufficient  to  overcome  the  increased  instability  and, 

with  the  exception  of  the  COMP2  results  for  a=2,  all  the  BKM/AB'   approximations 

are  more  accurate  than  those  obtained  by  the  BKM/AB. 
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Example  5.3       BKM  for  the  L-shaped  domain 

                Ω  = {(x,y) :- 1 < x < 3, |y| < 1} ⋃ {x,y) | x| <1 ,-1< y < 3}  .                        (5.37) 

Monomial basis.    The  monomial  basis  set  used  is 

η j ( z )   =  z J - 1 ;          j  =  1,2,3,...   (5.38) 
Augmented basis.      In  this  case,   the  mapping  function  f  has  a  serious  branch 

point  singularity  at  the  re-entrant  corner  of   the  L-shape,   i.e.   at  the  point 

z   =1  + i.     This  follows  from  the  results  of  Lehman   [9],   which  show  that  in 

the  neighbourhood  of  20  f  has  an  asymptotic  expansion  of  the  form 

                                  a∑
∞

=
−=−

1
,/32)0z(za)0f(zf(z)

l

l
l 1 ǂ 0  ;                             (5.39)

see  [18,§4].     Furthermore,  by  the  Schwarz  reflection  principle,  f  has  simple 

pole  singularities  at  the  points 

 p1  =  -2i  ,     p2  =  -2  ,    p3   = 6    and  p 4  =  6i .                            (5.40) 

Because  of  the  above  observations  we  consider  the  use  of  the  following  two 

augmented  basis  sets: 

AB(Sm):     This  basis   set   takes  into  account  only  the  branch  point  singularity 

of  f  at  z 0,  and  is  constructed  by  introducing  into  the  monomial  set   (5.38)   the 

first  m  functions  of  the  set 

 Sℓ(z)  =  (Z-Z0)2  ℓ / 3 - 1  ; =   1,2,4,5,7,8,.. .    ; (5.41) 

see  Eq.   (5.39).     The  basis  functions  are  ordered  so  that  when  k-  1  <  (2ℓ/3-1) <k 

the  singular  function  Sℓ   lies  between  the  monomials  z k -1  and  zk . 

AB(PSm):   This  set  is  the  same  as  AB(Sm),  except  that  here  we  also  introduce 

the  singular  functions 

                     ,)}'pz/(z{)z(and)}'pz/(z{)z( 2211 −=η−=η                   (5.42) 

which  reflect  the  poles  of  f  at  the  two  points  p1 and  p2 .(The  other  pole 

singularities  at  the  points  p3  and  p4  are  "far"  from ∂Ω,  and  are  not  considered 

here.) 
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Optimum results.       The  values  of  Nopt  and  E Nopt otained on COMP1, COMP2 and 

COMP3  by  using  respectively  the  monomial  basis   (5.38)   and  the  two  augmented 

sets  AB(Sm) and  AB(PSm),   each  with  m= 1,3  and  6,  are  listed  in  Table  5.7. 

TABLE  5.7 

Values of Nopt and E Nopt 

 
COMP1 

ε  ~  1.5(-8) 

COMP2 

ε  ~ 7.1(-15) 

COMP3 

ε  ~  3.1(-33) 

Method Nopt         NoptE Nopt           NoptE Nopt            NoptE

MB 
 

AB(S1) 
AB(PS1) 

 

AB(S3) 

AB(PS3) 

 

AB(S6) 

AB(PS6) 

  13(S)           2.4(-1)
 

 13                2.3(-2) 

13                7.9(-3)  

 
15                2.3(-2) 
15  1.3(-3) 

 
 
 

10(B)          2.2(-1) 
16  6.8(-4) 

13(S)          2.4(-1)
 

  16                5.7(-3) 
   29                2.2(-3) 

 

28                6.0(-4) 

26                2.9(-4) 

 

26                114(-3) 

26                2.5(-5) 

13(S)          2.4(-1) 
 

27(S)          2.2(-3) 

28(S)          2.1(-3) 

 

 45(M)          5.9(-5) 

45(M)          2.2(-5) 

 

45(M)          2.8(-6) 

45(M)         7.8(-8) 

( S ):    Slow convergence,   i.e.   the process terminates because criterion   (5.6)   is 
satisfied. 

(M):    This is the maximum number of basis functions used,   i.e.   the process is 
stopped at  n = 45,   without   (5.5)  or  (5.6) being satisfied. 

( B):   The orthonormalization process breaks down before  nmin = 13 is reached. 

 Stability.       Typical  COMP3  values  of  the   instability  indicators   ,SI~ n     associated 

respectively  with  the  use  of   the  monomial  basis   (5.38)   and  the   six  augmented 

sets  AB(Sm)   and  AB(PSm);  m  =   1,3,6  are  listed  in  Table  5.8. 

TABLE  5.8

Instability indicators nSI~   

n MB AB(S1) AB(PS1) AB(S3) AB(PS3) AB(S6) AB(PS6)

 5 

15 

25 

4.3(-2) 

2.1(-7) 

 6.7(-13) 

1.0(-1) 

7.4(-7) 

  2.4(-12) 

1.1(-1) 

2.8(-7) 

 4.8(-12) 

1.2(-3) 

3.8(-6) 

  2.8(-11)

1.4(-2) 
    5.4(-6) 

    3.0(-11) 

   1.2(-3) 

   1.2(-11) 

1.1(-15) 

1.4(-2) 

  8.4(-11) 

     1.1(-13)
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From  Theorem  3.1  we  know  that  the  sequence  of  indicators{I n,n },   associated 

with  the  monomial   set   (5.38),   decreases  at  least  as  rapidly  as  the  sequence 

{(n-1)δn}  where  δ  =  {cap(∂Ω)}2/5.    Although  cap(∂Ω)   is  not  known  exactly,   the 

BKM/AB  results  of   [14,Ex.3.4]   give  the  estimate  δ=0.4708.   By  comparison,   the 

C0MP3  ratio {14I25,25/24I15,15}1/20  

 
gives  the  value  δ  =  0.4690.     These  two 

estimates  of  δ,  in  conjunction  with  the  MB  values  of  ISn  listed  in  Table  5.8, 

indicate  that  the  level  of  instability  in  the   BKM/MB  is  not  particularly  high, 

by  comparison  with  the  levels  of  instability  associated  with  some  of  the  geometries 

considered  in  Exs.  5.1   and  5.2.     Furthermore,   the  results  of  Table  5.8  indicate 

that,   in  this  example,   the  introduction  of  singular  functions  does  not  affect 

significantly  the  stability  properties  of  the  orthonormalization  process. 

Convergence,       In  this  example,   it  is  very  difficult  to  draw  precise  conclusions, 

concerning  the  convergence  of  the  BKM  approximations, from  the  behaviour  of  the 

error  estimates  En .   We  can  only  make  the  following  general  remarks: 

(i)     The  results  of  Table  5.7  indicate  that  the  convergence  of  all  BKM 

approximations   is   slow. 

(ii)     Theorem  4.3   of  Simonenko  [20] applies  to  the  L-shaped  geometry  con- 

sidered  here,   i.e.   there  exist  constants  C>0  and  Γ>0  such  that 

                                     ,γC/n|f(z)(z)nf|
Ωz

max ≤−
∈

                                             (5.43) 

where  f n is  the  nth  BKM/MB  approximation  to  f. Furthermore,   the  result  of 

Kulikov   [11]   shows  that   (5.43)   holds  for  all  γε(0,γ1)   where,   in  this  case, 

γ1  =  1/480.   Here,  we  attempt  to  provide  some  further  information  about  the 

rate  of  convergence  by  computing  values  of  the  quantity 

                                          (5.44),kE
nk1

minnÊ,10)}(n)}/{log(n/nÊ/10nÊ{log(nγ ≤≤
=−−=

where  the  Ek are  the  BKM/MB(COMP3)  error  estimates.  (We  use  En ,  rather  than 

En ,  to  take  into  account  the  possibility  of  non-monotonic  convergence.)    Typical 

results  are  as  follows: 

Y25  =  0.23   ,       Y35  = 0.26 ,     γ45 = 0.20 
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These  results  suggest  that  the  exponent  γ  in  (5.43)  is  approximately  0.2  and, 

as  we remarked  in  Section  4,   the  value  γ1   of  Kulikov  appears  to  be  very  pessimistic. 

(iii)     The  results  of  Table  5.7  indicate  clearly  that  the  introduction  of 

singular  functions  into  the  basis  set  improves  considerably  the  accuracy  of 

the  BKM  approximations.      In   this  example,  the  dominant  singularity  is  due  to 

the  re-entrant  corner  at  z0  = 1+ i,  and  for  improved  approximations  the  augmented 

basis  must  contain  functions  that  reflect  this  corner  singularity;    see  also 

the   examples  in  [10]   and  [13,14],  

(iv)     The  results  indicate  that  the  AB(PSm)   approximations  are,   in  general, 

at  least  as  accurate  as  those  obtained  by  using  the  basis  AB(Sm).    However,   the 

C0MP3  results  suggest  that  the  introduction  of  the  "pole"  singular  functions 

(5.42)   does  not  improve  the  asymptotic  rate  of  convergence  of  the  BKM/AB(Sm). 

(The  reason  for  the   improved  approximations,   which  are  sometimes  obtained  by 

the  AB(PSm),  appears  to  be  that  the  introduction  of  the  functions   (5.42)   causes 

a  noticeable  initial   improvement.) 

(v)     In  this  case,  we  do  not  have  any  theoretical  results  concerning  the 

rate  of  convergence  of  the  AB(Sm)  and  AB(PSm)   approximations.     In  Section  4  we 

speculated  that  the  improved  accuracy  achieved  by  the  BKM/AB  is  due  to  a  larger 

exponent  γ  in   (5.43).    We  performed  several  numerical  experiments  for  testing 

this  speculation,  but  our  numerical  results  were  not  conclusive. 

Example  5.4       ONM  for  the  mapping  of  an  equilateral  triangle  with  a  circular 

hole.    Here,  Ω   is  the  doubly-connected  domain  bounded  internally  by  the  circle 

∂Ω1 = {z  :  |z|  = a ,   a < 1 } ,       (5.45) 

and  externally  by  the  equilateral  triangle  ∂Ω2  with  vertices  at  the  points 

1 ± i √3 and -2 

Monomial basis.       Because Ω  has  three-fold  rotational  symmetry  about  the  origin 

the  monomial  basis  is  taken  to  be 

               η2 j -1(z) = z3 j -1      , η2 j(z)  = 1/z3j+1  ;    j = 1,2,3,……               (5.46) 
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Augmented basis.       The  domain  Ω  has  no  corner  singularities  and  for  this  reason, 

an  augmented  basis  need  only  reflect  any  singularities  that  the  function 

H(z) = f’ (z)/f(z) -1/z  may  have  in comp (ΩU∂Ω) .As is shown  in   [17],   the 

function  H  does  in  fact  have  such  singularities  at  the  common  symmetric  points 

associated  with  the  circle   ∂Ω1 and  each  of   the  three   sides  of  the  triangle  əΩ 2 

i.e.   at  the  points 

               )47.5(
2
1

)2a(11(1)
2ζ2ζ,2

1
)2a(11(1)

1ζ1ζ

,3,2,1j;1jw2ζ
(j)
1ζand1jw1ζ

)j(
1ζ

⎪
⎪
⎭

⎪⎪
⎬

⎫

−+==−−==

=−=−=

and  w = exp(2 π i/3)  It  is  also  shown  in  [17]   that  these  singularities  can  be 

reflected,   but  only  approximately,  by  introducing   into   the  monomial   set   (5.46) 

functions  corresponding  to  simple  poles  at  the  points   (5.47).   The  use  of 

augmented  basis  sets  constructed  in  this  manner  leads  to  improved  ONM  approx- 

imations,   especially  when  the  radius  a  of   ∂Ω1  is  close  to  unity.  However, 

since  the  singularities  of  H  at  the  points   (5.47)   can  only  be  reflected  approx- 

imately,  we  do  not  have  any  theoretical  results  concerning  the  rate  of  convergence 

of  the  ONM/AB.     For  this  reason,   in  this  example  we  consider  only  the  use  of 

the  ONM/MB  and  refer  the  reader  to   [15]   and  [17],   where  several  examples  in- 

volving  the  use  of  the  ONM  with  augmented  basis   sets  are  considered. 

Optimum results.  The  COMP1, COMP2  and  COMP3  values  of  Nopt  and  EL Nopt ,obtained 

by  applying  the  ONM/MB  to  the  three  domains  corresponding  to  a=0.3,0.5  and  0.8, 

are  listed  in  Table  5.9.     (When  a = 0 . 5   the  COMP2  values  of  Nopt  and  E Nopt  given 

iiiiiii n   Table 5.9 differ somewhat from the corresponding values obtained in [17], 

also on COMP2. This discrepancy is due to slightly different implementation 

details  regarding  the  calculation  of  inner  products.) 

Stability.       From  Theorem  3.2  we  know  that  the  subsequence  of   indicators 

{I 2n+1,2n+1}decreases at least  as  rapidly  as  the  sequence  {N∆ n}  where,  because 

the  set   (5.46)   reflects  the  symmetry  of  Ω,  N=3n+1   and  Δ  =  {cap(∂Ω2)/2}6. Here 

cap(∂Ω  2) can  be  determined  from  the  exact  formula  of  Pó1ya  and  Szegö   [19,p.256]. 
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TABLE  5.9 

Values  of Nopt and ENopt 

 COMP1 

ε  =  1.5(-8) 

COMP2 

ε  = 7.1(-15) 

COMP3 

ε  = 3.1(-33) 

a    Nopt               NoptE Nopt                 NoptE Nopt          NoptE  
                      

0.3 

0.5 

0.8 

15            3.1(-5) 

15            2.5(-5) 

18            1.8(-4) 

26            2.2(-8) 

28            3,9(-8) 

25            2.1(-6) 

45 (M)           6.1(-4) 

45 (M)           5.5(-3) 

45 (M)           5.5(-10) 

(M):    This is the maximum number of basis functions used, i.e.  the process 
 is stopped at n =45, without (5.5) or (5.6) being satisfied. 

This  gives  A  =  0.151  96.    By  comparison,  the  COMP3  ratios{(28I39 , 39)/(58I19,19)}1/10, 

associated  with  the  application  of  the  ONM  to  the  three  domains  with  a =0.3, 

0.5  and  0.8,  are 

0.151   76  ,      0.151  76      and      0.151  77  , 

respectively. 

Regarding  the  subsequence  of  indicators  {I2n+2,2n+2 },  the  ratio  d1/R1   in 

(3.20)   is,   in  this  case,  d1 /R1  = 1   for  all  values  of  a.    Because  of  this,  we  do 

not  expect  the  size  of  the  circular  hole  to  affect  the  stability  of  the  ortho- 

normalization  process.    This  is  confirmed  by  our  numerical  results.    For  example, 

the  COMP3  values  of  the  indicators   I~ S 15   I~ S 25  I~ S 35  are respectively 

1.5(-6)   , 1.6(-11)        and        1.2(-16)   , 

in  all  three  cases  a =0.3,  0.5  and  0.8.    Furthermore,  our  experiments  show  that 

for  "large"  n  the  introduction  of  basis  functions  of  the  form  1/z3n+1 does not 

affect  the  stability  of  the  method.    In  fact,  as  n  increases  the  indicators 

I2n+2,2n+2   appear to aproach the  value  unity.    For  example,  the  COMP3  values 

of  I 6,6   corresponding  to  a =0.3,0.5  and  0.8,  are 
 

1.000  00  ,      1.000  00      and      0.999  91   , 

respectively. 
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Convergence.       Since  f  is  analytic  on  ∂Ω = ∂Ω1  U ∂Ω2,  Theorem  4.4.  applies. 

That  is,  because  of  the  form  of  the  set  (5.46),  the  ONM  approximations  to  f 

satisfy 

,)2R̂,1R̂min(1/R1,R,)3n0(1/R|(z)2nff(z)| <<∀=−                               (5.48) 

where   and    are  defined  by  (4.27)  and(4.28).    Therefore    = a/ζ1R̂ 2R̂ 1R̂ 1   and 

2R̂  = fE   (ζ2)   where the  singular  points  ζ1   and  ζ2  are  given  by  (5.47),  and  fE2

is  the  exterior  mapping  function  associated  with  the  outer  triangular  boundary  ∂Ω2

 TABLE  5.10 

Convergence ratios  

 
a = 0.3 a  =  0.5 a  =  0.8 

 r 20

 r 30

2R̂  3/2

1R̂  -3/2

1.902 

1.867 

1.811 

16.622 

1.760 

1.751 

1.720 

7.210 

1.517 

1.503 

1.465 

2.828 

In  Table  5.10  we  compare  the  observed  rate  of  convergence  with  that  pre- 

dieted  by  (5.48)  by  listing  the  C0MP3  values 

                          r n = { En / E n +10}1/10    ;   n  =  20, 30  ,
 

and  comparing  them  with  min .(It  should  be  observed  that,  as  in }3/2
2R̂,3/2

1R̂{ −

Ex.5.2,  the  mapping  function  fE2  is  not  known  exactly.    For  this  reason,  the 

values  of   listed  in  the  table  are  estimates  computed  by  using  BKM/AB 3/2
2R̂

approximations  to  fE2 ; see   [14,Ex.3.3].) 

The  results  of  Table  5.10  reflect  the  theory,  and  indicate  that  rate  of 

convergence  of  the  ONM decreases   as  the  radius  a  of  the  circular  hole  increases, 
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