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Moment Properties Of Estimators For A Type 1 Extreme Value Regression Model

by

A. A. Haddow and D .H. Young

Summary

A regression model is considered in which the response variable has
a type 1 extreme value distribution for smallest values. Small sample
moment properties of estimators of the regression coefficients and scale
parameter, based on maximum likelihood, ordinary least squares and best
linear unbiased estimation using order statistics for grouped data, are
presented, and evaluated, for the case of a single explanatory variable.

Variance efficiency results are compared with asymptotic values.
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1. Introduction

Consider the classical multiple linear regression model

Y,=u =g =xP=¢g i=1, . ,n (1.1)

~1 ~

Where X', = (1>X.i1 5 eeesX )9 B' = (BO s B 1,...5 Bk) s the Values Xil s - - - sXjk

representing observations on k non-random explanatory variables for the
ith individual. We shall assume that the true residuals {g;} are inde-
pendently and identically distributed with

E(g)=0, var(g)=oc2, i=1, ..n (1.2)
If the distribution of the { &;. } is not specified, the estimators of
the regression coefficients are usually determined by ordinary least

squares (OLS) and are given by the value of which minimises y_x gy (v- X p)

whereY' = (Y;,...,Yn)andX is the design matrix. Assuming that X is

of rank k+1, the OLS estimator is given by

B=XX)"XY (1.3)
with
E(B) =P » cov (B) = o> (X'X) "
(1.4)
An unbiased estimator of o” is given by the LS estimator
~2 ~ -
o =(m—k=D(Y-XP)'(Y-XP) . (1.5)

The justification for using least squares when the distribution

of the {&;i} is unknown, is that the OLS estimators {f;} have minimum
variance among estimators that are linear combinations of the {Y;.}.
Further the estimator 52 has minimum variance within the class of
estimators which are quadratic forms in the {Y;}. When the distribution
of the { &;} is specified, estimates of p and ¢° may be found by maximum

likelihood (ML). The ML estimator of , denoted by B will be a non-linear
function of the {Y;} except for the normal case Whenﬁ and E are the same.

The ML estimatorS~ of o is equal to for (n-2) &’ the normal case but
in general is not a quadratic form in the {Y;}. Calculation of the ML
estimates usually requires an iterative solution but the extra comput-
ational effort is often worthwhile as appreciable loss of variance effic-
iency can occur if LS is used for non-normal cases.



In this report, we consider the case when the {Y;} have a type 1
extreme value distribution for smallest values with p. d. f.

1 ~
fy; @ = g op {—p———y-op | —p=—7y |} . —@<y<o (1§

where y = 0.577216 is Euler's constant and 6>0 is the common scale para-
meter . The mean and variance of the distribution are

E(Y)=x.p, var(Y) —& %07 (1.7
x.p

respectively. The distribution is nonsymmetrical with skewness and

kurtosis coefficients given by
vi(Yi) = 1.29857 v2(Yi) = 2.4. (1.8)

The type 1 extreme-value (EV) distribution with p.d.f. given by
(1.6) arises under certain conditions as the limiting distribution of
the smallest value of a large number of independent and identically
distributed random variables. It therefore often provides a useful
approximation to the distribution of system life or system breaking
strength when a system contains a large number of components and

'failure' occurs as soon as one component fails.

As is well-known, the type 1 EV distribution is closely related
to the Weibull distribution. Thus the c.d.f. of Y;. is

y — X
FYi (y) =1 —-exp — exp T~1~ - v . (1.9)

If we put
Wi =exp(Yi), i=1,...,n (1.10)

the random variable W. has the Weibull distribution with c.d.f.

Fy (W)=1-exp{-(w/8)"},0<w<owo (1.11)
i
where the scale parameter 5 is

§=exp{—(x B+70)} . (1.12)

We have
E(w)=exp(x B ),i=1, ..,n (1.13)



where

Bw, Bo 80 "logl (1+0),  PBwr=Pr, r=1,.k. (1.14)

It follows that the regression model for the {Y;} with additive model

i = X, B for the means is equivalent to that based on the {W.} with an

~

multiplicative exponential model for the means. No special treatment
is therefore required for the Weibull model.

When no explanatory variables are present, many investigations
have been made to assess and compare the properties of various estimators
for the location and scale parameters of the type 1 EV distribution. A
useful survey is given by Mann (1968). Lawress (1982) discussed statis-
tical inference procedures for the type 1 EV regression model and also
gives asymptotic efficiency results for LS estimation relative to ML
estimation. However, little work appears to have been done to assess

the small sample properties of the estimators in the regression case.

This report focuses attention on the moment properties of estimators
for the parameters in the regression model. In section 2, four comput-
ational procedures for determining the ML estimators are described and
some findings relating to their computational efficiency are given.
Approximations to the biases and variances of the ML estimators are given
in section 3 and evaluated by simulation for the case of a single explan-
atory variable. The OLS estimators are considered in section 4 and in
section 5 we discuss the best linear unbiased estimators (BLUE'S) based
on order statistics when grouped data are available. Finally, in
section 6 small sample variance efficiency results as obtained by simu-

lation are compared with asymptotic results.

2. Computational Procedures For Maximum Likelihood Estimation

In this section, we describe four computational methods for determining
the maximum likelihood estimates. The first two methods use the Newton-
Raphson and Fisher's scoring approach respectively, while the last two
methods are designed to facilitate the use of the statistical package

GLIM which provides ML fits of generalised linear models.

We first present results for the first and second order derivatives
of the logarithm of the density given by (1.6). For notational conven-

ience we set



z,=0" (y,-x )-y,i=1,..n (2.1)

and we have
1 Z.
log fy (yi) =0 exp(zi-e!) (2.2)
1
with
0zi/OBr = -xir /0 , 0 zi./O\ = ~(z; +y)/0 .

We set

Ologfy; ) @) _ 2logfy; &)

(1) _
Ur - aBI‘ > 0 — a—e (23)

2 2 2
v _ 0~ log fy. (y;) () _ 07 log fy; (v v _ 0 log fy; (v;) 04
IS oBr 0Bs ro OBy 00 > 00 862 )

for r,s = 0,1,...,k, and a straightforward calculation gives
(i _ 1, % M _g-li, . + “i 2.5
ul =xpolei-n Ul soli@ e o -1 2.5)

: Z. : . Z.
VD mxpx 072t vl ook 02" lr e i@ 1) (2.6)

Vil =0 2 e v pleliv 2z e o -1y (2.7)

IfL(B,0)=2 log fy (yi) denotes the log-likelihood we have
z : i

OL(B.0) 0 OL(B.0) 0
B, r o s, %Y - %)

Thus the ML estimates are given by the solution of the k+2 equations
Z. X Z.
> X (e 1-1)=0, > @i +y)(e -1)=n (2.9
i i
forr=0,1,....k, where

n 1

zi=0(y,~x B) -7, i=1,. .,n (2.10)



The second order derivatives of the log-likelihood are given by
cLeo o 0°L ($.0) o GO

~ 1 ~ ~ (1)
oBdBs T S o0 g 0T g2 oy Ve @I

(i) Newton-Raphson Method

Using the Newton-Raphson approach to find an iterative solution
to the likelihood equations, we set

oL(B ,0) / 8By
D(E) - ~
2 OL(B ,0) / 0By (2.12)
k+2)x1 -~
(20Xl 51(p ,6) /00 A (0) A (D)
L ~ _B = B ’6 = 9
| 02L(B.0) %L(B.O) O°L(B.O) APL(B.O) |
op oBg0B;  0BgoB,  9BooBg
O | 2%Lp.0) 0PL(B.0)  27L(B.0) 97L(B.0)
(k+2)x (k+2) BooBx BB " 9B, OBy 00
k
o2L(p.0) o2L(p.o) o’L(B.o) Loy | )
0Bgd0  0B00 " 0P 00 prv L
i (0)
0 =6
(2.13)
A A(D) o a A

where 5= denotes the approximations toff and 6 at the
stage of iteration. The new approximations are given by

A0+ 1) A (1)

B p (2.14)

- ~ V4 -1 V4
Sy | 7| R | e,
0 0

(i1) Fisher's Scoring Method

A simple and well-known modification to the Newton-Raphson approach
is to use Fisher's scoring method in which the elements inD_ are replaced

at each stage by the current estimates of their expected values. We
first need some simple expectation results for the random variables

-1 ' : ) ) ) )
Z; =0 " (Y; —xj E) -y,1= 1,....... n, which are independently and identic-
ally distributed with p.d.f.

f, (z) = exp(z-€“),-0<z<o0. (2.15)



The moment generating function of Z is
o0
M, (1) =I exp z(t+1) —eZ}dt = T(1+1) , (2.16)
—0
giving
E(Z'e”Y) = d'M, (t) /dt'=d" ['(1+t)/dt" (2.17)

Using the results that

h sX

I _diog T I"() _ d2logT(x) , [diog I'(x) |
rx) dx T T(x) dx 2

where dlogr(x)/dx and d*logI'(x)/dx* are the digamma and trigamma func-

tions respectively, we obtain

E(e?) =I'(2) =1, E(Ze*) =T"(2) =0.422784 , E(Z*c*) =T"(2) =0.823680 . (2.18)

Setting

I = B(-% v 14 = B(-3 vy, 199 = B(-3 viy (219

and using (2.6), (2.7) and (2.18), the elements in the information
matrix are given by

2

-2 -2 -
Irs = 077 X Xipxig s ig = 077X xip , lgg = 2.644934n0 (2.20)

for r,s, = 0,1,....k. These elements replace those in D and are esti-

~2
ORI
mated at the Cth stage using the current approximation 6 to 0, the
elements being independent of B Iteration continues using the scheme

given by (2.14) until satisfactory convergence is obtained.

The calculation of the ML estimates by the Newton-Raphson or
Fisher's scoring method is straightforward using a matrix inversion
subroutine. For large scale simulation work in GLIM, we have examined
two other computational approaches for finding the ML estimates, which

we now describe.

(i11) Two-Stage Method

The log-likelihood under the type 1 EV regression model is
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L(BO) = — nlogh — ny + e—lzi F —f'i Py = % exp Ti st _efiE—y . (2.21)
Consider a fixed value of 0, say €. Putting
Bro=7y+05 .Bo,  B=65 B, r=1,.k
Yxi = exp(y i/60) , Uy = exp( )N(;NB*) , i=1,. n
we have
L(NB*,OO) = % logys; — nlog 0 — % logus; — % (y#j/ux;) (2.22)

Maximising L(B,0p) with respect to B is therefore equivalent to

maximising
L( B*,GO) = — Z 10g Use + Y*I/U*l) (2.23)
~ 1

with respectto . Ll( B, OO) is the log-likelihood treating the
~k %

{y=i .} as observations on independent exponentially distributed observ-

1

A A
ations with means {u+ }, where logu+; x ; B The value p = B(@O)
~ ¥ %k ¥k
which maximises Ll( B, 60) may therefore be obtained using GLIM by
%k

specifying an exponential error distribution and a logarithmic link
function.

AN AN
Treating £ as known, the value § = ) of 8 which maximisesL(j,0 )

A
is from (2.9) a solution of the equationg (6, ) = 0 where

Y._X_B A

/\ ' ~
20.p) =% (i —x;B)yxp — v |-l -no. (2.24)

Using a Newton-Raphson approach to find an iterative solution for O,
if O €. denotes the £ th approximation to 6, we have

VAN VAN VAN VAN
0r+1 =00 —g(07,B)/g(07,B), t=1,2,.. (2.25)

Since in practice both 4 and are unknown, the following two—stage

VASIVAN
iteration method may be used. IfB, 0] denote preliminary approx-
- . /\ /\ . . . - -
imations to B and 0 respectively, the new approximation , is given by

N

01 = o b1, a Vg (b1, ?3 ) The transformed observations yx; = exp(yj /07 )

~1 ~1

7a\ N
are then used in a GLIM fit to obtain B and hence B . The same steps
~*2 ~2
are used repeatedly until satisfactory convergence is obtained.



(v) The Roger/Peacock Method

An alternative method specially designed for work in GLIM was proposed
by Roger and Peacock (1982). Their method copes with censored observations
and has the advantage over the preceding method of providing the estimated
asymptotic covariance matrix of the ML estimates directly from the output
of a GLIM fit. To apply their method, we put

* yi—x.B
o=10,p;=exp TN_Y , 1=1,..n. (2.26)
We have
* ® K .
log u; =ay; +x. B , i=1,.,,n (2.27)
~irn

where ,B* ={-(@aPBot+Yy),-aPBi,....-a Bk, } and the log-likelihood may

be written as

% n % *
LB ,a) = 'Zl (log p; —p;) + n log a . (2.28)
~ i=

AN /\’k

Leta , f denote the ML estimates of a and. ﬂ* To use GLIM, we may

proceed as follows. Suppose that we have n independent Poisson random

variables Z; ,...,Z, with means ul* ,,..,p*n satisfying (2.27), and an

independent binomial random variable Z,, based on n trials and 'success'
probability a: The log-likelihood for realised values z; , ,,.,Z, and Z,+;
1s
S Lz
“i *

* n e .
Li ,0)=2% log S & 10g{ (Izl " j(x “n+1(1-q) D2 n+1}
~ n

i=1 Z

(2.29)

n
= constant + > (7 loguz< —u;k) + zn+110ga +(n-z, . log(1-a) .
i=1

For the specific realisation zi=1,1i=1,. . . ,n and z,+; = n, we have

% %
LiB ,0) =L@ ,a) + constant. Hence maximisation of L B o) is equiv-

alent to maximisation of the log-likelihood based on the random variables

Zi.,....2,and Z,+, , , when the realised values are z=1,i=1,....n
for the Poisson variables and z,;;1 =n for the binomial variable. Roger

and Peacock give a GLIM program, containing five macros including four
macros for fitting a user-defined model, which may be used to find the

ML estimates.
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Some idea of the variations in computer time required to determine
the ML estimates can be obtained from table 1 which shows the computer
processing units (CPU) for each of the four methods of estimation for
10, 20 and 50 sets of sample data generated by simulation for n = 25.

The results indicate that the Fisher-scoring method requires less time

than the Newton-Raphson method and gives considerable savings over the
two-stage method. Comparisons with the Roger/Peacock method are more
difficult to make, as the stopping rule for convergence is not controlled

by the user but is implemented in the GLIM system. Further, a run with
100 sets of data showed that in a few cases the Roger/Peacock method
failed to produce a solution because negative values were produced for

the total deviance.

Table

CPU usage for four methods for obtaining ML estimates

Run Size Roger/Peacock Fisher scoring Newton-Raphson Two Stage

10 59 sec 74 sec 83 sec 115 sec
20 108 sec 150 sec 151 sec 216 sec
50 255 sec 334 sec 458 sec 626 sec

3. Moment Properties Of The Maximum Likelihood Estimators

The exact moments of the ML estimators are unknown, but approximations
to their biases, variances and covariances correct to O(n' ) can be obtained
by standard methods.

Without loss of generality, we shall assume that the values of the x's

are centred such that Zn: xi; = o forr=1,.. k. In this case, use of
i=1
(2.20) shows that theinformation matrix may be written as

oL@
1=9 o 1, 3.1)

where 1 refers to O and B irefers I to ..., Bx and
~1 ~2

i . _
Zi X % Xilxiz"zi X1 Xk

I=(2'64493n nj L =S xjxpT x5 -3 xpxi |. (3.2)
~1 - n nj/ ~2 1 1 1

Zi Xilxikzi Xizxikzi X ik
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Since

[~ _ -1 0.6079 06079
ST 106079 0.6079

we have the standard approximations

A 2 A 2 A N 2
var (g) = LOT00% yar (g) < D096 ooy 5 ) ~ —0.6(1)1796 ' (3.3)

1

The approximate covariance matrix for B = (Bl’""’Bk) 1s=
~1

Cov (B ) = 0 (Y xirxis)) ~ (3.4)
~1 i

To obtain the approximate biases, we first need the third order
derivatives of the logarithm of the density given by (1.6). Setting

3 3 3 3
() _ 97 loefy; (vi) (i) _ 07 loefy; (i) ¢y _ 97 loefy; vi) () _ 97 loefy; (vi)

ISt T 9BLOPsOPt | SO opLopgoo 106 8Br892 > 7000 263

(3.5)

and using the second order derivatives given in (2.6) and (2.7) we obtain
W& =07 xpxixge T L W 20 kg xge i 4y 4 ) (3.6)

3 Z. 5
Wi =0 xule I {zi+ty) + 4@+y +2} - 2] (3.7)
z.
Wby =07 [T X{(z+y) +6 (2 +7)? +6(zi + V) } -6(z +y) 2] . (3.8)
We set

Kist = BC Wi, Krgg IS Wigh IKygg = B Wigh) . Kogg = BT Wigp)  (3-9)

Using (2.17) we obtain

E{(Z +y)exp(Z)} -T'Q) +y=1 (3.10)
E{(Z + v)’exp(Z)} =T"(2) + 2yT"'(2) + v* = 1.64494 (3.11)
E{(Z+y)’exp(Z)} -T™ (2) + 3yIT"(2) + 3y* (2) + v° = 2.53070 (3.12)

and hence
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-3 -3
Krst =07 2 xipxiskie s Krsp =307 2 X (3.13)

K, gg = 5.64494 03 % Xip »  Kggg = 16.4.003 0 3n (3.14)

Finally, we require the values of the quantities

st = B(3 Uy ® = g3 2 xirtis¥i E{ez % - 1)} (3.15)
Trso = E(X u, V) = —9‘3§ X Xig E[(ez - 1){(eZ —1+eZ @z +7) }] (3.16)
Troo = E(X u vy

S xirE[(eZ - 1){(2 w2l 12z 4yl —1) -1 }] (3.17)
Jogt = E (;1 u v = —e‘3§ s BeAz e -1 -1 | (3.18)
Toso = E(X eV

- —e‘3§ x; E {(Z+ e -1) -1 } {ez 1+ Z+y) (L —1)eL }] (3.19)

Jo,00 = E(X Ue(i)Véie))
— g3 E[{(Z et -1) -1 } {(z A Y AR Y | }] (3.20)

Using (2.17) we have E{Z' exp(2z) } = d" (x)/dx" evaluated at x = 3 which
gives

E(e*)) =r1r(3) =2, E(Ze*)) - T'(3) = 1.84557
E(Z% e *) =T1"(3) = 2.49293 , E(Z’c*) =T"'(3) = 3.44997 .

Use of these results in (3.15) to(3.20) gives after simplification
Jigt =—07° ¥ XirXigXit > Jrs0 =- 3973 3 x

(3.21)

irXis
Jogn =—5.64493 073 % x. , Jg o == 077 Y x.x. (3.22)
r,00 : = ir 0, st = s it :

Joo =—3.64493 073 % x.. | To an =—11.11040 6 3n. (3.21)
r,st = s 0,00
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A A A
If by = E@y) — By and by = E() -0 denote the biases of p.and 0,

respectively, r = 0,1,..., k, then from Cox and Snell (1968) the bias
approximations correct to O(n ) are

1 rs (tY
br—_— Z Z I (Kstu+2JtSIl)
25 t u i

by = -3 v 5 181" (K +217
6~ "2 ¢ ¢4 stu t,su)
where the summations are over s,t ,u=0,1,....k, 0 and I'>, I *S etc.

denote elements in the inverse of the information matrix.

Simple expressions for the biases can be obtained straightforwardly
for the case when the x's satisfy the conditions

n
Z XirXjs O forall r #s=0,1,...k .
i=1

The elements in the inverse of the information matrix are then

1 =1.6079n" 0%, 1" = 0.6079n°10? , 1™ = 0%/Z;x;;.
forr=1,... .k

1=-0.6079n"'0, 1°=1"=1"=0 for r#s-1,....k

with the regression coefficient estimators ﬁr ,r=0,1,....k being
pair-wise asymptotically uncorrelated. We may write

1 00 00 1 60 00 1
be =5 (T Ag+ 17" Ag) by =5 (I Ag+ 1" Ag) , = 5 1T Ay
forr=1,....k, where
AI' = Zt:% Itu (Krtu +2Jt,ru) 5 Ae = %%‘4 Itu (Ketu+ 2Jt)9u)

A straightforward calculation gives

_ 1k _
Ag =~ (k+1.39219 Loa=-0ly (% Xirxﬁ@i Xizt)],Ae = —(3k+3.9304)07]

from which we obtain

bo = 6n-'(0.1080k + 0.0754) ,

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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by = - IXHX /Iy X4, r=1,..K (3.33)
i [z

be = -6n"'(0.6079k + 0.7715) . (3.34)

In the case of a single explantory variable x with values centred such
thatz X; = 0 ,these bias expressions give

i

by = 0.1834n710, by = =20 X7/(X XP)?, ba =-1.3794n"10 . (3.35)
1 1 0

An important property which can easily be deduced from the likelihood
equations is that the random variables

A A A
0/0 =0 say . B, -Bp) /0y =D say ,r=0,1,... k (3.36)

are distributed independently of g and 0. Thus from (2.9) the likelihood

equations depend on Z: which may be written as

~(1)
i - (uj-x, B 07—y

where

w =071 (y; =x B) , i=1,..n. (3.37)
~ir
The {u;} are independently and identically distributed with p.d.f.
fu(W)=expu-y-e"), -~o<u<ow

which is the standardised type 1 EV distribution for smallest values
and which does not depend on§g or 0 It follows that the joint dis-

A (1)

tribution of the random variables é(l) andB ° is the same as that

of the ML estimators of 9 and when the 'observations' {u;} have the

~(1 A
p.d.f. given by (3.38). Consequently, B( )and 0(1) are distributed

~

independently of and 6.

It is straightforward to show that the above distribution property

2 (1)

for 6(1) andB holds generally for the class of regression models with

in (y) = 0" f{y-n;)/0}, where u; — ELE This generalises the result

given by Antle and Bain (1969) for the case when no explanatory variables
are present.
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In order to examine the adequacy of the bias and variance approx-
imations and to assess other moment properties of the ML estimators, a
Monte-Carlo simulation investigation was made for the case of simple

linear regression with grouped data, the model being

Yij=PBo "B e, i=1,...g j=1,.,m (3.39)

where E(sij =0, var (sij) = %nz 02 and the {Yij} are independently

distributed with p.d.f. given by

_1 y ~Bo ~BiX; y —Bo —PiX;
inj(y) = Xp {T—y—exp g Y|[rme<y<®. (3.40)
Equally spaced values of x were taken withX; =i —% (g+1),i-1,..¢g
Equal sample sizes mj=m = 1,2,5(5)20 fori=1,. .. ,g were used with

g = 5,10. Without loss of generality, the valuesfp=0and 6 = 1 were

used, the y-variate observations for the simulation being generated by

sampling the distribution with density given by (3.38). The ML estimates
were found correct to at least four decimal places using Fisher's scoring
method. In each case, two independent runs each of size 2000 were made

and the moment results then averaged over the two runs.

Values of the biases and variances of the ML estimates as obtained
by simulation are shown in tables 2, 3, 4 for o, B: and 6 respectively.

The approximations to the biases and variances are also shown.

The results show that the approximate biases given by (3.35) agree
quite well with the biases obtained by simulation even when m is very

A

small. Further the biases in8 are appreciably larger than the biases
of the ML estimates of the regression coefficients. The large sample

approximation for the variance of BAO works well for all m but the

. . . A . .
approximating variance of Bo underestimates the true variance when

A

m = 1,2. In the case of6 the approximating variance given by (3.3)

generally agrees well with the values obtained by-simulation, but there
is some overestimation of the variance when m =1 and g = 5.



Biases x 10% 07 and variances x 10 ? 8~ of the ML estimates of B

55w =B

20

1

2
5
10
15
20

Biases x 10 07!

g=5 10

15
20

Bias

Simul

3.07
1.34

0.73
-0.08
0.35

0.15

2.53

0.77
0.40
0.02
0, 19
-0.20

Bias
Simul

-0.48

0.40
-0.29
-0.14
-0.06

0.13

-0.12

0.00
0.12
0.08

0.12
0.07

16

Table 2

Approx (3 .35)

3.67
1.83

0.73
0.37
0.25

0.18

1.83

0.92
0.37
0.18
0.12
0.09

Table 3

and variances x 10> 02 of the ML

Approx (3 .35)

0.00
0.00
0.00
0.00
0.00

0.00

0.00

0.00
0.00
0.00

0.00
0.00

Variance

Simul

32.423
15.631

6.575
3.158
2.118

1.580

15.807

7.853
3.152
1.591

1.075
0.825

Variance

Simul

14.241
5.705

2.130
1.017
0.681

0.507

1.491

0.670
0,260
0.124

0.082
0.061

Approx (3.3)

32.158
16.079

6.432
3.216
2.144

1.608

16.079

8.040
3.216
1.608

1.072
0.804

estimates of [3;

Approx (3.4)

10.000
5.000

2.000
1.000
0.667

0.500

1.212

0.606
0.242
0.121

0.081
0.061
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Table 4

Biases x 10 07! and variances x 10% 07 of the ML estimates of 0

Bias Variance
Simul Approx (3.35) Simul  Approx (3.3)
m
1 -29.87 -27.59 10.357 12.158
2 -14.51 -13.79 5.743 6.079
5 -5.78 -5.52 2.417 2.432
=5
s 10 -2.61 -2.76 1.241 1.216
15 -1 .89 -1.84 0.826 0.811
20 -1.37 -1.38 0,598 0.608
1 -14.94 -13.79 5.944 6.079
2 -7.05 -6.90 2.931 3.040
5 -2.93 -2.76 1.238 1.216
g=10
10 -1.31 -1.38 0.608 0.608
15 -0.87 -0.92 0.411 0.405
20 -0.67 -0.69 0.314 0.304

The shapes of the distributions of the ML estimates can be seen from

the histogram plots which are shown in figures la,..., "If. Values of the
skewness coefficient y; ([30) t Yl(ﬁo)a yl(é) and the kurtosis coefficients
yz(fio ), yz(fil) yz(é) as obtained by simulation are also given correct
to 2 decimal places . These must be treated with caution as their sampling
errors are quite large even for the run-size of 4000 used in the investi-
gation. The plots and the coefficients indicate that the distributions

are reasonably close to the normal even for these moderately small values

of m.
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We have noted that the results in table 4 show that the bias and

variance approximations forg work well even for moderately small values
of n and that the bias is considerably larger than the standard deviation.

Further the biases of the estimatore are much larger than those of the
N N

estimatorsf andf;, This suggests that it may be worthwhile considering

estimators of 6 with reduced bias and possibly an improved mean square

error performance. Two such estimators are now developed.

Setting c = 1.3794 and a = 0.6079 we have to order n

N
ba=—cOn ] , var(9) = a6%n 1

0
which gives the approximation

AN
mse(0) ~ 02 (an_1 + C2n_2) .

An estimator having bias of order n is given by

A% A

0 = (1 +cn 1o

Ak
withb 0 ~ — c¢2o/m?2 . Ignoring terms of order n™ and smaller terms,
we have the approximation

Ak

mse( 0) ~02 (an_1 + 2acn_2)

so the proportionate reduction in the mse" is

A Nk
mse(0)— mse(0) N C2 +2ac _ 0.226
A an + c2 0.6.8n +1.902
mse(0)

Ak 3k A
An alternative estimator of the form 6 =~ (1 + kn 1) 0 can be
considered, where k is selected to minimise the approximating mse of
the estimator. The bias and variance of ** to order n’! are

A

A
bO** = 0{ (k—c)n ™' —ken "2} , var (0**) = kZa0%n~

giving the approximation

Nk
mse( 0 ) ~ 02 lan~
AN
Setting 0 mse (0**) /0k =0 gives k = ¢ - a, so the estimator is
Aksk

A
0 = (1+0.7715n ~1)0

L2 ak+ (k-2 | .

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
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with an associated approximate mse

A

0 is

as estimated by simulation are shown in table 5.

The results show that the bias reduction estimator 6*has a

mse(0* *) ~ 02 (:an_1 +{2ac— a2) n_2) .
The proportionate reduction in the mse compared with the ML estimator

A

Ak

C-a? _

0.595

mse( 0) — mse( 0) N

mse( 0)

2

an + ¢

~0.6.8n +1.903

AN

Values of the biases and mse's of the estimates6 0* and 0**

>

A

much better bias performance than the ML estimator. Its mean square
error performance is also much better when m= 1, but for m> 1 the diff-

A

erences in mean square error are small. The estimator 6** generally

A%k

has a slightly improved mean square error performance compared with 6

but it has a poorer bias performance.

Table 5

AN A

Biases x 107 0! and mse's x 10? 072 of the estimators 0 0* O *

10
15
20

10

15
20

-7.05
-2.93
-1.31

-0.87
-0.67

-10.52
-2.71

-0.58

0.08
-0.08
-0.01

-3.21

-0.64
-0.25
0.05

0.05
0.02

e**

-19.05
-7.91

-2.87
-1.11
-0.88
-0.61

-8.38

-3.46
-1.43
-0.55

-0.36
-0.29

19.280
7.847

2.755
1.310
0.862

0.617

8.179

3.428
1.326
0.625

0.419
0.319

msc

17.967
7.510

2.694
1.310
0.857

0.615

7,800

3.353
1.308
0.625

0.419
0.318

(3.48)

(3.49)

17.429
7.288

2.651
1.292
0.851

0.611

7.598

3.281
1.296
0.620

0.417
0.318

e**
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4. Moment Properties Of The Ordinary Least Squares Estimators

The OLS estimator of f is B = (X X)_1 X"Y showing that the individual

parameter estimatesf,., r = 0,1,...k, are linear functions of the {Y;},
whose moments are known exactly. It follows that the exact moments of

~

the (B;}can be found. The estimators are unbiased and we have
cov  (B) = %nzez xx)1 (4.1)

Assuming that % X =0 forr=1 k we have
i=1

0
X'X =0 | owhere L= (2 xipxig)) -
~2 1
Hence we have
var (By) = %nz 02/n = 1.6449 02 /n 4.2)
and the covariance matrix of E = (BNO 61’ Bk)N is
~1
~ _1 _
cov( ) =407 11 = 16449 92((% XX ) L (4.3)

The exact skewness and kurtosis coefficients of #,, can be found using

n

the following results due to Scheffé (1959). Let & = Z CY; be a

i=1
linear combination of n independent random variables {Y;} where Y. has
variance 012, skewness coefficient v;; . and kurtosis coefficient y, i . ..
Then the skewness and kurtosis coefficients for § are given by

L 3/2 n

2
ME= 2 4TV V2,6 = .2 %V

where 1 (4.4)

o; = CZo? /s cZo?.

We let ¢;; denote the 1 th element in the rth row of (X'X)_1 X' so

~

n . 2 1 .22
B, = ‘zl C;Y;, with o = 0° , vy =1.2986 , v, ; = 24000 ,
1: 9 9

i-1,...,n. Hence use of (4.4)gives

~ n
v, (Br) = 1.2986 b cf’r/(% c2)3? 4.5)

3 S o4 2
Yo (Br) =24 ’Zl Cii/ 2 Cip (4.6)
i= 1
forr=20,1,....k.
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For the OLS estimator6 of 9, approximate bias and variance results

can be obtained using the exact results available for the mean and variance
2 2

of6 The LS estimator isc unbiased for o2 and from Atiqullah (1962),
its exact variance is

~2

4 2
__ 2 1 _ v _h.2
var (6) = —=¢— {1+2 rokoTe (b } 4.7)

where > is the coefficient of kurtosis of the distribution of the response
variable Y and hj;.- is the ith diagonal element in the 'hat' matrix

H = X(X'X)"! X' For the type 1 EV distribution we have vy, ~ 2.4 and

hence the unbiased estimator of 6 given by

N92—6Z Y =X B2/ {(n—k - a2} (4.8)
=603 (%X ,

has exact variance

~2 4 n
__ 20" 12 _h.2
var (0) = 29— {1+ Ty, (b } (4.9)
Writing
~ ~2 5 sk ~2 9 ~2 0 09 o9
0=0{1+(0 —02) /0212 =0+ (0 —02)/20) — (0 —02)2/(862)..

and using the result that tr(H) = k+ 1 we obtain to order n™' ,

E(0) = (1 —0.55n 1) (4.10)
var(0) = 1.1n"" 62 (4.11)

Table 6 gives values of the exact variances (x 9_2) skewness and

kurtosis coefficients for the OLS estimatorsBNO and BNI for the simple

linear regression model considered in the presvious section. Table 7

shows values of the approximate biases and variances of the OLS estimator
0 given by (4.10) and (4.11) for the same model. The biases and vari-
ances of § as obtained by simulation are also shown, the simulation again

using a run-size of 4000.



28

Table 6

Exact variance (x 10 0 ), skewness and kurtosis coefficients of

the OLS estimators B B

~ ~

Bo Bl
m var. skew. kurt. var. skew. kurt.
1 32.899 058  0.10 16.449 0.00  0.08
2 16.449 0.41 0.02 8.225 0.00  0.02
5 6.580 0.26  0.00 3.290 0.00  0.00
g=>5 10 3.290 0.18  0.00 1.645 000  0.00
15 2.193 0.15  0.00 1.097 0.00  0.00
20 1 .645 0.13  0.00 0.823 0.00  0.00
1 16.449 0.41 0.02 1.994 0.00  0.01
2 8.225 029 0.0l 0.997 0.00  0.00
5 3.290 0.18 0.00 0.399 0.00 0.00
g=10 10 1.645 0.13  0.00 0. 199 0.00  0.00
15 1.097 0.11 0.00 0.133 0.00  0.00
20 0.823 0.09  0.00 0. 100 0.00  0.00
Table 7
Biases and variances ( x 10° 0 )
Bias Variance

m App. (4.10) Simul App. (4.11) Simul

1 -11.00 -10.40 22.000 18.921

5 _5.50 591 11.000 9.413

s 5 590 543 4.400 3.929

10 -1.10 -1.03 2.200 2.060

15 -0.73 -0.88 1.467 1.461

20 -0.55 -0.66 1.110 1.074

1 -5.50 ~5.60 11.000 9.623

2 -2.65 -2.68 5.500 4916

e=10 5 -1.10 -1.16 2.200 2.126

10 -0.55 -0.63 1.100 1.058

15 -0.37 -0.35 0.738 0.759

20 -0.27 -0.32 0.550 0.540
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Histogram plots of the distributions of EO’ ﬁl ,and 0 as generated
by simulation are shown in figures 2a,...,2f for g =5 and m = 5,10.

The values of the skewness and kurtosis coefficients for 0 are also

shown. The plots show that the distribution of the estimators are
close to the normal.
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5. Best Linear Unbiased Estimators Based On Order Statistics

For Grouped Data

In this section, we shall assume that we have g distinct sets of
values xjj, ...,X ik , 1 = 1,...,g for the explanatory variables and

suppose that m; observations on Y are made at the point (Xj; , . . . ,Xik ) -

g
We letn = z m;. denote the total number of observations. With grouped
i=1
data, it is possible to find the best linear unbiased estimates (BLUE's)
of the {B: } and 0 based on the order statistics within the groups. These
estimators are asymptotically as efficient as the ML estimators and have

appreciably smaller variances than the OLS estimators.

We first need some results for the case when a single random sample

of m observations is drawn from a population with the type 1 EV c.d.f.

F(y)=1-exp {—e (y—é)/@}’ —0<y<oo. (5.1)

It is convenient to allow for censoring. Thus if Y1) <Y, <... <Y @m)

denote the order statistics in the sample, we shall assume that only

The first r order statistics observed. We let
VAN A

r r

denote the BLUE's for & and 0 respectively, that is we requireE(§«) = &,
A A A A

E(G*) =0 and Var(g*) < var, (&) var <. Var(e*) , where (6%) ,denote

any other linear unbiased estimators of § and 0, respectively.

If we put Xy = (Y#)-£)/0,1=1, ..., then X(1),X(2), .. .,X(1)
are distributed as the first r order statistics in a random sample of
m observations from the standardised type 1 EV distribution with c.d.f.
F(x) =1 - exp(-expx), - o< X < co0. Putting

E(X@) = eim, cov(Xi), X)) = Cij »m (5.3)
we have
E(Yq) =€+ 0e, cov(Y@.Yg) - 0%, m3. (5.4)

In matrix form, we have the linear model representation

EQ{(.)) =An, cov Q{(.)) = 0%C (5.5)
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where g'(.) = (Y1) Y2y Yoo 1 = (E,0)

1 e r T
| l,m Cll, m - Clr,m
€
2,m Czl’m C2r,m
é = , C=
Crl,m Crr,m
1 Cr,m | L .

From generalised least squares theory, the BLUE forn is

A A

n= (A'C” lA) arc™l v with cov (n) = (A'CT lA) 192  The linear co-

~ o~ ~ o~ N() ~ o~

efﬁ01ents a; = a; (r,m) and b; = bi(r,m) giving the BLUES are obtained
as the elements in the first and second rows of the matrix

(A'C‘1 A) I'a'c™! which -is of order 2 x r. Further, writing
1 2
Civid v
~ <~ B 2 3
vidh Vi

we have

va@© =0V var ) =02 vE), cov(ti),=0> v .

White (1964) gives tables of the linear coefficients {a;.} and
{bi} and the elements V ﬁ}r}l , ngr%l , Vg}l required for computation of

the covariance matrix for 2 <n <. 20 and r = 2(1 )n. The mean of the

distribution given by (5.1) is u = & - y8 so the BLUE for u is

>

po= _;1 (aj —vby)Y(j)
with

Var(ﬁ*):ez(Vr(}% -2y VI(,%I)I (3)) 92Vr m say

Suppose now that we have g populations, the c.d.f. for the ith

population being

Fi(y) =1 - exp[ - exp{(y- &)/0}] ., ~0 <y <oo

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)
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1=1,...,g. Let Yiq), .. < Yip)., <.. < Yi(mi). denote the order statistics

in a random sample of m;. observations drawn from the ith population.
If only the first r; order statistics Yiqu) , -, Yi) ---» Yi(r.) , . are observed
i

for the ith group, the BLUE's are
.

i A

where aj;j = ai(1i ,m;) and b;; = b; (ri,m;.) are the linear coefficients
for best linear unbiased estimation. Since the {6; } are independent

estimators of the assumed common 0 with var( éi )=0>V (3) the

Vi ,m. >
i
minimum variance linear unbiased estimator of O is
& A G
. '21 ei/Vr(.,lgn. g R
_ 1= 1 1 _ .0.
e* =15 3 _El w;0; say (5.13)
1V,
1=1 1
where
g -1
{VG) b (1/v(3) )} L i= 1, (5.14)
1 ii=l
We have
EO,)=0, var®,) = 92{2 (1/\/(3) )} (5.15)
1

The best linear unbiased estimator of the mean p;. = &; . - y0 for the ith

group is
N AN N

e =6 —v0, . (5.16)

A
Using the result that cov (§j,94) = Wj Cov(§;.0;) = W;j Vr.(z),mi 02 , we obtain

VaI'Q.L*i) 292 {Vé’l)l { ZYY( (2) /V(3) )+Y }{z (I/V(3) )} }
1

= 0°w; , say. (5.17)

Also

N A\ A\ N A\ N 2 N
COV(].J.*i,},l*j) =—7v {COV(G* &) +cov (0,.8) +v Var(e*)}
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2 3 2 3

Vioh Vi Vi Vi |7
s T (s T () ER G

92 J

s (/v
1

.M.
I

_n2
=0" wijj , say

1
Sinceps; . is an unbiased estimator of p;. = x, B we have the linear
~r

model

AN
'

g = iiB teyy 1= l,...g

where E(ex; .) =0, var(es; ) = ¢’wi; and cov(&xj 8 ) =6’ wij. Setting

(5.18)

(5.19)

b= (Qsppeer Bxy) and € = (€x),...., €x4), the matrix form of the linear
% 1 g ~ % g

model repres entation is
A\

0 =)~(1B+8*

~%

with E(¢, ) = 0 and cov(e, )= Gz\y , where

1 xq X1k | Vit Wiz -
= 5 W =
Nl ~
_1 Xgl ng | ng Wg2

Based on the {[i«; }, the BLUE of B is given by
N N

Bo=x wix) Ix wy,
%k ~1~ ~1 ~1~ -

with covariance matrix

A
cov B) =X, wl ) 192

We now consider the important special case when the sample sizes
are equal and the same degree of censoring occurs within each group,

that is mj = m, r;. = for 1 = 1,...,g. In this case we have

1 -1 2+, (3 2
Wjj:Vr(,r%lJrg {y Vr(’r)n—2er(’I¥l}=V,say

-112+@3 2
Wij:g {y VI‘(,I%I_Z’YVI‘(,I% = W , say

(5.20)

- (5.21)

(5.22)

(5.23)

(5.24)

(5.25)



Letting w denote the (i,pth element in W', we have

v+(g-2)w
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WD _

(v-w){v+(g-Dw} ’

fori#j=1,2,....,g.
putting
§
X
g 1
g

we may write

v+(g-1)w
xwixyl=| g
~l~ ~1 0
Since
-1
' -1
X X =
(~1 ~1) 0
it follows that
x wl

N‘lN

showing that the OLS esimate of  based on the {[ix; } provides the

BLUE. It should be stressed that this result only applies when the

Wi w

(v=w){v+(g-Dw}

g g
2 XX 2 X151
1=1 1=1
g 2 g
2 XX, X X X XppXik
1:1 1:1 1:1

I -1
{V+(g—1%w}
0 ' (Vv=w) Xq1
= L xw =
(V—=w)M ~1~
(V—W)_lxlk
1 1
0 ' X11 X gl
M ~1
| X1k X gk

x) Ix' wl-x x)Ix
~1 o~ ~1~1 ~1

v g-Dwi

—1
(v—w) Xg]

(v— w)_lxgk |
(5.27)

(5.28)

(5.29)
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sample sizes are equal and the same degree of censoring occurs ia each
sample. However, the result leads to a useful simplification for comp-

utation of the estimates.

Using (5,23) and (5.27) gives

VAN VAN
var(Bxg) = g1 02 {v + (g~ D)w}, cov(Bx) = 6% (v-w)M !

A\ AN A\
where B = (Bxp,...., Py -
~%]

N A\

Values of the exact variances ( x 072 ) of the BLUE's 0%, Bxg and

ﬁ*i have been computed using (5.15) and (5.30) for the simple linear

regression model Yij = Bo + Bix; + &, 1 =1,...,g,] - 1,....m; with
x. =1 - ¥2(g+1).The uncensored case with r;. = m; = m was considered

with m = 5(5)20 and g = 5,10. The values ofwglll’)m, Wg,)m and wg’)m

needed for the calculations were taken from White's tables. The results

are shown in table 7.
Table 7

A AN AN

Exact variances (x 10> 972 ) of the BLUE's Bxg , B , 0% for the simple

linear regression model

(5.30)

g=>5 g=10
A A A A AN

m B*o B*l 0+ B*O B*l
2 16.449 6.596 14.237 8.225 0.800 7.119
5 6.523 2.314 3.333 3262 0.281 1.667
10 3.244 1.133 1 .432 1.622 0.137 0.716
15 2.158 0.748 0.907 1.079 0.091 0.453
20 1.616 0.559 0.663

0.808 0.068 0.331

To examine the shape characteristics of the distributions of the

BLUE's, their empirical distributions were obtained by simulation, using

a run-size of 4000 in each case. Histogram plots of the distributions
are shown in figures 7, 8 and 9. The values of the observed skewness

and kurtosis coefficients are also given.
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6. Small Sample Variance Efficiency Results

The variance results given in the previous sections enable us to
examine the small sample efficiencies of the OLS estimators and the
BLUE's relative to the ML estimators and to assess how rapidly they

approach the asymptotic efficiencies.

We let

A - A ~
E;g = var(0)/var(0) , Ej, = varBy) /var(By) (6.1)

denote the efficiencies of the OLS estimators relative to the ML

estimators, for O and B, respectively, r=0,1,....k. The corres-

ponding efficiencies of the BLUE's based on order statistics for

grouped data, relative to the ML estimators will be denoted by

AN AN AN AN

Eyg = var(0) / var 0,) , Ey. = var(By) / var(Bx.) , (6.2)

forr=20,1,....k.

Using the wvariance results given in (3.3), (3.4), (4.2) and (4.3),

the asymptotic efficiences of the OLS estimators ﬁr relative to Br are

E® -0978, E® =6/*=0.608, r=0,1...k. (6.3)

n
If we assume that lim > (1 —hii)z/ (n-k—-1)=1as n > o,use of
1=

(3.3) and (4.11) gives

E(® =0.553. (6.4)

Values of -the small sample variance efficiences have been computed
for the simple linear regression model Yj; = Bo + Bixi + €j5 ,
i=1,..,g, j=1,..,m, for grogpedeatziwith equal sample sizes.
The exact variances for [go ,B1,P=*o P=1., and 6, which are known for
all sample sizes were used, while estimated variances obtained by
simulation were used for 0 , fio s [§ 1 and 0 . The results are shown in

table 8.
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Table 8

Variance efficiencies of OLS estimators and BLUE's relative to

ML estimators for simple linear regression

m Eio Ezo En Eoz; Eio Ezo
1 0.99 - 0.87 - 0.55 -
2 0.95 0.95 0.69 0,87 0.61 0.40
5 1.00 1.01 0.65 0.92 0.62 0.73
g=>5 10 0.96 0.97 0.62 0.90 0.60 0.87
15 0.97 0.99 0.62 0,91 0.57 0.91
20 0.96 0.98 0.62 0.91 0.56 0.90
1 0.96 ; 0.75 ; 0.62 ;
2 0.96 0.96 0,67 0,84 0.60 043
e=10 10 0.96 0.97 0.65 0,93 0.58 0.74
0.97 0.98 0.62 0.91 0.57 0.85
15 0.98 1.00 0.62 0.91 0.54 091
20 1.00 1.02 0.61 0.90 0.58 0.95

The following broad conclusions can be drawn from the results

in table 8,

a) After allowance for the simulation errors, the efficiency values
for OLS for Bo and 0 appear to converge very rapidly to the asymptotic
values 0.978 and 0,553, respectively. For 3, the OLS efficiency is
appreciably higher than the asymptotic value 0.608 when m = 1,2.

b) The efficiency of BLUE for 3; is much higher than the OLS efficiency
for all m and exceeds 90% for m > 5. For estimation of 6, BLUE is
less efficient than OLS when m = 2, but for higher values of m its

performance is much better than that of OLS.
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