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Abstract

Dynamic thermography has been clinically proven to be a valuable diagnostic
technique for skin tumor detection as well as for other medical applications, and
shows many advantages over static thermography. Numerical modelling of heat
transfer phenomena in biological tissue during dynamic thermography can aid the
technique by improving process parameters or by estimating unknown tissue param-
eters based on measurement data. This paper presents a new non-linear numerical
model of multilayer skin tissue containing a skin tumour together with thermoregu-
lation response of the tissue during the cooling-rewarming process of dynamic ther-
mography. The thermoregulation response is modelled by temperature-dependent
blood perfusion rate and metabolic heat generation. The aim is to describe bioheat
transfer more realistically. The model is based on the Pennes bioheat equation
and solved numerically using a subdomain BEM approach treating the problem as
axisymmetrical. The paper includes computational tests for Clark II and Clark IV
tumours, comparing the models using constant and temperature-dependent prop-
erties which showed noticeable differences and highlighted the importance of using
a local thermoregulation model. Results also show the advantage of using dynamic
thermography for skin tumour screening and detection at an early stage. One of
the contributions of this paper is a complete sensitivity analysis of 56 model param-
eters based on the gradient of the surface temperature difference between tumour
and healthy skin. The analysis shows that size of the tumour, blood perfusion rate,
thermoregulation coefficient of the tumour, body core temperature and density and
specific heat of the skin layers in which the tumour is embedded are important for
modelling the problem, and so have to be determined more accurately to reflect
realistic skin response of the investigated tissue, while metabolic heat generation
and its thermoregulation are not.
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1 Introduction

Thermography or infrared thermal (IRT) imaging has become a very valuable tool in
recent times due to the development of modern infrared (IR) cameras, electronics and
technology and is used mostly for monitoring where heat transfer plays an important role.
The IR camera measures the thermal radiation that is being emitted from the observed
surface and, based on the intensity and emissivity of the surface, the temperature can be
evaluated. Because the method measures the temperature in a contactless manner over
the surface, it has an advantage over contact measurement techniques like temperature
sensors that have to be in contact with the observed material or media and can measure
the temperature only at one point. Therefore, thermography also found practical use in
medicine for various applications like breast cancer diagnostics, diagnosis of vascular dis-
order, fever screening, dental diagnostics, dermatological applications and blood pressure
monitoring [1–4].

Thermography for medical screening or diagnosis can be done in two ways, observ-
ing the temperature under steady-state condition (passive or static thermography) or
inducing thermal stresses by cooling or heating of the observed tissue and measuring the
thermal response during the recovery phase (active or dynamic thermography). Both
methods have been used for medical applications; however, recent research on dynamic
thermography shows a superior approach over the static one due to uncovering more
information about the observed tissue, gathered from the dynamic response [5–13]. In
this paper, we will focus on the use of dynamic thermography for skin tumour diagnostic.
Early detection of the skin tumour is very important for the survival rate of patients,
especially in the case of malignant melanoma [14–18]. Skin lesions have different phys-
iological and thermal properties like blood perfusion rate, metabolic heat generation,
thermal diffusivity from the healthy skin due to the pathological change of the tissue
(vascularisation or angiogenesis) [8, 9, 19–22], which is reflected in different skin tem-
peratures that can be detected using IRT imaging. The temperature difference between
the tumour region and the surrounding healthy skin can be small, especially for an early
stage lesion under steady-state conditions, where the measurement and background noise
produced by the subcutaneous tissues or vessels have a great effect on the thermal image
contrast. Therefore, static thermography fails to detect an early stage skin tumour; how-
ever, it can be used to detect skin lesions at a later stage, when the temperature contrast
is big enough to be detected and is not affected by noise. This drawback is overcome by
dynamic thermography with induced thermal stress to the observed tissue, usually cool-
ing, where a much higher temperature difference or contrast during the thermal recovery
is produced [8–11], which can be easily detected even with the presence of background
noise. Temperature resolution or sensitivity of IR cameras nowadays is in the range of
20 − 60mK, depending on the quality of the camera, which is expressed by the NETD
(Noise Equivalent Temperature Difference) [2, 7, 8, 12, 14]. The NETD is a measure of
how well an IR camera detector is able to distinguish between small differences in ther-
mal radiation. Therefore, it is impossible to measure the temperature contrast between
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tumour and healthy skin that is lower than the NETD, for which an IR camera with low
value of NETD is preferable. As stated, dynamic thermography has an advantage over
the static one because of the higher temperature contrast obtained between the lesion
and surrounding healthy skin during the thermal recovery, and also because of the shorter
total examination time of the patient, which is in the range of 2−5min [6, 8, 9, 11, 14, 23].
The total examination time in static thermography is longer because of the time needed
for the patient to acclimatise to the examination room conditions to achieve equilibrium
or steady-state condition, and is in the range of 15−60min [5, 14, 24]. For these reasons,
dynamic thermography shows to be a promising diagnostic technique in dermatology for
skin tumour screening, diagnostic and treatment monitoring.

Godoy et al. [8] performed an extensive study on more than 100 patients on the
usage of dynamic thermography for skin cancer screening and diagnosis. They used a
Ranque-Hilsch vortex tube to cool down the investigated skin lesion for 30s and the
observed rewarming period was taken as 2min. They analysed the captured data with a
computer program developed by the authors and compared the results with biopsy results.
Among 102 subjects, 59 had benign lesions, 29 had basal-cell carcinoma (BCC), 8 had
squamous-cell carcinoma (SCC) and 6 had malignant melanoma (MM). They obtained
a sensitivity of 95% and specificity of 83%, which shows that dynamic thermography
can be a promising diagnostic technique. A similar study was done by Çetingül and
Herman [14], who carried out clinical tests of dynamic thermography on 35 patients, and
proved that inducing thermal stress by cooling of the observed lesion can help distinguish
lesions with high blood perfusion or metabolic rate (malignant melanoma or squamous
cell carcinoma) from pigmented moles in their early stage (Clark II level). They also used
numerical simulation of one of the malignant melanoma trying to reproduce the thermal
response during the rewarming period. They concluded that the blood perfusion of the
lesion has the biggest influence on predicting the temperature response. In this manner,
numerical simulation can be helpful because, from the known temperature response or
temperature measurement, it is possible to determine or estimate unknown parameters
of the observed tissue or lesion based on an inverse problem. The numerical model used
in solving inverse problems plays a significant role and, therefore, it is very important to
use a numerical model that describes bioheat transfer during dynamic thermography as
realistically as possible.

Numerical models used to model the bioheat transfer in skin for the purpose of laser
treatment, estimation of skin or breast tumour parameters, modelling dynamic thermog-
raphy, are mostly simple taking into account only the tumour and surrounding tissue,
and modelling the heat transfer in 2D [25–31]. Focusing only on the modelling of dy-
namic thermography for skin tumour identification, Cheng and Herman [11] used a simple
2D numerical model taking into account different tissue layers. They numerically inves-
tigated different skin cooling approaches for dynamic thermography. Therefore, they
solved several direct bioheat problems to determine which parameters (cooling tempera-
ture, cooling time, heat transfer coefficient) have the greatest effect on the temperature
difference between lesion and surrounding tissue during the thermal recovery. Çetingül
and Herman [10, 14] used a more realistic 3D model of skin composed by different tissue
layers (muscle, fat, epidermis, papillary dermis, reticular dermis and lesion) to model
the rewarming process of dynamic thermography. They numerically investigated how the
shape of the skin lesion affects the temperature distribution on the skin surface, together
with a sensitivity analysis of some model parameters such as thickness, blood perfusion
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rate, thermal conductivity, etc. [10]. They concluded that the actual shape of the lesion
had little effect on the temperature distribution and that the most important geometrical
parameters are average thickness and diameter (volume) of the lesion. They also con-
cluded that other model parameters do not greatly affect the temperature distribution
and that the variation in temperature difference is small. A similar numerical model has
also been used by Bhowmik et al. [32–34], who solved inverse bioheat problem of estimat-
ing the diameter, thickness, blood perfusion rate and metabolic heat generation of the
skin tumour under steady-state conditions (static thermography). They included ther-
mally significant vessels to the skin model under the lesion [32], which affects the lesion
identification in its early stage. Later, they improved the possibility of lesion identifi-
cation over thermally significant vessels using FMTWI (Frequency Modulated Thermal
Wave Imaging) [33]. Another similar numerical study has been done by Bonmarin and
Gal [7] on lock-in thermal imaging for detection of early-stage melanoma. They used a
3D model similar to Çetingül and Herman [14] and showed that the amplitude and phase
image obtained from the periodical thermal stimulation can be of great importance for
early detection, especially when the penetration depth of the lesion is less than 0.1mm.
We can conclude that numerical models described in the work of Çetingül and Herman
[10, 14] or Bhowmik and Repaka [34] are the closest to describe bioheat transfer in skin
tumour realistically. However, none of them took into account local thermoregulation of
the skin tissue [35–37], which mostly affects the blood perfusion rate. Fiala et al. [35] and
others [36, 38–40] modelled the local tissue temperature response using an exponential
temperature distribution when simulating thermoregulation of the whole body. There-
fore, to successfully model the bioheat transfer during the cooling-rewarming process of
dynamic thermography, the local thermoregulation response of the tissue needs to be
included in the model.

This paper represents a new approach for modelling dynamic thermography for skin
tumour diagnostic by including the local skin and tumour thermoregulation response.
The numerical model of the skin tumour tissue presented in this paper will describe the
thermal response to the external thermal stimulus more realistically. The problem will be
treated as 3D, including different layers of tissue and temperature-dependent properties
for blood perfusion rate and metabolic heat generation. It is developed based on the
Pennes bioheat model while the subdomain Boundary Element Method (BEM) approach
is used to solve the direct bioheat problem efficiently. The paper compares the response of
the newly developed model with a standard model using constant properties for Clark II
and Clark IV skin tumours, to investigate the difference in these two models. However, the
success of accurate modelling of dynamic thermography for skin tumour diagnosis depends
not only on the accuracy of the bioheat mathematical model and local thermoregulation
but also on the accuracy of the model parameters. Because there is some uncertainty
in the model parameters such as the value of material properties, geometry, thickness or
thermal response, a sensitivity analysis of 56 parameters has been done on Clark II and
Clark IV tumours, to determine which parameters have the strongest correlation with the
skin temperature response and, therefore, has to be defined more precisely for accurate
numerical simulation of dynamic thermography. The sensitivity analysis is also helpful
for inverse bioheat problems of this type, because of the information it provides on which
of these parameters could be estimated using dynamic thermography as a measurement
technique [12].

The paper is organised as follows: Section 2 presents the numerical model of the
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skin tissue including tumour, governing equation, thermoregulation model and boundary
conditions, Section 3 describes the subdomain BEM approach and numerical formula-
tions for solving 3D non-linear bioheat problem, Section 4 discusses the test examples
for Clark II and IV tumours, material properties, computational mesh, etc., together
with a description of the sensitivity analysis. Section 5 discusses the results obtained
with the proposed numerical model using temperature-dependent and constant material
properties, together with the results of the sensitivity analysis to determine the most
important model parameters. The paper closes with Section 6 that summarises this work
and emphasises the importance of its results.

2 Numerical model

The numerical model of skin tumour treats skin tissue as non-homogeneous, composed of
several different layers as can be seen in Figure 1, representing the computational domain.
Its basis has been taken from [10, 11, 14, 34]. Çetingül and Herman [10] concluded
that the lesion shape does not affect the surface temperature response and that only
the average thickness and diameter or volume is important. Therefore, we decided to
model the lesion geometry as a cylinder, with representative diameter and thickness,
placed in the centre of our computational domain, as has been done by Bhowmik and
Repaka [34]. However, the computational domain or surrounding skin is not modelled
as a square [10, 34], but as a cylinder because of the applied boundary conditions. Both
papers [10, 34] used the adiabatic boundary condition on all four sides and, therefore, the
computational domain can also be modelled with cylindrical geometry if the boundary is
far away from the lesion. In this way, the bioheat transfer problem has been treated as a
3D-axisymmetrical one, reducing computational time. Because of the cylindrical shape
of the computational domain and tumour, it is more convenient to treat the problem

a) b)
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skin tumour epidermis

papillary
     dermis

fat

muscle

reticular
     dermis

Figure 1: Geometry of numerical model: a) isometric view and b) cross-sectional view
with annotation.
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in a cylindrical coordinate system; ~r = ~r (r, ϕ, z), which will be used in this paper to
describe the problem. To model the thermal response of the skin more realistically, it
is necessary to model the problem as 3D and not as 2D or 1D which can lead to wrong
solutions and conclusions. We observed that the temperature response determined with
1D or 2D computational models overestimate the temperature difference between lesion
and healthy skin.

The model shown in Figure 1 is derived for skin tissue including tumour in a general
way. Therefore, it can be applied for investigations in different parts of the body like arm,
leg, torso, etc., that have different layer thickness or composition. We can add, subtract
or replace the layers with different ones like bone instead of muscle, if we investigate a
skin lesion that is close to the bone. However, this model can also be used for simulation
of skin thermal response without a lesion.

2.1 Governing equation

To describe heat transfer in biological tissue, the Pennes bioheat model has been used
because of its wide acceptance and its relative simplicity. There are other more compli-
cated bioheat models that include convection, counter-current and non-Fourier effects,
however they are rarely used because of the complexity and unknown model parameters
[41–43]. The Pennes mathematical model [44] is generally written as:

ρcp
∂T

∂t
= ~∇ ·

(

λ~∇T
)

+ ωbρbcp,b (Ta − T ) + qm, (1)

where ~∇ represents the nabla operator; ~∇ =
(

∂
∂r
, ∂
r∂ϕ

, ∂
∂z

)

, T is tissue temperature, ρ, λ
and cp are the effective tissue density, thermal conductivity and specific heat, respectively,
ωb is blood perfusion rate, ρb blood density, cp,b is specific heat of the blood, Ta is arterial
blood temperature, t time and qm metabolic heat source. The blood perfusion rate is
a scalar representing the volumetric blood flow rate per volume of tissue through small
arterioles and capillary bed (thermally significant vessels). The blood perfusion acts like a
heat source or sink inside tissue, depending on the temperature difference between tissue
and arterial blood flow. During the cooling process in dynamic thermography, blood
perfusion acts like a heat source, heating up the tissue during thermal recovery, similar
to the metabolic heat source which depends on cell activity. Between these two effects,
blood perfusion plays a major role in reheating the tissue.

All the parameters in Pennes equation (1) are usually treated as constant. There
are many factors that affect the value of these parameters, from chemical reactions to
thermoregulation response of the tissue. The parameters are usually evaluated or esti-
mated because of the lack of measurement data or because the values have large deviation
[10, 45, 46]. It is known that central and local thermoregulation of the human body influ-
ence the metabolic heat generation and blood perfusion rate of the skin, muscle and other
tissues, which play an important role in keeping the body core temperature as constant
as possible [35, 38, 39]. In other words, thermoregulation tries to keep the human body
warm in cold conditions and vice-versa. Therefore, in this paper, because of the cooling
of the skin tissue, a local thermoregulation model that describes temperature-dependent
blood perfusion and metabolic heat generation will be used; ωb = ωb (T ), qm = qm (T ). Of
course, other material properties also depend on the temperature; however, because there

6



is no available model to describe the dependency and because the temperature change in
cold provocation is relatively small, other material properties will be treated as constant.

Arterial blood temperature Ta in Pennes model is usually treated as constant and
equal to the body core temperature [10, 14, 25–30, 34]. The reason for this is in the
definition of blood perfusion rate and assumption that the heat transfer in thermally
insignificant vessels (artery, large arterioles and veins) is negligible compared to heat
transfer in capillary bed. Therefore, arterial blood flow reaches capillary bed with body
core temperature. The change of Ta is only reasonable when the thermoregulation of
the whole body is modelled [35, 36, 38–40]. In dynamic thermography the application of
local cold stress does not affect the body core temperature or the central nervous system,
as well as the fact that the patient is acclimatised during the examination and is in a
resting position. Therefore, the arterial blood temperature in the numerical model will
be treated as constant.

Because the Pennes bioheat equation is written for each layer or tissue in our model,
equilibrium and compatibility conditions have to be imposed along the interface between
layers to describe the heat transfer in the whole computational domain. The equilibrium
and compatibility conditions are:

Ti (~r, t) = Ti+1 (~r, t) , λi
∂Ti (~r, t)

∂~ni

= −λi+1

∂Ti+1 (~r, t)

∂~ni+1

(2)

where ~r = ~r (r, ϕ, z) represents the space vector, ~n = ~n (nr, nϕ, nz) the normal to the
interface boundary, which usually points outside the subdomain, and indices i and i+ 1
represent adjoining subdomains or tissues.

2.2 Thermoregulation model

The developed numerical model of skin tumour tissue for simulating dynamic thermog-
raphy in this paper treats tissue metabolic heat generation and blood perfusion rate as
temperature-dependent due to the local thermal stimulus. Modelling local thermoregula-
tion response is still hard due to the lack of accurate numerical models and experimental
data.

Fiala et al. [35, 47] and others [38–40, 46, 48] used the van’t Hoff Q10 effect to model
the temperature change of basal metabolic heat generation rate in tissue. Fiala et al.
[35, 47] also included shivering and exercise effects and wrote the model for metabolic
heat source as:

qm = qm,bas +∆qm,bas +∆qm,sh +∆qm,w, (3)

where qm,bas represents the basal metabolic rate at rest, ∆qm,bas the change of basal
metabolic rate because of temperature change, ∆qm,sh the shivering effect that is con-
trolled by the central nervous system and ∆qm,w the change in metabolic rate due to work
or exercise. For our numerical model the last two terms have been neglected, because
the patient is resting during the examination as we are assuming a condition of thermal
comfort, and the cooling process does not affect the central nervous system. The basal
metabolic change due to temperature is modelled using the Q10 effect as [35, 39, 47]:

∆qm,bas = qm,bas

(

Q
(T−T0

10
)

10,m − 1

)

, (4)
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where Q10,m represents the metabolic rate coefficient that is usually taken as 2, T is local
tissue temperature and T0 is the equilibrium temperature of the body. The Q10 model
predicts that the reaction rate of metabolism is doubled when the temperature increases
by 10◦C. If we include the model (4) into equation (3), and considering thermal comfort
and resting position, the thermoregulation model for metabolic heat generation that has
been used in the current numerical model can be written as [39, 40, 46, 48]:

qm (T ) = qm,basQ
(T−T0

10
)

10,m . (5)

Thermoregulation of the blood perfusion rate in skin and other tissues has usually
been modelled similarly to the metabolic heat generation, because the blood perfusion
rate is in correlation with the metabolic rate by oxygen and nutrition demand. Fiala et
al. [35, 47] used the proportional model of the metabolic rate change, while Laszczyk
and Nowak [40] and Silva et al. [38] used the same model as for the metabolic rate:

ωb (T ) = ωb,basQ
(T−T0

10
)

10,b , (6)

where now Q10,b represents the blood perfusion rate coefficient, which is usually the same
as Q10,m, and ωb,bas represents the basal blood perfusion rate. A similar model for skin and
tissue blood perfusion rate has also been used by Stolwijk [49] and others [50–52] using
different values for the denominator (from 4 to 7), which affects only the rate change.
The denominator for the proposed model has been chosen as 10 [35, 38, 47, 53], while
the blood perfusion rate or metabolic heat generation rate change can be controlled by
the value of the Q10 coefficient.

It is difficult to exactly model the thermoregulation response of blood perfusion rate
due to local vascular dilation or contraction because of the lack of validated models,
especially for tumour tissue that has a different vascular system [54, 55] and reacts to
temperature changes differently [21, 22]. Song et al. [21, 22] did not observe any sig-
nificant change in blood perfusion rate for tumour during hyperthermia, compared to
the skin or muscle tissue. The blood perfusion rate for tumour can slightly increase by
increasing the temperature up to 42◦C and then decreases drastically by increasing the
temperature even further, while the skin and muscle tissue show exponential change up
to ten times compared to the normal level. Some authors used this correlation for skin,
muscle, fat and tumour tissue to model the tissue response during hypothermia treatment
[56, 57], while Sun et al. [58] used a linear approximation for the blood perfusion rate of
tumour during cooling and heating treatment. From this review, we are assuming that
the temperature change of the blood perfusion rate for tumour is not as distinctive as for
skin or muscle tissue, and can be treated with nearly constant response. The justification
for this mild temperature response of the tumour blood perfusion rate can be found in the
dense vascular system. The blood perfusion rate for skin tumour is already much higher
compared to healthy skin, from 2 times for BCC (basal cell carcinoma) to 5.5 times for
malignant melanoma [20] and is therefore not affected by temperature change as much
as the healthy tissue. However, to model the thermal response of skin tumour more
accurately, more precise measurements are needed, especially for the cooling response.

In this study we model metabolic heat generation and blood perfusion rate of the
tissue as temperature-dependent with models (5) and (6). However, to take into account
the different behavior of tumour, we change the value of the coefficient Q10. Figure
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2 shows how the value of coefficient Q10 affects the relative change of parameter with
temperature. We can observe an exponential behavior for a value of 2, while for values
near 1 the behaviour is almost linear, and it is constant for a value of 1.
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Figure 2: Relative change of metabolic heat source (qm/qm,bas) and blood perfusion rate
(ωb/ωb,bas) with the Q10 coefficient; T0 = 37◦C.

2.3 Boundary conditions

To simulate dynamic thermography we also have to prescribe appropriate initial and
boundary conditions for the computational domain that, due to the axisymmetrical treat-
ment of the problem, do not depend on the angle ϕ.

For the bottom part, we prescribe the Dirichlet boundary condition assuming that
the muscle tissue is thick enough to reach the body core temperature, which does not
change with time:

T (r, z, t) = T0, z = 0, 0 ≤ r ≤ D/2, 0 ≤ t ≤ τ, (7)

where T0 represents the temperature of the body that is in thermal equilibrium with the
surrounding environment (body core temperature), D is the diameter of the computa-
tional domain and τ represents the simulation time including the cooling process.

On the sides of the computational domain, we prescribe adiabatic boundary condition
assuming that the diameter D of the computational domain is large enough not to affect
the numerical solution:

∂T

∂r
(r, z, t) = 0, 0 ≤ z ≤ H, r = D/2, 0 ≤ t ≤ τ, (8)

where H represents the total height of the computational domain.
For the skin surface, we have to take into account the cooling process as well as the

heat transfer with the surrounding environment during the rewarming period. Çetingül
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and Herman [10, 14] and Bhowmik and Repaka [34] used a constant temperature cooling
approach, while Cheng and Herman [11] numerically tested different cooling approaches
using constant temperature cooling, cooling with a cotton patch soaked in water and
convection cooling. The constant cooling approach seems to be the most appropriate
because of the deep penetration and high temperature contrast during the rewarming
period. Stra̧kowska et al. [12] also used a constant temperature cooling approach with a
Peltier cooling device for their experiment. Therefore, for the numerical model presented
in this paper, we used a constant cooling approach, which can be written as:

T (r, z, t) = Tc, z = H, 0 ≤ r ≤ D/2, 0 ≤ t ≤ tc, (9)

where Tc represents the cooling temperature and tc the cooling time period. Here, an
assumption of good contact between the cooling element and the skin is made, not in-
cluding the contact resistance that can affect the thermal contrast during the rewarming
process. After the cooling period the skin is exposed to the surrounding environment,
which can be described with the Robin boundary condition:

λ
∂T

∂z
(r, z, t) = α (T (r, z, t)− T∞) , z = H, 0 ≤ r ≤ D/2, tc < t ≤ τ, (10)

where α represents the heat transfer coefficient, T local temperature of the tissue and
T∞ surrounding temperature. The heat transfer coefficient can include many effects such
as heat convection, thermal radiation and water evaporation [34]. However, thermal
radiation is negligible in this case due to the small temperature difference between the
skin and surrounding environment and does not affect the rewarming process, as well
as the water evaporation by sweating [11, 14]. Sweating is important only when the
body temperature increases due to exercise, work, environmental conditions, etc., or
increased skin temperature [59, 60], which is not the case for dynamic thermography. The
main contribution during rewarming is therefore heat convection with the surrounding
environment, which is not intense and the skin rewarms mostly because of the internally
generated heat or blood perfusion. The assumption for using the described boundary
conditions for the computational domain (8) and cooling (9) is that the diameter of the
cooling element is larger than the computational domain; Dc > D. Otherwise, we would
have to prescribe different boundary conditions at the skin surface, one for the cooling
element and one for the surrounding skin.

For the initial temperature condition T (r, z, t = 0), we prescribed the steady-state
solution of the bioheat problem determined with the boundary conditions (7), (8) and
(10).

3 Boundary Element Method

To solve the numerical model described in this paper, the subdomain BEM approach
has been used. The main reason for choosing this method is its advanced treatment of
boundary conditions, where Neumann boundary conditions are directly incorporated in
the formulation without any additional approximation, which increases the accuracy of
the numerical solution while the subdomain approach increases the computational speed.
The subdomain approach has been discussed in detail by Ramšak and Škerget [61, 62],
Ravnik et al. [63, 64], as well as in our previous work [65] and will be omitted in this
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paper. We already derived a BEM numerical scheme for solving 2D transient bioheat
problems based on elliptic and parabolic fundamental solutions with great success [65].
Because in this paper we are dealing with 3D axisymmetrical geometry and a non-linear
governing equation due to temperature-dependent blood perfusion rate and metabolic
heat generation, the derivation of the BEM numerical scheme for solving this type of
problems based on the axisymmetrical elliptic fundamental solution will be presented in
this section.

The governing equation (1) written for each tissue has been treated in the form of a
Poisson equation:

~∇2u(~r) = b(~r), (11)

where ~∇2 represents the Laplace operator, u(~r) is an arbitrary field function, b(~r) is
the source term or the non-homogeneous part of the equation and ~r = ~r (x, y, z) is an
arbitrary spatial vector. We start with the integral form of Green’s second identity, which
for the Poisson equation (11) is written in the form:

c(~ξ)u(~ξ) =
∫

Γ

~q(~R)u∗(~ξ, ~R)d~Γ−
∫

Γ

u(~R)~q∗(~ξ, ~R)d~Γ−
∫

Ω

b(~r)u∗(~ξ, ~r)dΩ, (12)

where Ω and Γ represent the geometry domain and boundary, respectively, ~R = ~R (x, y, z)
is the spatial vector of the boundary, ~q = ∂u/∂~n is the normal derivative of the field

function u, ~ξ = ~ξ (x, y, z) represents the position of the source point, c(~ξ) the free co-

efficient that depends on the position of the source point, and u∗(~ξ, ~R) and ~q∗(~ξ, ~R) =

∂u∗(~ξ, ~R)/∂~n are the fundamental solution and its normal derivative, respectively.
Because the problem has been treated as axisymmetrical, the cylindrical coordinate

system ~r = ~r (r, ϕ, z) is introduced:

x = rcos(ϕ), y = rsin(ϕ), z = z, (13)

where r represents the radial distance, ϕ the angle between the x-axis and the radial
distance and z the z-axis. The elementary volume and surface can now be written in the
cylindrical coordinate system as:

dΩ = |J | drdϕdz, d~Γ = ~n |J | dℓdϕ, (14)

where |J | = rp represents the determinant of the Jacobian matrix, which is equal to the
radial distance of an arbitrary point and dℓ =

√
dr2 + dz2 the elementary distance. In

this manner, the integral equation (12) can be rewritten as:

c(~ξ)u(~ξ) =
∫

Γ

q(~R)u∗(~ξ, ~R)rpdℓdϕ−
∫

Γ

u(~R)q∗(~ξ, ~R)rpdℓdϕ−
∫

Ω

b(~r)u∗(~ξ, ~r)rpdrdϕdz, (15)

where q(~R) = ~q(~R)·~n and q∗(~ξ, ~R) = ~q∗(~ξ, ~R)·~n. Because of the axisymmetrical treatment
of the problem u(r, ϕ, z) = u(r, z), equation (15) can be integrated along the angle ϕ as:

c(~ξ)u(~ξ) =
∫

ℓ

∫ 2π

0

q(~R)u∗(~ξ, ~R)rpdℓdϕ−
∫

ℓ

∫ 2π

0

u(~R)q∗(~ξ, ~R)rpdℓdϕ−
∫

Π

∫ 2π

0

b(~r)u∗(~ξ, ~r)rpdΠdϕ, (16)
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c(~ξ)u(~ξ) =
∫

ℓ
q(~R)u∗

axi(
~ξ, ~R)rpdℓ−

∫

ℓ
u(~R)q∗axi(

~ξ, ~R)rpdℓ−
∫

Π

b(~r)u∗

axi(
~ξ, ~r)rpdΠ, (17)

where Π represents the cross-sectional surface of the domain around the axis of revolution,
dΠ = drdz its elementary surface and u∗

axi(
~ξ, ~r) and q∗axi(

~ξ, ~r) are the axisymmetrical el-
liptical fundamental solution and its normal derivative, respectively. The axisymmetrical
fundamental solution is given by the equation:

u∗

axi(
~ξ, ~r) =

K (m)

π (a+ b)1/2
, (18)

where a, b and m represent the parameters that reflect the distance between the source
and field points, and K (m) is the complete elliptic integral of the first kind [66, 67]. The
parameters a, b and m are:

a = r2ξ + r2p + (zξ − zp)
2 , b = 2rξrp, m = 2b/(a+ b). (19)

where the source point is now defined by coordinates ~ξ = ~ξ(rξ, zξ) and the field point by
~r = ~r(rp, zp), while the normal derivative of the fundamental solution is defined by the
equation:

q∗axi(
~ξ, ~R) =

1

π(a+ b)1/2
1

2rp





r2ξ − r2p + (zξ − zp)
2

a− b
E (m)−K (m)



nr(~R)

+
1

π(a+ b)1/2
zξ − zp
a− b

E (m)nz(~R), (20)

where nr(~R) and nz(~R) represent the components of the normal vector on the boundary

~n(~R) =
{

nr(~R), nz(~R)
}

, and E (m) is the complete elliptic integral of the second kind

[66, 67].

The value of the free coefficient c(~ξ) depends on the position of the source point ~ξ and
is defined as:

c(ξ) = 1, ~ξ ∈ Π,

c(ξ) = β/(2π), ~ξ ∈ ℓ.
(21)

where β represents the external angle of the boundary at point ~ξ.
As can be seen from equation (17) we managed to reduce the problem dimensions

by one using the axisymmetrical approximation, which means that we need to evaluate
only surface and line integrals. Figure 3 shows the old and new computational domains.
The advantage of this treatment is that we only need to discretise the cross-sectional
surface Π and boundary ℓ, which means a much lower number of elements or nodes com-
pared to a full 3D computational mesh. For geometry discretisation four-node linear cells
have been used, and consequently two-node linear elements for the boundary. For the
approximation of the field function u(~r) and non-homogeneous part b(~r), quadratic inter-
polation functions have been used and constant interpolation for the normal derivative
on the boundary q(~R) = ∂u(~R)/∂n. The representative element used in the subdomain
approach is also shown in Figure 3, together with the position of the interpolation nodes.
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Figure 3: Representation of the computational domain for axisymmetrical problems a)
and element type used in BEM b) (black dots represent computational nodes for T and
crosses for the normal derivative q).

Applying expression (17) at every computational node of each cell separately, we
obtain a global system of equations for the Poisson equation (11) which can be written
as:

[H] {u} = [G] {q} − [S] {b} . (22)

where [H], [G] and [S] are the matrices, {u} is the vector of discrete values of the field
function, {q} is the vector of discrete values of the normal derivative of u and {b} is the
vector of discrete values of the non-homogeneous part. A more detailed description of
the matrix coefficients can be found in our previous work [65].

We can now apply the above procedure to the bio-heat equation (1), where at first
we rewrite the equation in the form of the Poisson equation (11):

~∇2T =
1

adiff

∂T

∂t
− ωb (T ) ρbcp,b

λ
(Ta − T )− qm (T )

λ
, (23)

where adiff = λ/ρcp represents thermal diffusivity and ωb (T ) and qm (T ) are temperature-
dependent parameters. The non-homogeneous part b(~r) is now:

b(~r) =
1

adiff

∂T

∂t
− ωb (T ) ρbcp,b

λ
(Ta − T )− qm (T )

λ
. (24)

The temperature time derivative is estimated by the second-order finite diference (FD)
scheme as [65]:

∂T

∂t
≈ 3T t − 4T t−1 + T t−2

2∆t
, (25)

where superscript indices t, t − 1 and t − 2 represent different time steps and ∆t is the
time difference between two adjacent time steps. For the first time step, the following
assumption has been made; T t−1 = T t−2, which reduces the FD time marching scheme to
first-order. Including the approximation (25) into equation (23) and using a fully implicit
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scheme (T = T t, q = qt), the global system of equations (22) can be rewritten as:

(

[H] +

{

3

2adiff∆t
+

ωb (T
t) ρbcp,b
λ

}

[S]

)

{

T t
}

= [G]
{

qt
}

+

{

2

adiff∆t

}

[S]
{

T t−1
}

−
{

1

2adiff∆t

}

[S]
{

T t−2
}

+ [S]

{

ωb (T
t) ρbcp,b
λ

Ta +
qm (T t)

λ

}

. (26)

The system of equations (26) is non-linear and has to be solved using a non-linear iteration
loop within each time step. Therefore, the final form of equation (26) is



[H] +







3

2adiff∆t
+

ωb

(

T t
k−1

)

ρbcp,b

λ







[S]





{

T t
k

}

= [G]
{

qt
}

+

{

2

adiff∆t

}

[S]
{

T t−1
}

−
{

1

2adiff∆t

}

[S]
{

T t−2
}

+ [S]







ωb

(

T t
k−1

)

ρbcp,b

λ
Ta +

qm
(

T t
k−1

)

λ







. (27)

where indices k and k − 1 represent the current and previous non-linear iteration step,
respectively. The non-linear loop is controlled by the maximum number of steps and the
RMS (Root Mean Square) error as:

k > kmax, εRMS,k ≤ εmax, (28)

where kmax represents the maximum number of non-linear steps, εRMS the RMS error
and εmax the maximum error. The RMS error is calculated at every iteration step as:

εRMS,k =

√

√

√

√

1

n

n
∑

i=1

(Ti,k−1 − Ti,k)
2

T 2
i,k

, (29)

where index i represents the computational node and n the total number of nodes in the
computational domain. When convergence of the non-linear loop is achieved, meaning
the RMS error is lower than the prescribed maximum or the maximum number of steps
is reached, the non-linear iteration is stopped and the calculation for a new time step can
begin.

The non-linear system of equations (27) represents the BEM numerical scheme for
solving transient bioheat problems with temperature-dependent blood perfusion and
metabolic heat generation. By applying the boundary conditions (7)-(10), the system
of equations (27) can be rewritten as a system of linear equations and solved using a
standard solver. The result is the temperature field for the whole computational domain
and the normal derivative of the temperature on the boundary. From our previous expe-
rience [65–67], we find this approach suitable for solving complicated non-linear problems
achieving good numerical accuracy and fast computational time.

4 Computational examples

The computational tests of dynamic thermography for skin tumour diagnostic presented
in this paper are based on the work of Bhowmik and Repaka [34] and Çetingül and Herman
[10, 14]. Unfortunately, these authors treated the problem in a different manner, using

14



different boundary conditions, size of tumour, different results presentation, and therefore
a direct comparison is not feasible. The numerical model has already been described in
detail in section 2. Here, only the chosen value of parameters, layer thickness, tumour
dimension, cooling temperature and time step are presented.

The numerical results will be compared for two different tumour sizes, Clark II and
Clark IV, showing the difference in thermal response during the rewarming period. For
Clark II, the diameter and thickness are dt = 2mm and ht = 0.44mm [14, 34], while
for Clark IV, they are dt = 2.5mm and ht = 1.1mm [34]. The reason for choosing only
two different stages, an early stage Clark II and a later stage Clark IV tumour, is to
show the difference in thermal contrast obtained by dynamic thermography, as well as
how the thermoregulation response affects the temperature contrast. From a diagnostic
perspective it is desired to identify the skin lesion in its early stage to improve the
survival rate [9, 14, 15, 19, 68]. We gathered the material properties and thicknesses for
the different layers in Table 1, taken from [10, 14, 34]. The values of Q10,m and Q10,b

used in the temperature-dependent metabolic and blood perfusion rate model have been
determined based on the work of Fiala et al. [35] and Silva et al. [38]. For all layers, with
the exception of the tumour, the value has been set to Q10,m = Q10,b = 2.0, while for the
tumour, we assumed the value based on the literature review of Q10,m = Q10,b = 1.1.

The mean body core temperature for a healthy person in a resting position is in the
range of 36.5◦C − 37.5◦C, therefore the temperature T0 for the boundary condition (7),
as well as for the thermoregulation models, has been set to T0 = 37.0◦C [10, 14, 34]. The
arterial blood temperature has also been taken equal to the mean body core temperature;
Ta = T0 = 37.0◦C, and assumed to be constant during the dynamic thermography
test. As for the surrounding conditions, the ambient temperature has been chosen to be
T∞ = 22.4◦C [14, 34] and the heat transfer coefficient α = 10W/m2K [11, 14].

Different authors used different values of the cooling duration (4s, 10s, 60s and 120s)
as well as the cooling temperature (4◦C, 13◦C, 20◦C and 26◦C) [10–12, 14, 34]. In this
paper, the cooling temperature and duration have been taken from Bhowmik and Repaka
[34] and Çetingül and Herman [14] and are tc = 60s and Tc = 13◦C. For the simulation
time, we simulate an extra 10min = 600s of rewarming period, which is long enough. The
largest temperature difference between the tumour and surrounding tissue appears up to
60s after the end of cooling process and then decline towards a steady-state condition
[11]. Therefore, the total simulation time has been set to τ = 660s.

Material d[mm] h[mm] ρ[kg/m3] cp[J/kgk] λ[W/mK] ωb,bas[1/s] qm,bas[W/m3]

epidermis – 0.1 1200 3589 0.235 0.0 0.0
papillary dermis – 0.7 1200 3300 0.445 0.0002 368.1
reticular dermis – 0.8 1200 3300 0.445 0.0013 368.1

fat – 2.0 1000 2674 0.185 0.0001 368.3
muscle – 8.0 1085 3800 0.510 0.0027 684.2

tumour Clark II 2.0 0.44 1030 3852 0.558 0.0063 3680
tumour Clark IV 2.5 1.1 1030 3852 0.558 0.0063 3680

blood – – 1060 3770 – – –

Table 1: Material properties and tissue dimensions [10, 11, 14, 34].
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To assure numerical accuracy of the results, we carried out a mesh and time discretisa-
tion analysis, changing the time step and representative element size. We found a similar
conclusion to our previous works [65, 69]. The appropriate element size is ∆r = 0.5mm
due to the use of a quadratic interpolation function, and the time step comparing the
temperature profiles on the skin surface should be ∆t = 1s. Figure 4 shows the structured
mesh of the cross-sectional area of the computational domain used for the numerical sim-
ulations, where the number of elements in the thin layers was a minimum of two. The
domain size used in [10, 14, 34] was 12mm, but we found it appropriate to use a larger
domain. For a tumour size of 2mm in diameter, the surrounding domain size should be
at least 22mm and for a tumour size 4mm, at least 25mm. For this reason, we decided
to used a domain size of D = 25mm in this study. For the solver, we set a maximum
number of non-linear steps to kmax = 10 and the maximum error to εmax = 1 · 10−10.

4.1 Sensitivity analysis

The numerical model presented in this paper has many parameters that are not deter-
mined accurately and can vary greatly depending on the person and position on the body
(thickness, material properties, etc.) [14, 34]. Therefore, it is difficult to simulate realistic
thermal response of dynamic thermography for skin tumour diagnostic if the parameters
are not determined accurately. For this reason, the paper also presents a sensitivity anal-
ysis of model parameters to determine the most important, that have to be determined
as accurately as possible.

Çetingül and Herman [10] carried out a sensitivity analysis for certain model param-
eters, however not a complete one. They varied the material properties and thickness of
the layers in the range of lower and upper bound values found in the literature. However,
the relative change of the parameters was not equal for all, and they compare the change
of absolute mean surface temperature, which can lead to wrong conclusions. They con-
cluded that the skin thickness and blood perfusion rate have the biggest effect on the

magnification

Figure 4: Representative computational mesh for Clark II tumour using an element size
of ∆r = 0.5mm.
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skin surface temperature, however they did not include in their conclusion the thermal
conductivity of fat and muscle. Despite that, they concluded that the variation of the
model parameters found in the literature brought a small or negligible surface tempera-
ture variation. A model parameter sensitivity analysis has also been done by Cheng and
Herman [11] but only for the thickness of the skin layers and their blood perfusion rate.
They compare the change in temperature difference between the tumour and healthy
skin for a 2D numerical model, changing the parameters randomly. They found that the
blood perfusion rate had the highest impact on temperature difference, and that even for
a high blood perfusion rate for healthy skin the temperature difference produced by the
tumour could still be detected by an IR camera.

This paper offers a more complete sensitivity analysis of 56 model parameters. The
reason for this is to detect the most relevant parameters for the numerical modelling
of dynamic thermography for skin tumour diagnostic. Looking from a view of direct
problems, it is necessary to determine which parameters have the greatest influence on the
observed variable and have to be determined more precisely to achieve realistic simulation
results. However, when solving inverse problems, it is also necessary to know which
parameters have high influence on the problem response, because these parameters can
be evaluated based on known experimental data.

The sensitivity analysis has been made based on the gradient of the objective function
that can be compared among the parameters, and not on the visual inspection of temper-
ature change as done by Cheng and Herman [11]. Because the most important response
in dynamic thermography is the surface temperature difference between the region of the
lesion and healthy skin through time, we define the objective function as:

F =
1

nint

ni
∑

i=1

nt
∑

j=1

∆Ti,j , (30)

where ni represents the number of spatial points, nt the number of time samples and
∆Ti,j the difference between temperature at spatial points on the skin surface and at a
fixed point (D/2, H) on the healthy skin at certain times, defined as:

∆Ti,j = T (ri, H, tj)− T (D/2, H, tj) . (31)

We could also choose a different objective function like the time average of the maximal
temperature difference or the average value of absolute temperature [10], but the first
objective function would lack the spatial information that is also important to reflect the
size of the tumour and surrounding tissue properties, and the latter can lead to different
conclusions not very important to dynamic thermography where usually the temperature
difference is observed. Therefore, the objective function represents an average time and
spatial temperature difference during the rewarming period. To evaluate the objective
function F for each problem, we calculated the temperature difference for nt = 600 time
steps during the rewarming period, observing the temperature response every 1s and
for ni = 11 equally spaced radial points in the range ri ∈ [0, 2dt]. We could increase
the range, however, the temperature difference after the radius 2dt is close to zero and
therefore negligible, and also the number of radial points is sufficient to observe the
spatial distribution of temperature difference with the radial step of 0.4mm for a Clark
II tumour, which is sufficiently small.

To be able to compare the sensitivity of the model parameters we calculated the gra-
dient of the objective function, which represents the relative change of the average spatial
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and time temperature difference with respect to the parameter change. Because we are
comparing 56 different model parameters (material properties, geometry and boundary
conditions), we define the gradient based on the relative change of the parameter of
interest. Therefore, the sensitivity or gradient for each parameter is computed as:

Sp =

∣

∣

∣

∣

∣

∂F

∂yp

∣

∣

∣

∣

∣

yp ≈
|F (yp +∆yp)− F (yp −∆yp)|

2∆yp/yp
, (32)

where yp represents the parameter of interest and ∆yp its change. As can be seen from
equation (32), we used a central FD scheme of second order to evaluate the derivative
of the objective function. To evaluate the parameter sensitivity Sp we have to calculate
the value of the objective function for two different cases, changing the parameter yp by
∆yp, while other parameters were held constant at their reference values. The parameter
change ∆yp has been taken as 1% of the reference value; ∆yp = 0.01yp. We also tested
the accuracy of the gradient calculation with 10% and 5% change, as well as a forward
difference scheme, and did not notice any difference in the evaluated sensitivity or con-
clusion. Therefore, the sensitivity evaluated by equation (32) represents the change of
average spatial and time temperature difference by the relative change of the investigated
model parameter, where Sp is expressed in K. Because the relative change has been equal
for all parameters, their sensitivity can be compared, which helps to identify the most
important parameters. To carry out the sensitivity analysis of 56 model parameters for
both computational tests, 224 calculations of direct bioheat problems have to be done.

5 Results and discussion

In this section, the results of solving direct bio-heat problems for Clark II and IV tumours
using a model with local thermoregulation response are initially shown and also compared
with a numerical model using constant blood perfusion rate and metabolic heat genera-
tion. The results are shown only for the skin surface temperature difference between the
tumour and healthy skin, using contour plots for better visual understanding, as well as
time and spatial graphs for more accurate presentation of results. We limit our results
to temperature difference because it is the most important parameter in dynamic ther-
mography and is also independent of the actual absolute skin temperature, and therefore
more general. It is also convenient for comparing results between different experiments
using different cooling temperatures or cooling times. In the second part, the results
from the sensitivity analysis are presented. The sensitivity analysis has been done for
Clark II and IV tumour sizes and is presented in tables for a clear interpretation of the
results. Therefore, the results show which model parameters are the most important for
successful modelling of dynamic thermography for skin tumour diagnostic.

5.1 Results of computational examples

Figure 5 shows the steady-state temperature difference for Clark II and Clark IV tumours,
comparing the results from numerical models using thermoregulation (orange line) and
constant material properties (gray line). As can be seen, the temperature difference
between models is practically identical for both tumours, which means that thermoreg-
ulation modelling for steady-state analysis is not important. The blood perfusion rate
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Figure 5: Temperature difference profile on the skin surface under steady-state conditions
for: a) Clark II and b) Clark IV tumour.

and metabolic heat generation are equal to their basal value in both cases, which is the
reason why the temperature profile is identical. We can also observe that the temperature
difference for Clark IV is around 140mK while for Clark II is 60mK, which is one of the
reasons why skin tumours at an early stage are hard to detect using static thermography.

Looking at the temperature response during the rewarming period, shown in Figure
6, we can observe a much higher temperature difference between tumour and healthy
skin than in the steady-state case, especially at the beginning of the rewarming period,
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Figure 6: Maximum temperature difference during the rewarming period of dynamic
thermography for: a) Clark II and b) Clark IV tumour.
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as has been observed by Çetingül and Herman [14]. Figure 6 shows a maximum temper-
ature difference between tumour centre and surrounding skin, through time, for different
numerical models and tumour sizes. In the first 60s the skin is cooled to 13◦C and then
exposed to the environment (α = 10W/m2K and T∞ = 22.4◦C). Comparing the results
between the model using constant properties and the thermoregulation model, we can ob-
serve that the latter model predicts a lower temperature difference at the peak, and also
that the temperature difference decreases through time is slightly slower. This is espe-
cially visible for the Clark IV tumour. The predicted peak temperature difference, or the
difference between these two models, is around 6.3% for Clark II and 8.9% for Clark IV,
which is substantial. This indicates that it is necessary to model local thermoregulation
response of skin and tumour for realistic modelling of dynamic thermography. The pro-
voked temperature difference in dynamic thermography is now much higher, 200−250mK
for Clark II and 550− 600mK for Clark IV tumour, comparing to the steady-state con-
ditions, and can therefore be more easily detected using an IR camera. It can also be
seen that 10min of rewarming period is not enough to obtain a steady-state condition
of the skin using the prescribed cooling protocol. Another observation is that even if
the temperature peak is missed out, a higher temperature difference can still be detected
after 5min. Of course, the rewarming period is controlled mostly by the amount of cold
applied during the cooling phase (cooling temperature and time of cooling), and can thus
affect the window time for the rewarming observation [11].

Figures 7 and 8 show the contours of temperature difference at peak time 80s for
Clark II and Clark IV tumours, respectively. By comparing different numerical models,
we can conclude as before that there is an observable difference in peak temperature dif-
ference, while the radius of the increased temperature is mostly the same. Therefore, the
thermoregulation model will have a noticeable effect on the simulated tissue temperature
response and on the estimation of tumour stage or invasiveness, and has to be included
in dynamic thermography modelling. The main reason for lower temperature response
can be found in the reduced blood perfusion rate of the skin and tumour. However, even
if the blood perfusion rate change in skin is higher compared to the tumour during the
cooling process, this does not affect the temperature response as much as the change of
blood perfusion in the tumour due to a much higher rate. For this reason, the blood
perfusion rate of tumour and its thermoregulation response will have a high impact on
the simulated temperature response as concluded by the sensitivity analysis.

For visual interpretation of the results using the proposed numerical model, Figures
9 and 10 show contours of temperature difference on the skin surface at different times
during the dynamic thermography procedure for Clark II and Clark IV, respectively.
Both figures use the same temperature scale to show the difference between the tumour
level, where the cut-off level is set to 20mK [12], which is the current NETD error
of IR cameras. The first picture on both figures (part a) represents the steady-state
temperature difference and, as already discussed, the temperature signature for the Clark
II tumour is almost negligible compared to the Clark IV, and therefore it is harder to
detect using static thermography. However, when the skin is cooled down, even an early
stage tumour will produce a significant temperature difference during the rewarming
period at the peak time that could be more easily detected. The Clark IV tumour will,
of course, produce higher temperature differences and is, therefore, not problematic to
detect.
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5.2 Results of sensitivity analysis

Tables 2 and 3 show the sensitivity calculated by equation (32) for 56 model parame-
ters for Clark II and Clark IV tumours, respectively. The most important parameters
for accurate numerical simulation of dynamic thermography are coloured in grey and
the intensity of the colour shows the level of importance based on the sensitivity value.
We distinguish between important from unimportant parameters based on the maximum
value of Sp for a given test example. The threshold value has been taken as 10% of the
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Figure 7: Contours of temperature difference at skin surface for Clark II during the
rewarming period of dynamic thermography at t = 80s for numerical model using: a)
constant properties and b) thermoregulation model.
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Figure 8: Contours of temperature difference at skin surface for Clark IV during the
rewarming period of dynamic thermography at t = 80s for numerical model using: a)
constant properties and b) thermoregulation model.
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Figure 9: Contours of temperature difference at skin surface for Clark II during the
dynamic thermography procedure at different times: a) t = 0s, b) t = 80s, c) t = 200s
and d) t = 350s.

maximum value. This means that the change of average temperature difference will be
ten times smaller for unimportant parameters compared to the important ones, which
were selected according to the gradient level that is around 50% of the maximum value
or higher, while less important parameters have a lower gradient. From a practical point
of view, the values of Sp given in Tables 2 and 3 represent the change of average temper-
ature difference in mK if the parameter uncertainty would be 100%, while the change of
maximum peak temperature during the rewarming period would be even greater.

As can be seen from Table 2 for Clark II, the most important parameters are density
and specific heat of papillary dermis, tumour and blood, blood perfusion rate of tumour,
its dimension and thermoregulation coefficient, while for the boundary conditions the
body core temperature plays the most important role. However, the cooling temperature,
ambient temperature, cooling time, fat thickness and thermal conductivity of papillary

22



x [mm]

y 
[m

m
]

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

a)

x [mm]

y 
[m

m
]

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

0.555
0.5015
0.448
0.3945
0.341
0.2875
0.234
0.1805
0.127
0.0735
0.02

b)

∆T [°C]

x [mm]

y 
[m

m
]

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

c)

x [mm]

y 
[m

m
]

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

d)

Figure 10: Contours of temperature difference at skin surface for Clark IV during the
dynamic thermography procedure at different times: a) t = 0s, b) t = 80s, c) t = 200s
and d) t = 350s.

dermis, reticular dermis, fat and muscle are also not negligible. The value of the sensitivity
coefficients is different for Clark II and Clark IV tumours as seen in Tables 2 and 3, where
the value for the latter is around two times higher. This just means that the temperature
difference change will be higher for Clark IV than for Clark II using the same percentage of
parameter change. The significance of each parameter has been chosen for each problem
separately, however the same important parameters have been found.

The sensitivity of the metabolic heat generation is around 1000 smaller than the
tumour blood perfusion rate, which means that it can be estimated according to literature
data and would not affect the results. Because of that, the thermoregulation effect of the
metabolic rate does not have great impact and can be neglected. The blood perfusion rate
of other layers, except tumour, also does not contribute much because the rate is much
smaller than for the tumour, and for this reason the thermoregulation effect in these layers

23



material \ parameter ρ cp λ qm,bas ωb,bas h d Q10m Q10,b

epidermis 1.75 1.75 0.63 0.0 0.0 1.21 – 0.0 0.0
papillary dermis 43.0 43.0 25.06 0.07 1.14 0.72 – 0.05 1.02
reticular dermis 5.0 5.0 10.73 0.01 1.50 0.53 – 0.01 1.56

fat 1.39 1.39 18.69 0.03 0.18 15.56 – 0.02 0.15
muscle 1.97 1.97 11.68 0.09 2.97 5.34 – 0.02 1.01
tumour 35.56 35.56 4.62 0.94 48.58 44.99 83.77 0.71 47.64
blood 42.78 42.78 – – – – – – –

bound. cond. parameter α T∞ T0 = Ta Tc tc

5.04 26.45 94.69 17.13 11.60

Table 2: Sensitivity of materials, geometrical, thermoregulation and boundary condition
parameters in mK for Clark II numerical model.

material \ parameter ρ cp λ qm,bas ωb,bas h d Q10m Q10,b

epidermis 4.18 4.18 0.62 0.0 0.0 2.28 – 0.0 0.0
papillary dermis 84.14 84.14 40.42 0.14 2.28 7.87 – 0.11 2.08
reticular dermis 39.58 39.58 38.42 0.08 8.94 3.57 – 0.06 8.48

fat 3.31 3.31 54.94 0.08 0.49 44.15 – 0.05 0.40
muscle 5.46 5.46 32.05 0.22 7.81 13.95 – 0.05 2.70
tumour 88.74 88.74 10.75 2.48 126.1 96.75 216.9 1.84 122.4
blood 106.6 106.6 – – – – – – –

bound. cond. parameter α T∞ T0 = Ta Tc tc

10.17 62.19 231.7 47.37 31.31

Table 3: Sensitivity of materials, geometrical, thermoregulation and boundary condition
parameters in mK for Clark IV numerical model.

does not play an important role. An important parameter is the blood perfusion rate
of tumour and its change due to thermoregulation, and for this it has to be determined
more precisely. Cheng and Herman [11] and Çetingül and Herman [14] also changed the
first estimated value of the blood perfusion rate of tumour from 0.0064s−1 to 0.0315s−1

and 0.045s−1 to get results closer to the experimental data.
We also found that density and specific heat capacity of blood play an important role.

The reason is due to these two parameters being located in the blood perfusion heat source
term of governing equation (1), affecting the rewarming rate similarly to the arterial blood
temperature (body core temperature), which is also an important parameter as can be
seen from Tables 2 and 3. However, these parameters are well defined or can be easily
measured and for that do not present an uncertainty in the numerical model. Similarly,
the boundary conditions also have a high impact on the temperature response, but they
can be easily measured and defined. It is interesting that the ambient temperature has a
greater impact than the heat transfer coefficient meaning that the latter can be estimated.
This is convenient because it is hard to determine the value of the heat transfer coefficient
exactly during testing.
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The density and specific heat capacity of papillary dermis and tumour are also im-
portant parameters. The reason for that can be found in the cooling and rewarming
process. The density and specific heat capacity are present in the accumulation term of
the governing equation (1) and therefore affect the temperature change through time. For
a Clark II tumour, which is embedded in the papillary dermis, these parameters affect the
rewarming temperature response, while for a Clark IV tumour, which is also embedded
in the reticular dermis, the density and specific heat capacity of this layer also play an
important role as can be seen in Table 3, while the epidermis is too thin to have any
effect at all.

The thermal conductivity of the different layers, which play an important role in heat
transfer during the cooling-rewarming period, also have some influence on the average
temperature difference. This parameter mostly affects the cooling period and determines
the cooling penetration depth, which is also controlled by the cooling temperature and
cooling time, as can be seen in Tables 2 and 3 that consequently affects the rewarming
speed and therefore the observed temperature difference. However, the sensitivity is
around 3− 5 times smaller than that for the blood perfusion rate of the tumour.

Looking at the geometry of the model or layer thickness, we can see that the highest
influence comes from the tumour thickness and diameter, which describe the tumour
volume, when other thicknesses are not so important, especially the skin thickness. The
thickness of the fat layer also has some effect on the temperature difference during the
rewarming period, as the fat acts like insulation and reduces the cooling penetration
depth.

To conclude, the most important parameters that control the simulated temperature
difference between tumour and healthy skin during the rewarming period of dynamic
thermography, and are difficult to be exactly measured for individual patients and rep-
resent model uncertainty, are density and specific heat capacity of tumour and the skin
layer in which the tumour is embedded, volume of the tumour, its blood perfusion rate
and thermoregulation change. Other important parameters are well defined or can be
easily measured and controlled, while not so important parameters can be estimated using
average values found in the literature.

6 Conclusion

Dynamic thermography has been shown in many papers to be a promising new non-
invasive diagnostic approach not only for skin tumour but also for other applications in
medicine like breast cancer detection, etc. Realistic and accurate numerical simulation
of bioheat transfer in tissue during dynamic thermography can increase the application
of this technique, however, for this to happen, we need to improve existing models to
describe the simulated phenomena correctly.

The paper presents a numerical model of a multilayer skin tumour tissue based on the
Pennes bioheat equation and thermoregulation response of the skin and tumour to simu-
late the transient thermal response of the tissue during dynamic thermography more real-
istically. The thermoregulation response is modelled by temperature-dependent metabolic
heat generation and blood perfusion rate using exponential behaviour. The non-linear
bioheat problem has been treated as 3D-axisymmetrical due to the cylindrical shape of
the tumour and computational domain and solved using an efficient subdomain BEM
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approach.
We solved two examples for Clark II and Clark IV tumours to present the advantages

of dynamic thermography for skin tumour detection, as well as the difference between
numerical models using constant material properties or local thermoregulation response
for blood perfusion rate and metabolic heat generation. The results show that including a
thermoregulation response of the tissue affects the simulated temperature response during
the rewarming period of dynamic thermography, especially for the temperature difference
peak, and has to be considered for accurate and realistic modelling. In these examples,
the error produced by constant material properties, not including the thermoregulation
response, can be in the range of 6% for Clark II and 9% for Clark IV, which is substantial
if using the model for solving inverse bioheat problems to estimate tumour geometrical
and physiological parameters.

One of the contributions of this paper is also a detailed sensitivity analysis of the
model parameters, which has been done by calculating the gradient of the objective func-
tion. For this problem, we define the objective function as a spatial and time average
of the observed temperature difference at the skin surface during the rewarming period.
The analysis has been done for 56 model parameters, which showed the most important
parameters that affect the simulated temperature response. These parameters have to
be determined more precisely if we wish to simulate dynamic thermography accurately.
Among the 56 parameters, the most important are blood perfusion rate and its ther-
moregulation response for tumour, density and specific heat capacity of blood, tumour
and tissue layers in which the tumour is embedded, size of tumour and body core or
arterial blood temperature. Some of these parameters can be determined or measured
quite easily, while others need a more detailed investigation. On the other hand, the
metabolic heat generation showed very low sensitivity meaning that it can be estimated
from the literature, and so there is no need to model the thermoregulation response of
this parameter. The second most important parameters are the fat thickness, thermal
conductivity of layers, ambient temperature and cooling protocol.

The paper presents theoretical work and two novelties in the field of numerical mod-
elling of dynamic thermography for skin tumour diagnostic. The first one is an improved
3D numerical multilayer model that includes the thermoregulation response of the tissue
and tumour, while the second is a complete sensitivity analysis of the model parame-
ters, which will contribute to further developments in the field of bioheat modelling and
solving inverse problems in dynamic thermography. The numerical model presented in
this paper could also be further improved by including lesions of non-cylindrical shapes,
thermal contact resistance between the cooling element and skin surface, raised lesions
that contribute to non-symmetrical thermal contrast during the recovery phase.
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perfusion and thermal parameters of skin tissue using cold provocation and thermo-
graphic measurements, Metrology and Measurement Systems 23 (3) (2016) 373–381.

[13] A. Amri, S. H. Pulko, A. J. Wilkinson, Potentialities of steady-state and transient
thermography in breast tumour depth detection: A numerical study, Computer
Methods and Programs in Biomedicine 123 (2016) 68–80.
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