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Abstract

Joint modelling skewness and heterogeneity is challenging in data analysis, particularly in regression
analysis which allows a random probability distribution to change flexibly with covariates. This paper,
based on a skew Laplace normal (SLN) mixture of location, scale, and skewness, introduces a new
regression model which provides a flexible modelling of location, scale and skewness parameters
simultaneously. The maximum likelihood (ML) estimators of all parameters of the proposed model via
the expectation-maximization (EM) algorithm as well as their asymptotic properties are derived.
Numerical analyses via a simulation study and a real data example are used to illustrate the performance
of the proposed model.

Keywords: EM algorithm, joint location, scale and skewness models, mixture model, ML estimation,
SLN, SN.

1. Introduction

Joint mean and dispersion models have been widely used for modelling heteroscedastic data sets in a
homogenous population for many years. For example, there have been a number of studies concentrating
on joint mean and dispersion models: Park (1966) introduced a log linear model for the variance
parameter and described the Gaussian model using a two stage process to estimate the parameters;
Harvey (1976) proposed a likelihood ratio test for heteroscedasticity and investigated the maximum
likelihood (ML) estimation of the location and scale effects; modelling of variance heterogeneity in
normal regression analysis was offered by Aitkin (1987); Verbyla (1993) estimated the parameters of
the normal regression model under the log linear dependence of the variances on explanatory variables
via the restricted ML; Engel and Huele (1996) examined an extension of the response surface approach
to Taguchi type experiments for robust design by accommodating generalized linear modeling; Taylor
and Verbyla (2004) proposed the joint modelling of location and scale parameters of the t distribution;
Lin and Wang (2009) introduced a robust approach for the joint modelling of mean and scale parameters
for longitudinal data; Bayesian inference for the joint modelling of location and scale parameters of the
t distribution for longitudinal data was investigated by Lin and Wang (2011); Wu and Li (2012) studied
the variable selection for joint mean and dispersion models of the inverse Gaussian distribution; Wu et
al. (2012) examined the variable selection in joint mean and variance models of Box-Cox
transformation; Wu et al. (2013) proposed to use the skew normal (SN) (Azzalini (1985, 1986))
distribution for variable selection in the joint location and scale models; Li and Wu (2014) presented the
joint modelling of location and scale parameters of the SN distribution; Wu (2014) proposed variable
selection in the joint location and scale models using the skew student-t-normal (STN) distribution; and
Zhao and Zhang (2015) studied variable selection of varying dispersion student-t regression models.
Recently, joint location, scale and skewness models are started to use modelling heteroscedastic and
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skew data sets in a homogenous population as well as joint location and scale models. For instance, Li
et al. (2017) explored variable selection in the joint location, scale and skewness models of the SN
distribution; Wu et al. (2017) offered variable selection in the joint location, scale and skewness models
of the STN distribution; and Dogru and Arslan (2018b) proposed the joint modelling of location, scale
and skewness parameters of the skew Laplace normal (SLN) distribution.

Since the estimators of classical regression models under normality assumption are very sensitive to
the outliers, heavy-tailedness, and the skewness in the data, the robust mixture regression models have
been proposed. It is known that mixture regression models are useful tools for the analysis of
heterogeneous data sets. Mixture regression models were first introduced by Quandt (1972) and Quandt
and Ramsey (1978) as switching regression models. These models are commonly used in areas such as
engineering, genetics, biology, econometrics, and marketing. In addition, these models are used to model
the relationship between variables that belong to unknown latent groups. Some of recent work on the
topic can be summarized as follows: Wei (2012) and Yao et al. (2014) introduced the robust mixture
regression model based on the t distribution; Zhang (2013) examined the mixture regression model using
the Pearson Type VII distribution; Song et al. (2014) proposed the robust mixture regression model
using the Laplace distribution; Liu and Lin (2014) proposed the mixture regression model based on the
SN distribution (Azzalini (1985, 1986)); Dogru (2015) and Dogru and Arslan (2017a) proposed the
robust mixture regression model based on the skew t distribution (Azzalini and Capitanio (2003)) to
cope with both heavy-tailedness and skewness in the data; and Dogru and Arslan (2016) investigated
the robust mixture model based on a mixture of different distributions. Recently, Dogru and Arslan
(2017b) proposed finite mixtures of SLN distributions and finite mixtures of SLN distributions
methodology is also applied to the mixture regression problem, and Dai et al. (2019) proposed robust
variable selection in finite mixture of regression models based on the t distribution. The SLN distribution
is a special case of the skew exponential power distribution proposed by Azzalini (1986) and further
studied by Gomez et al. (2007). However, all the mixture regression modelling mentioned above is under
the assumption that there is no heteroscedasticity and skewness for different covariates in different
subgroups of observations. But Li et al. (2016) have recently considered this problem and proposed a
skew-normal mixture of joint location, scale and skewness models to examine the heteroscedastic skew
normal data set consisting of a heterogeneous population. This model was a generalization of the mixture
regression model based on the SN distribution which was proposed by Liu and Li (2014).

Both SN and SLN distributions have the same number of parameters to accommaodate location, scale,
and skewness, but SLN distribution has heavier tails, which could be used to model heavy-tailedness
along with the skewness in the data. In this paper, we propose the joint modelling of location, scale and
skewness parameters of mixtures of SLN distributions for modelling heteroscedastic skew-heavy tailed
data set coming from a heterogeneous population. Our proposed model will be also an alternative to the
joint modelling of location, scale and skewness parameters of mixtures of SN distributions. Additionally,
this newly proposed model can be viewed as a generalization of the mixture regression model based on
the SLN distribution which was studied by Dogru and Arslan (2017b).

Furthermore, another approach called Bayesian methods for density regression based on a non-
parametric mixture of regression models was proposed by Dunson et al. (2007). This Bayesian method
was also used before by Fernandez and Steel (1998) for linear regression models to model skew error
distributions with fat tails. In addition, Dunson et al. (2007) provided a class of weighted mixture of
Dirichlet process priors for the uncountable collection of mixture distributions. On the topic of mixture
regression in Statistics, our method is a frequentist approach and different from a Bayesian method such
as Dunson et al. (2007) and Fernandez and Steel (1998). Given that Bayesian method often gives
identical answers to frequentist Statistics, and our EM algorithm does not require as much memory to
store the results as MCMC sampling if you live in the big data world, different methods should be
available for practitioners.



The rest of the paper is designed as follows: Section 2 details the basic information about SLN
distribution. Section 3 gives the joint modelling of location, scale and skewness parameters of mixtures
of SLN distributions. Section 4 demonstrates the ML estimation of the joint modelling of location, scale
and skewness parameters of mixtures of SLN distributions via the EM algorithm. Sections 5 and 6
present the performance of the proposed model providing a simulation study and a real data example.
Section 7 is devoted to some conclusions.

2. Skew Laplace normal distribution

Let Y be a random variable which has the SLN distribution (Y ~ SLN(u, 62, 1)) with the location
parameter u € R, scale parameter o2 € (0,0) and the skewness parameter A € R. Its probability
density function (pdf) is given by

o) =2fL(y;u.a)<I>(Aj%), — <y <o, )

where f;, (v; u, o) represents the pdf of Laplace distribution with

1 _|y_ﬂ|

fily;mo) =5-e "o,
and @ is the cumulative distribution function of the standard normal distribution.
2.1 Stochastic representation of the SLN distribution

Let Z ~ SN(0,1,1) and V with the pdf £, (v) = v=3exp(—(2v?)~1), v > 0 be two independent
random variables. Then, the random variable Y ~ SLN (u, 62, 1) can be written as:

Z
Y = — . 2
u+ch (2)

Moreover, using the stochastic representation of the SN (Azzalini (1986, p. 201) and Henze (1986,
Theorem 1)) distributed random variable Z, the following stochastic representation of the random
variable Y is obtained as:

AlZ4] L2 > @)

Y=u+a<
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where Z; ~ N(0,1) and Z, ~ N(0,1) are independent random variables. This stochastic representation
leads to the following hierarchical representation of the SLN distribution:

olu o?
Yluv~N{(u+ ,
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Ulv ~TN ((0,”2 +2/12> ; (0, oo)>.
" ©)

V~fy(w) =v3exp(—(2vH)™),

where U = \/V~=2(V? + 22)|Z,| and TN (+) shows the truncated normal distribution.

To derive an EM algorithm of Section 4, we now need some conditional expectations with the
following proposition.



Proposition 1. According to the hierarchical representation given in (4), the following conditional
expectations are obtained:

2 _ o
S
EQIY) = s+ 555 ©

EU?ly) =1+ AsE(Uly).
(7)

3. Joint location, scale and skewness models of mixtures of SLN distributions

Let y4,¥5, ..., ¥, be a random sample from a g-component mixtures of SLN distributions, then the pdf
of this mixture model is given by:

g
f(vj|®) = Z i fi(vys i 07 A1) (8)
=1

where 7; is the mixing probability with Y7, m; =1, 0 < m; < 1, f;(v;; wi, 07, 4;) represents the pdf
of the ith component (pdf of the SLN distribution) given in (1) and O =
(g s gyt wees Hgy OF e, G2, Ay, ..., Ag)' IS the unknown parameter vector.

Let us consider the following joint location, scale and skewness models of mixtures of SLN
distributions:

g
yj ~ Zniﬁ(Yj;#ier-izjr/lij)' Jj=12,..,n
i=1
) Wi = % Bi, (9)
logof: = hjy;,
Aij = WTai ,i = 1, v 9

]

. T T
where y; is the jth observed response and x; = (xjy,..,%;p) ,hj = (Rjy, ..., hj;) and w; =
T . . .
(wj1, ..., w;) are observed covariates corresponding to y;. The covariate vectors x;, z; and w; are not
. . T. . .
needed to be identical. Also, B; = (ﬁm ...,ﬂip) isap x 1 vector of unknown parameters in the location

model of the ith component, y; = (Yip ...,yl-q)T is a g x 1 vector of unknown parameters in the scale

model of the ith component, and a; = (a;q, ..., a;)" is a r X 1 vector of unknown parameters in the
skewness model of the ith component.

Note that if aizj and 4;; are constant, then the model (9) reduces to the mixture regression model based
on the SLN distribution which was introduced by Dogru and Arslan (2017b). Therefore, model (9) can
also be considered as an extension of the existing mixture regression model based on the SLN

distribution. We assume that the number of component g is fixed and known through of the paper and

deal with the estimation of the parameter vector © = (y, ..., 7, 85, ...,Bg)T, where 8; = (B7,y7,al)

fori=1,..,9.
As what pointed out by Li et al. (2016), Hennig (2000) and Wang et al. (1996), the issue of
identifiability” from a finite mixture models models needs to be defined, and in our case, we have:



Definition 1. The finite SLN mixture of location, scale and skewness model given in (9) is said to be

identifiable if the following equation holds for any two parameter vectors @ = (nl, Mg, 01, ...,Bg)T
T

and @ = (nj,...,m;,01,...,05,) :

g g*
Z m; fi(yi w02 4p) = Z ; fi(y g, 02, 25)
i=1 i=1

foreachi = 1, ... g and all possible values of y. This then indicates g = g* and ® = 0™,

4. ML estimation of the joint location, scale and skewness models of mixtures of SLN distributions

Let {(xy, hy, Wy, y1), ..., (X5, Ry, Wy, ¥,) } be a sample to estimate the unknown parameter vector ©. The
ML estimator of ® for a g-component SLN mixture of joint location, scale and skewness models can be
found by maximizing the following log-likelihood function with respect to ©:

g

n
£©) = Y log| Y mi fi(y; 2T B Wy wia) | (10)
j=1

i=1

However, a numerical algorithm should be used since this log-likelihood function cannot be directly
maximized. Generally, the EM algorithm is used to obtain the ML estimator of ®. Here, we will
implement the following EM algorithm to estimate the parameters:

Let Z; = (Zy, ...,Zgj)T be the latent variables with
7. = {1, if j*" observation belongs to i*" component (11)
Y10, otherwise

wherej =1,..,nandi =1,...,g. To conduct the EM algorithm, we use the stochastic representation
of the SLN distribution given in (3). Let V and U be the latent variables. Using the hierarchical
representation given in (4), we have the following hierarchical representation for the SLN mixture of
joint location, scale and skewness models:

et/ (W] a;)y et vi
v? + (ijal-)Z 'vjz + (ijai)z ’
2 4 (wla)?
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Yiuj, v, Zij =1~ N| x]B; +

vleU =1~ f(v]) = 17]-_3 exp (—(217]-2)_1). (12)

Let u = (uq,...,up), v = (vq,..,v,) and z = (zy, ..., z,) be the missing data and (y, u, v, z) be the
complete data, where y = (y4, ..., y»,). Then, the complete data log-likelihood function of ® can be
written using the hierarchical representation given in (12) as follows:

n g
1 -1
£.(0;y,u,v,2) = ZZ zij {logni —logm — EthYi — 2logv; — (2v})

j=1i=1



—xTg.)? Ta.
(S g g 2o - g+ M .)(,-—xfmf)}' (13)

oM Yi/2 v

The ML estimator of ® can be derived by maximizing this function. However, this maximization yields
the estimator that will be dependent on the latent variables. Therefore, we have to take the conditional
expectation of the complete data log-likelihood function given y; to cope with this latency problem.
Then, we have the conditional expectation (13) as:

n
E(¢.(0;y,u,v, z)ij) = Z 2 E(Zij|yj) {logni —logm — hT 2E(logV |y])
=1i=1

_ 1/ \y; Bl
(20" ) (P ) + 07
wla;

_zhi—/z( ] ﬁl)E(U |y])+(T+il)(y]- —xfﬂi)2>}.

(14)

The conditional expectation components related to unknown parameters in (14) only have E (VjZ|yj),
E(U;|y;) and E(U?|y;) which can be computed using the conditional expectations given in (5)-(7), and
E(Z;;]y;) which can be calculated using the classical theory of mixture modeling. Let

5= ft:fi(vj; X B h] 70, w] @) (15)
Y = ﬁiﬁ(}’jiijﬁi»th)A’i»WjTai) ’
R , eh]TT/i/Z 16
”ij=E(Vj|yj)=—| TRl (16)
~ CD(KU)
fy;; = E(Ujly;) = #ij + 35’ 17)
Kij
iy = E(UP|y;) = 1+ Ry, (18)
T3
where k;; = WJT&L % . Then, we obtain the following objective function after re-writing above

conditional expectatlons in (14):

n 9
_ , 1 1((vj—x/B:)" _
Q(e;0) =Z£Zij{10gﬂi—5hf)/i—§(]ethl Dij + Uyij

T a; o (ijal-)z o2
—2r 0 G Bty +— = (3 B )y
e l e i

(19)

To this end, the steps of the EM algorithm can be organized as follows:

EM algorithm:
1. Take initial value for @,
2. E-Step: Compute the following expectations for the k = 0,1,2, ... iteration



~ (k) (k) A(k) ~ (k)
,\(k) T fl(yj' JB Jaz )

Zj = R (y,, ]B(k) hr?fk)’ f)) (20)

o = E(V?]y;, 0%) = e (21)
s = B

;) = E(Ujly;, %) = A“‘)+%§(’zg (22)

o) = 8071y 8 = 1+ P @)

)

200 = g (=78

] wTy (k)/z '
eiti

where, R;;
Note that we divide both the numerator and denominator in (20) by the largest term in the sum

in the denominator, which was suggested by Wang et al. (1996) to prevent overflow in the computation

of z(k).

3. M-Step: Use the conditional expectations given in (20)-(23) and obtain Q(®; ®8®)). Maximize
Q(®; ®®)) with respect to © to obtain new estimates. The (k + 1)th parameter estimates for the ith
component can be updated using the following maximization results:

n 2(k)
Al — 2=ty (24)
n
Ak+1) _ 30 Y\ - (k)
g+D = g +<—H(0i )) G (6), (25)

where 6(") (B(k) A(k) a( ) G (8,) is the score function of the ith component with

1

9Q(6;;9,)

G(0;) = 20,

= (678, 61, G (@) |
and H(@;) is the observed Fisher information matrix of the ith component with

02Q(0:;6;) 0%Q(0:;8;) 02Q(6;;0;)]
op;op;”  9Bidy,"  9Bida;”
H(8,) = aZQ(ei;?:i) _ 0%Q(0;0;) 0°Q(0;;6;) 02Q(6:;6;) _
00,00, ay.0B;" ay0y:" dyoa;"
02Q(0;;8;) 0°Q(0:;8;) 0%Q(6;;6;)
| da;0B;" da;0y;" da;0a;"

4. Repeat E and M steps until the convergence is obtained.
Remark. See Appendix for the detail expressions of G(0;) and H(8,).

5. Asymptotic properties



Let {(x1, hy, W1, V1), oo, (X, Ry, Wy, y)} be a random sample, Q be the parameter space, and © =
(my, ) 1g, 04, ...,Bg)T € Q, where 8; = (B7,yl,al), for i=1,..,g, be the collection of all

parameters in the log-likelihood function given in (10), and @9 is the true value of the parameter O,
respectively. For the mixture model given in (8),

g
meA={(ny,..,m5)m;=0,i=1, ---;g;zﬂi =1,

i=1

6c0={(0,.,0,):0,€0;,i=1,..g},

and the @;,i =1, ...g, are closed convex sets that belongs to RP. Let Q = A X @. For any given
(%, 0% € Q, it can be defined as

Q% 0% = {(,0):(,0) € Qand f(.|m,0) = f(.|x° 0°)}.

Assume that ©,, = (ﬁn, @n) is the estimate of ® obtained by the EM-type algorithm given by the

equations (24) and (25), then the asymptotic properties of this estimator and its standard errors of
estimation are detailed as follows:

5.1 Consistency and asymptotic distribution

Theorem 1. Let £(y|®) be a pdf given in (8). Let ©° = (°, 8°) be the true value of ® = (1, @), which
exists at some point in the region Q, and {®, = (#,,8,), n=12,..} is a sequence. Then, if we
assume that Conditions *-* given in Appendix hold, there is a unique strongly consistent solution of the
mixture models likelihood equations. Then, dis{(#,, 8, ), 2(r° 8%} - 0,w.p. 1.

Proof. See Appendix for the proof of Theorem 1.

Theorem 2. Under Conditions *-*, the asymptotic distribution of n'/2(®,, — @°) is asymptotically
normal with mean zero and covariance matrix I(©°)~1

n'/?(0, —©°) - N(0,1(8°)™),
where 1(@°)~1 is the inverse of the Fisher information matrix.

Proof. See Appendix for the proof of Theorem 2.

5.2 Estimation of the standard errors

To calculate the standard errors of ML estimators for the parameters of joint location, scale and skewness
models of mixtures of SLN distributions, we will use the information based method given by Basford
et al. (1997). In this method, the observed information matrix can be approximated by the empirical
information matrix. To do so, we use the inverse of the empirical information matrix to get an
approximation to the asymptotic covariance matrix of estimators. The empirical information matrix can
be defined as:

n
1.(8) = ) 857, (26)
j=1
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the complete data log-likelihood function for the jth observation. The components of the score vector
T

Sj are (sj,TL'l' ""sjr”g—l’sjrﬁl’ '"’S].’Bg’sjv}’ﬂ ""Sj.}’g’sj,a1’ ""Sj,ag) , where

where §; = Eg (

yj) ,j = 1,...,n are the individual scores and ¢.,;(©; y;, u;, v;, z;) is

R Zrj  Zgj
Sj,ﬂr == — = ) r= 11 ---;,g - 1;
. Ty,

§jrﬁi = Gl(ﬁl) ’§j,]/i = GZ(?[’)I and §j,di = G3(al) ,i=1, v g

Here, G,(B;), G,(¥;) and Gs(@;) are given with the equations (28)-(30). Thus, using these equations,
we can form the information matrix I, given in (26). After this, the standard errors of ® can be found
using the square root of the matrix I, (@)_1.

6. Applications

In this section, we conduct a simulation study and a real data analysis to show the performance of the
proposed mixture model over the joint location, scale and skewness models of mixtures of SN
distributions. For the computation of the estimators of parameters, we use the EM algorithm given in
Section 4. We summarize the computation details as follows:

Details of computation:

i) The simulation study and real data example are conducted using a MATLAB R2017b software.

i) For all numerical computations, the stopping rule is taken as 107°.

iii) Initial values for the EM algorithm: the good initial values in the simulation are the true parameter
values; the initial values in the real data example are the estimates from the normal mixture regression
for the parameters of location models and 6 x 1 zero vector as initial values for all scale and skewness
models.

iv) In the simulation study, we compare the performance of joint location, scale and skewness models
of mixtures of SLN distributions with the joint location, scale and skewness models of mixtures of SN
distributions under different data sets. The data sets are generated from SLN, SN and STN distributions
to compare the behavior of estimators according to the skew and heavy-tailed data sets.

The data set from the SLN distribution can be generated as follows:

1
2logU ’

- Sample U from the uniform distribution Uniform(0,1) andset V = |[—

- Sample Z; and Z, independently from the standard normal distribution N(0,1).

: . _ Az, 2,
After this, settingY = u +o (WZ(WHZ) NTZESE

) with appropriate parameter values gives the SLN

distributed sample.

Note that the procedures given in Azzalini and Capitanio (1999) and Cabral et al. (2008) are used for
the data generating procedures of SN and STN distributions.

6.1. Simulation study



The simulation study below is based on two scenarios with aim to illustrate the performance of parameter
estimates and model fitting of the proposed joint modelling of location, scale and skewness parameters
of mixtures of SLN distributions over the joint location, scale and skewness models of mixtures of SN
distributions. The performance of the parameter estimators is evaluated via the bias and the mean
squared error (MSE). The formulas of the bias and the MSE are given below:

N
Nk
hias(9) = 6 -0, MSE(0) = > (8- 0)°,
=1

where 6 is the true parameter value, 9j is the estimate of 8 for the jth simulated data and 8 = % ?’=1 9,-.

The number of replications N = 500 times. The sample sizes (n) are respectively taken as 200, 400 and
600 for all simulation configurations.

Scenario 1. We generate the data {(x;,¥;),j = 1, ..., n} from the following two component mixture of
joint location, scale and skewness models

yj~ 7T1f1(#1jr012j;l1j) + 7T2f2(.“2j1022j:12j): j=12,..,n
T
L= X .
.ulzj ]TBL 27)
logoj; = hjy;,

Aij = Wfai B i = 1,2,
where all covariate vectors x;, h; and w; are independently generated from uniform distribution
Uniform(-1,1), B; = (0,1,1)7, y; = (0,1,1)T and a; = (0,1,1) for the first component, B, =
0,-1,-1D7, ¥, = (0,—-1,—1)7T and a, = (0,—1,—1)T for the second component, and the mixing
proportion m; = 0.25. The considered distributions of f;(.) and f,(.) are given with the following
cases:

Case I: f; ~ SLN(u1j, 01, Mj), fo ~ SLN(pzj, 057 ;).

Casell: f; ~ SN(ulj, alzj,/llj),fz ~ SN(uzj,azzj,/lzj).

Case I11: f; ~ STN (15,07, A1, v), fa ~ STN(u2j, 03, 125, v) Where v shows the degrees of freedom
parameter, and it is taken as 3.

Scenario 2. We generate the data {(x;;,¥;),j = 1, ...,n} from the two component mixture of joint
location, scale and skewness models given in (27) with the true parameters g, = (0,1,1)7,y; = (0,1,1)T
and a; = (0,1,1)T for the first component, B, = (0,—1,—-1)7, y, =(0,-1,—-1)T and a, =
(0,—1,—1)7 for the second component, and the mixing proportion ; = 0.5.

We consider the following distributions for f;(.) and f5(.):

Casel: f; ~ SLN(ulj,alzj,/llj),fz ~ SLN(uzj,UZZj,AZj).

Casell: f; ~ SN(ulj, alzj,llj),fz ~ SN(yzj,azzj,Azj).

Case II: fy ~ STN(u1j, 025, 21;,v), f ~ STN(u2;, 03, A2, v)Where v shows the degrees of freedom
parameter, and it is taken as 3.

The simulation results for Scenarios 1 and 2 are outlined in Tables 1-3 and Tables 4-6 respectively.
The tables contain the bias, MSE values of the parameter estimates, along with the true parameter values.
According to the tables, we get the following results: The proposed estimation procedure can accurately
estimate all parameters of the SLN mixture of joint location, scale and skewness models. When we are

10



comparing the estimators under the skew and/or heavy-tailed data set, we have similar results for all the
cases. For the Case I, Il and 111 for all scenarios, the proposed estimation method fit better than the SN
mixture of joint location, scale and skewness models. Further, the MSE values of the SN mixture of
joint location, scale and skewness models parameter estimates are larger than the SLN mixture of joint
location, scale and skewness models parameter estimates. In summary, the results of our simulation
study show that the the SLN mixture of joint location, scale and skewness models should be used when
the data set is skew and/or heavy-tailed.

11



Table 1. The bias and the values of MSE for the different sample sizes for Case | of Scenario 1.

SLN SN
n Model Parameter True Bias MSE Bias MSE
Bio 0 0.001609 0.000523 0.011240 0.280015
Location Bi1 1 -0.000866 0.001937 -0.129769 0.942425
Bi2 1 0.000342 0.001835 -0.208158 0.768263
Y10 0 -0.060628 0.018006 0.781018 0.890588
Component 1 Scale Y11 1 -0.065036 0.025605 -0.562109 1.637458
Y12 1 -0.074615 0.027414 -0.500881 1.501806
Ay 0 0.001422 0.001843 -0.010485 0.007808
Skewness ag, 1 -0.042347 0.012478 -0.947892 0.939000
gy 1 -0.038905 0.010831 -0.960368 0.977903
200 Ty 0.25 0.002221 0.002511 0.024569 0.010822
Bao 0 -0.001010 0.000247 -0.009864 0.011726
Location Ba1 -1 -0.000618 0.000746 0.026629 0.042916
B2z -1 0.000028 0.000769 0.025152 0.047674
Y20 0 -0.048273 0.008344 0.326883 0.177632
Component 2 Scale Y21 -1 0.030339 0.009403 0.038803 0.224439
Y22 -1 0.004941 0.009548 -0.056450 0.215279
sz 0 -0.002709 0.001166 0.001246 0.002856
Skewness az -1 0.023648 0.004822 0.655526 0.446036
ayy -1 0.027575 0.005621 0.662656 0.455720
Location Bio 0 -0.001250 0.000127 0.036724 0.697977
Bi1 1 0.000215 0.000448 -0.189467 0.651509
Bi2 1 -0.003555 0.000623 -0.283836 0.706189
Scale Y10 0 -0.042464 0.008039 0.974165 1.160705
Component 1 Y11 1 -0.063019 0.011630 -0.401689 0.524403
Y12 1 -0.061203 0.011875 -0.581877 0.802200
Skewness A 0 -0.001549 0.000768 -0.001310 0.017263
a1 1 -0.051244 0.007253 -0.967317 0.952731
gy 1 -0.032932 0.004571 -0.963397 0.952814
400 my 0.25 0.007604 0.001144 0.030443 0.007137
Location B2o 0 0.001108 0.000063 0.008083 0.004737
B21 -1 -0.000025 0.000268 0.035137 0.022689
B2z -1 -0.001237 0.000313 0.026257 0.025561
Scale Y20 0 -0.024183 0.003017 0.402017 0.211105
Component 2 Y21 -1 0.024396 0.004814 -0.018353 0.094900
Y22 -1 0.027671 0.004721 0.022027 0.106480
Skewness Q0 0 0.002321 0.000425 0.001715 0.001219
az -1 0.020529 0.002304 0.677500 0.467822
ay,y -1 0.015959 0.002323 0.673768 0.463623
Location Bio 0 0.001199 0.000063 0.042770 0.048973
Bi1 1 0.003195 0.000387 -0.130805 0.202193
B2 1 -0.000065 0.000424 -0.226833 0.194833
Scale Y10 0 -0.013283 0.003021 1.045563 1.180564
Component 1 Y11 1 -0.041744 0.006662 -0.374963 0.582185
Y12 1 -0.065954 0.009973 -0.460080 0.504019
Skewness A 0 0.005057 0.000598 -0.000277 0.003087
a1 1 -0.032114 0.003190 -0.970636 0.951767
a1z 1 -0.026726 0.002891 -0.959954 0.934348
600 1y 0.25 0.008317 0.000757 0.026867 0.004964
Location B2o 0 -0.000839 0.000034 -0.002218 0.002368
B21 -1 -0.004053 0.000125 0.006510 0.009653
B2z -1 -0.001872 0.000107 0.031415 0.010706
Scale Y20 0 -0.024593 0.002368 0.415573 0.193907
Component 2 Va1 -1 0.030459 0.003143 -0.020431 0.086157
Y22 -1 0.030171 0.003184 0.039385 0.069028
Skewness Az 0 0.001464 0.000311 0.000417 0.000940
az -1 0.023689 0.002314 0.689811 0.480334
ayy -1 0.018305 0.001650 0.685139 0.472959
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Table 2. The bias and the values of MSE for the different sample sizes for Case Il of Scenario 1

SLN SN
n Model Parameter True Bias MSE Bias MSE
Bio 0 0.001109 0.000769 -0.012841 0.066953
Location Bi1 1 -0.016551 0.002856 -0.000516 0.178959
Bi2 1 -0.013614 0.003198 0.001712 0.203035
Y10 0 -0.235791 0.067199 -0.170880 0.151085
Component 1 Scale Y11 1 -0.087698 0.028067 -0.188926 0.526102
Y12 1 -0.086925 0.029040 -0.145863 0.508284
Ay 0 -0.001093 0.002182 0.002699 0.002998
Skewness ag, 1 -0.089190 0.018228 -0.824070 0.707861
gy 1 -0.080104 0.015585 -0.819849 0.702039
200 my .25 -0.005405 0.002303 0.003829 0.003348
B2o 0 0.002140 0.000281 0.006141 0.006055
Location Ba1 -1 0.006230 0.001136 0.001387 0.021180
B2z -1 0.004524 0.001148 -0.006446 0.021494
Y20 0 -0.239452 0.062775 -0.099366 0.031959
Component 2 Scale V21 -1 0.040523 0.011194 0.016009 0.063325
Y22 -1 0.039572 0.011416 0.021868 0.064961
Az 0 0.001430 0.001928 0.000334 0.002344
Skewness az -1 0.106507 0.019447 0.637837 0.422275
ay, -1 0.108943 0.019563 0.637480 0.421178
Location Bio 0 -0.000349 0.000221 -0.001654 0.021374
Bi1 1 -0.008243 0.000978 0.006227 0.064144
Bi2 1 -0.009139 0.001029 0.006050 0.068607
Scale Y10 0 -0.211798 0.050122 -0.015247 0.049273
Component 1 Y11 1 -0.094044 0.017843 -0.184842 0.185828
Y12 1 -0.087006 0.016954 -0.146736 0.174489
Skewness A 0 0.000254 0.001128 -0.000867 0.000975
a1 1 -0.084456 0.011285 -0.816848 0.677439
gy 1 -0.087060 0.012280 -0.824266 0.689911
400 my .25 -0.003995 0.001204 -0.001563 0.001633
Location B2o 0 0.000080 0.000105 0.001491 0.003003
B21 -1 0.004448 0.000445 0.006867 0.009911
B2z -1 0.003268 0.000457 -0.002297 0.010119
Scale Y20 0 -0.227366 0.054167 -0.054554 0.013307
Component 2 Y21 -1 0.043732 0.006399 0.042027 0.035319
Y22 -1 0.045252 0.006347 0.039654 0.033329
Skewness ay 0 0.000499 0.000866 0.000736 0.001093
ayq -1 0.108800 0.015154 0.657821 0.438906
Ay -1 0.107182 0.015169 0.658440 0.441105
Location Bio 0 -0.000560 0.000134 -0.000940 0.013028
Bi1 1 -0.007480 0.000516 0.009413 0.042451
Biz 1 -0.007855 0.000514 0.001101 0.036672
Scale Y10 0 -0.201989 0.044573 0.043493 0.040170
Component 1 Y11 1 -0.091518 0.014095 -0.200900 0.142848
Y12 1 -0.088876 0.013752 -0.191354 0.139637
Skewness A 0 -0.000809 0.000688 -0.000859 0.000664
a1 1 -0.084658 0.010356 -0.820236 0.679964
a1z 1 -0.080771 0.009500 -0.818160 0.676026
600 1y .25 -0.006843 0.000847 -0.005198 0.001117
Location B2o 0 0.000088 0.000055 0.002358 0.001909
B21 -1 0.004066 0.000248 0.004324 0.006555
B2z -1 0.002990 0.000240 -0.001375 0.006185
Scale Y20 0 -0.218468 0.049523 -0.034601 0.008564
Component 2 Y21 -1 0.047229 0.004806 0.050445 0.023689
Va2 -1 0.046040 0.004750 0.050332 0.022725
Skewness Az 0 0.000434 0.000577 -0.000833 0.000660
ay -1 0.105586 0.013574 0.661310 0.441874
ayy -1 0.104923 0.013422 0.662377 0.443240
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Table 3. The bias and the values of MSE for the different sample sizes for Case Il of Scenario 1.

SLN SN
n Model Parameter True Bias MSE Bias MSE
Bio 0 -0.000397 0.000616 0.018731 0.135352
Location Bi1 1 -0.017140 0.003016 -0.180409 0.452858
B2 1 -0.016814 0.002614 -0.128414 0.425086
Y10 0 -0.310774 0.120583 0.357399 0.556072
Component 1 Scale Y11 1 -0.104443 0.047028 -0.591648 1.712985
Y12 1 -0.103863 0.047722 -0.539700 1.769955
@10 0 -0.001789 0.003271 -0.004973 0.010617
Skewness aiq 1 -0.129420 0.033552 -0.932381 0.914104
a1, 1 -0.127279 0.031659 -0.930578 0.913499
200 my .25 -0.011568 0.002692 0.021119 0.008344
Bao 0 0.000607 0.000227 0.003627 0.008094
Location Ba1 -1 0.007019 0.000883 0.014838 0.038019
B2z -1 0.007826 0.000918 0.014923 0.021441
Y20 0 -0.373253 0.150206 -0.337700 0.214894
Component 2 Scale Y21 -1 0.054963 0.019771 0.015238 0.203828
Y22 -1 0.060928 0.020446 0.011487 0.234463
Q0 0 0.001061 0.002267 -0.001227 0.003831
Skewness ay -1 0.183551 0.043735 0.709829 0.520136
az; -1 0.185624 0.045361 0.710655 0.524452
Location Bio 0 0.001467 0.000226 0.001841 0.047356
Bi1 1 -0.015171 0.001109 -0.182278 0.302034
Bi2 1 -0.013767 0.001026 -0.161205 0.275155
Scale Y10 0 -0.291731 0.103225 0.675286 0.794572
Component 1 Y11 1 -0.080879 0.032578 -0.669896 1.174824
Y12 1 -0.106559 0.034302 -0.747111 1.401166
Skewness Q10 0 0.001539 0.003459 -0.003024 0.003464
agq 1 -0.136283 0.026396 -0.971675 0.974001
Qi 1 -0.141216 0.035989 -0.958415 0.946797
400 m, .25 -0.012628 0.001533 0.008994 0.008108
Location B2o 0 -0.000443 0.000092 -0.001880 0.003777
Ba1 -1 0.006435 0.000330 0.059456 0.055267
Ba2 -1 0.007003 0.000383 0.058185 0.055851
Scale Y20 0 -0.360828 0.135552 -0.232327 0.133715
Component 2 Y21 -1 0.062898 0.011724 0.092793 0.159561
V22 -1 0.069038 0.013493 0.115241 0.159555
Skewness Qg 0 -0.000137 0.001246 0.001095 0.001364
azp -1 0.183425 0.038827 0.732075 0.544502
az; -1 0.182880 0.039148 0.726522 0.537019
Location Bio 0 -0.000301 0.000088 -0.049243 0.524876
Bi1 1 -0.013445 0.000588 -0.228720 0.976806
B2 1 -0.011839 0.000468 -0.275677 0.261613
Scale Y10 0 -0.281397 0.086396 0.770466 0.822284
Component 1 Y11 1 -0.088600 0.019999 -0.745200 0.918232
Y12 1 -0.104672 0.020942 -0.811049 1.082750
Skewness Q10 0 -0.001545 0.001552 0.008113 0.011606
a1 1 -0.138424 0.024753 -0.972339 0.959915
a1, 1 -0.137585 0.026023 -0.980113 0.973411
600 my .25 -0.010421 0.000913 0.018112 0.009126
Location B2o 0 -0.000354 0.000055 0.024777 0.170531
Ba1 -1 0.005619 0.000197 0.075376 0.142800
Ba2 -1 0.005965 0.000208 0.071837 0.081430
Scale Y20 0 -0.349705 0.125276 -0.178856 0.176302
Component 2 Vo1 -1 0.056785 0.009037 0.073615 0.128455
Y22 -1 0.059668 0.008717 0.114503 0.134638
Skewness A0 0 -0.002565 0.000750 -0.005638 0.011737
az -1 0.186865 0.038309 0.750850 0.574010
ay; -1 0.174977 0.033985 0.733508 0.551020
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Table 4. The bias and the values of MSE for the different sample sizes for Case | of Scenario 2.

SLN SN
n Model Parameter True Bias MSE Bias MSE
Bio 0 0.000576 0.000279 -0.007611 0.043553
Location Bi1 1 0.000085 0.000996 -0.077230 0.177593
Bi2 1 -0.001168 0.001003 -0.086459 0.217542
Y10 0 -0.047044 0.011284 0.502081 0.387389
Component 1 Scale Y11 1 -0.030875 0.012611 -0.072009 0.398917
Y12 1 -0.035084 0.011440 -0.102232 0.358123
Ay 0 0.001772 0.001240 -0.000974 0.006147
Skewness ag, 1 -0.028360 0.006700 -0.791869 0.662071
gy 1 -0.023361 0.006035 -0.776437 0.621219
200 Ty 0.5 0.000425 0.002541 0.003687 0.011088
Bao 0 -0.001577 0.000293 0.001691 0.044979
Location Ba1 -1 -0.001644 0.001039 0.029027 0.186494
B2z -1 -0.000176 0.000886 0.052016 0.124408
Y20 0 -0.047673 0.010704 0.507695 0.413876
Component 2 Scale Y21 -1 0.043480 0.013851 0.101352 0.531926
Y22 -1 0.036514 0.013561 0.105172 0.508195
sz 0 -0.000825 0.001265 0.001548 0.002572
Skewness az -1 0.025550 0.006343 0.782613 0.633634
ayy -1 0.029111 0.006238 0.786309 0.634687
Location Bio 0 -0.000291 0.000104 0.008866 0.015111
Bi1 1 -0.001074 0.000416 -0.117399 0.141666
Bi2 1 -0.001204 0.000344 -0.099611 0.150786
Scale Y10 0 -0.033043 0.004771 0.629843 0.469345
Component 1 Y11 1 -0.037432 0.007730 -0.182876 0.354569
Y12 1 -0.048396 0.006422 -0.207732 0.266259
Skewness A 0 0.001814 0.000654 0.001749 0.001040
a1 1 -0.028906 0.003516 -0.810502 0.668093
gy 1 -0.027801 0.003830 -0.802324 0.654907
400 my 0.5 -0.001597 0.001356 -0.006254 0.007064
Location B2o 0 0.000510 0.000106 0.007376 0.025332
B21 -1 -0.001176 0.000373 0.117996 0.147458
B2z -1 -0.000416 0.000391 0.107499 0.117666
Scale Y20 0 -0.028700 0.004814 0.619026 0.461890
Component 2 Y21 -1 0.039896 0.006090 0.190832 0.256190
Y22 -1 0.028728 0.005998 0.135455 0.294544
Skewness Q0 0 -0.000018 0.000468 -0.000837 0.000985
ayq -1 0.024436 0.003584 0.803397 0.654470
Ay -1 0.027482 0.003377 0.807567 0.662511
Location Bio 0 -0.000412 0.000045 -0.003796 0.006020
Bi1 1 0.000365 0.000195 -0.112051 0.051485
B2 1 0.001325 0.000208 -0.099321 0.042431
Scale Y10 0 -0.033643 0.035067 0.699558 0.546034
Component 1 Y11 1 -0.029745 0.005856 -0.178957 0.190350
Y12 1 -0.031489 0.005236 -0.168946 0.176055
Skewness A 0 0.003812 0.000761 0.004628 0.000809
a1 1 -0.036921 0.023650 -0.809107 0.659929
a1z 1 -0.039523 0.040666 -0.800467 0.646277
600 1y 0.5 0.000497 0.001032 -0.000007 0.004664
Location B2o 0 0.000744 0.000065 0.003492 0.009150
B21 -1 -0.000409 0.000209 0.096864 0.042253
B2z -1 -0.000083 0.000192 0.079985 0.045150
Scale Y20 0 -0.013648 0.002221 0.696584 0.542612
Component 2 Va1 -1 0.043055 0.004942 0.201331 0.159944
Va2 -1 0.039937 0.005640 0.179940 0.168125
Skewness Az 0 -0.000130 0.000360 -0.003756 0.000564
az -1 0.020215 0.001864 0.798827 0.642789
ayy -1 0.024863 0.002338 0.806310 0.654582
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Table 4. The bias and the values of MSE for the different sample sizes for Case Il of Scenario 2.

SLN SN
n Model Parameter True Bias MSE Bias MSE
Bio 0 0.000400 0.000394 0.002326 0.013972
Location Bi1 1 -0.007895 0.001607 0.007523 0.044839
Bz 1 -0.005967 0.001589 0.018829 0.045107
Y10 0 -0.228935 0.059330 -0.118107 0.058020
Component 1 Scale Y11 1 -0.067914 0.016118 -0.040547 0.136666
Y12 1 -0.061875 0.017052 -0.028742 0.143562
Ay 0 0.000616 0.001829 -0.002269 0.002161
Skewness ag, 1 -0.089356 0.015649 -0.726383 0.543608
gy 1 -0.094598 0.016173 -0.729759 0.549161
200 my .25 0.000624 0.002814 -0.001949 0.004484
B2o 0 0.001630 0.000375 0.010066 0.013562
Location Ba1 -1 0.006655 0.001506 -0.012123 0.044529
B2z -1 0.005553 0.001416 -0.012485 0.049339
Y20 0 -0.227995 0.058990 -0.100487 0.054764
Component 2 Scale V21 -1 0.065551 0.015969 0.061956 0.137695
Y22 -1 0.061699 0.015080 0.053632 0.130893
Az 0 0.001083 0.002060 -0.001189 0.001897
Skewness az -1 0.094128 0.016714 0.730903 0.550750
ay, -1 0.092514 0.016357 0.728376 0.545504
Location Bio 0 0.000311 0.000153 0.002448 0.006716
Bi1 1 -0.004760 0.000515 0.004439 0.019050
Bi2 1 -0.004910 0.000549 0.004550 0.020130
Scale Y10 0 -0.211273 0.048133 -0.029562 0.022327
Component 1 Y11 1 -0.065168 0.009642 -0.069854 0.066099
Y12 1 -0.066527 0.010520 -0.084333 0.077434
Skewness A 0 0.001008 0.000968 0.001322 0.000896
a1 1 -0.094340 0.012150 -0.739738 0.554068
gy 1 -0.090583 0.011694 -0.731974 0.542744
400 my .25 0.000250 0.001496 0.000198 0.002163
Location B2o 0 0.000117 0.000134 0.002080 0.006601
B21 -1 0.006370 0.000536 -0.005312 0.018605
B2z -1 0.004913 0.000511 -0.001585 0.020120
Scale Y20 0 -0.211647 0.048038 -0.037857 0.021406
Component 2 Y21 -1 0.068266 0.010291 0.077592 0.065552
Y22 -1 0.073354 0.010531 0.096149 0.071954
Skewness ay 0 0.000172 0.000918 -0.001406 0.000911
ayq -1 0.089055 0.011358 0.731854 0.542872
Ay -1 0.093250 0.012096 0.737231 0.550062
Location Bio 0 -0.000346 0.000081 -0.017651 0.305096
Bi1 1 -0.007140 0.000337 -0.006654 0.030378
Biz 1 -0.006254 0.000343 -0.011107 0.038824
Scale Y10 0 -0.208837 0.045863 -0.009180 0.123349
Component 1 Y11 1 -0.064483 0.007912 -0.074416 0.055170
Y12 1 -0.067862 0.007913 -0.092083 0.064276
Skewness A 0 -0.000028 0.000608 0.013843 0.199475
a1 1 -0.093164 0.011070 -0.728692 0.559871
a1z 1 -0.090784 0.010699 -0.723645 0.587739
600 1y .25 -0.000429 0.001045 0.000656 0.002116
Location B2o 0 -0.000450 0.000083 -0.001506 0.005639
B21 -1 0.005443 0.000336 -0.001007 0.013321
B2z -1 0.006094 0.000353 0.004707 0.014236
Scale Y20 0 -0.207342 0.045030 -0.021564 0.017919
Component 2 Y21 -1 0.066245 0.008025 0.077442 0.043951
Va2 -1 0.064901 0.007717 0.071057 0.047627
Skewness Az 0 -0.001343 0.000572 -0.002810 0.001889
ay -1 0.093732 0.011206 0.734284 0.552744
ayy -1 0.092198 0.010544 0.733229 0.549518
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Table 6. The bias and the values of MSE for the different sample sizes for Case Il of Scenario 2.

SLN SN
n Model Parameter True Bias MSE Bias MSE
Bio 0 0.000369 0.000320 0.009921 0.103064
Location Bi1 1 -0.011891 0.001455 -0.069605 0.175460
Bi2 1 -0.010132 0.001192 -0.074488 0.181750
Y10 0 -0.327350 0.120565 -0.009022 0.282907
Component 1 Scale Y11 1 -0.066364 0.024149 -0.125100 0.568277
Y12 1 -0.061852 0.025730 -0.057684 0.621618
Ay 0 0.000000 0.002518 -0.000699 0.024888
Skewness ag, 1 -0.151068 0.034839 -0.795599 0.663874
gy 1 -0.156801 0.035730 -0.809014 0.720977
200 Ty 0.25 -0.000261 0.003117 -0.005383 0.012187
Bao 0 -0.000458 0.000346 -0.002735 0.033440
Location Ba1 -1 0.008763 0.001203 0.057113 0.138349
B2z -1 0.009424 0.001263 0.052256 0.132388
Y20 0 -0.336142 0.144971 -0.011376 0.209101
Component 2 Scale Y21 -1 0.093657 0.042260 0.179458 0.581779
Y22 -1 0.090997 0.044242 0.180798 0.685933
sz 0 -0.001632 0.003017 0.001293 0.002923
Skewness az -1 0.154233 0.053127 0.800751 0.662200
ayy -1 0.151986 0.043501 0.802162 0.663834
Location Bio 0 -0.000528 0.000115 -0.009012 0.083574
Bi1 1 -0.008848 0.000516 -0.122024 0.206062
Bi2 1 -0.008340 0.000541 -0.103521 0.202619
Scale Y10 0 -0.304696 0.134916 0.119134 0.192750
Component 1 Y11 1 -0.077674 0.015681 -0.229209 0.337922
Y12 1 -0.083622 0.023190 -0.264490 0.408142
Skewness A 0 0.001182 0.001560 0.002757 0.006455
a1 1 -0.150202 0.044357 -0.822553 0.698361
gy 1 -0.147265 0.039669 -0.806582 0.661021
400 my 0.25 0.001665 0.001536 0.003344 0.009825
Location B2o 0 -0.000055 0.000104 0.046246 0.167193
B21 -1 0.008269 0.000507 0.074121 0.121277
B2z -1 0.010226 0.000593 0.097022 0.206187
Scale Y20 0 -0.318470 0.108036 0.127403 0.193529
Component 2 Y21 -1 0.073210 0.015581 0.204215 0.364476
Y22 -1 0.073182 0.015678 0.238675 0.477829
Skewness Q0 0 0.001753 0.001097 -0.002325 0.003442
ayq -1 0.154353 0.029965 0.818965 0.688081
ay,y -1 0.157860 0.030440 0.815663 0.678820
Location Bio 0 0.001204 0.000066 -0.029192 0.183424
Bi1 1 -0.007370 0.000300 -0.058255 0.123120
B2 1 -0.007523 0.000319 -0.086713 0.169070
Scale Y10 0 -0.304066 0.097874 0.228212 0.283121
Component 1 Y11 1 -0.063873 0.012985 -0.262691 0.376105
Y12 1 -0.063463 0.011449 -0.244429 0.386810
Skewness A 0 -0.001203 0.000975 0.014326 0.019875
a1 1 -0.155690 0.029917 -0.820609 0.698134
a1z 1 -0.151315 0.028539 -0.830182 0.723467
600 1y 0.25 0.001196 0.000958 -0.004667 0.010895
Location B2o 0 -0.000436 0.000068 0.011472 0.110872
B21 -1 0.008005 0.000317 0.083733 0.100941
B2z -1 0.009288 0.000312 0.108439 0.067094
Scale Y20 0 -0.306306 0.100791 0.231837 0.273336
Component 2 Y21 -1 0.076241 0.012435 0.327785 0.378631
Va2 -1 0.070747 0.011809 0.315733 0.461707
Skewness Az 0 -0.001390 0.001475 -0.004572 0.007106
ay -1 0.156591 0.032026 0.823369 0.697389
ayy -1 0.153986 0.030491 0.820885 0.688152
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6.2. Real data example

We apply the proposed method for the analysis of the “Pinus Nigra” tree data set. This data set was
given by Garcia-Escudero et al. (2010) for the robust clusterwise linear regression using trimming. Also,
this data set was investigated by Dogru and Arslan (2018a) for the robust mixture regression modelling
based on the least trimmed squares estimation method. The data set includes heights (in meters) and
diameters (in millimeters) of 362 trees, which form in a cultivated forest of Pinus Nigra located in the
north of Palencia (Spain). Figure 1 gives the scatter plot of the “Pinus Nigra” tree data set and the
histogram of the heights. It was pointed out by Garcia-Escudero et al. (2010) that there are three groups
in the data set and also some outliers on the top right corner and one isolated point on the bottom right
corner. We can also observe this from Figure 1(a). Overall, Figure 1 shows that this data set may contain
heteroscedasticity and skewness in different subgroups because of its heterogeneous structure.
Therefore, there is desirable to analyze this data by the joint location, scale and skewness models of
mixtures of SLN distributions or SN distributions. We then compare the performance of joint location,
scale and skewness models of mixtures of SLN distributions with the joint location, scale and skewness
models of mixtures of SN distributions, based on the following information criteria:

—2{’(@) + mc, ,

where £(-) represents the maximized log-likelihood, m is the number of free parameters to be estimated
in the model and c,, is the penalty term. Here, we take c,, = 2 for the Akaike information criteria (AIC)
(Akaike (1973)), ¢, = log(n) for the Bayesian information criteria (BIC) (Schwarz (1978)) and c,, =

0.2+/n for the efficient determination criteria (EDC) (Bai et al. (1989)).

Table 3 shows the estimates and the corresponding standard errors (SEs) for the parameters of the
three components obtained from the joint location, scale and skewness models of mixtures of SN and
SLN distributions, respectively. The SEs of estimators are computed using the Fisher information-based
method given by Basford et al. (1997), see the details of computation of the SEs for the ML estimators
of joint location, scale and skewness models of mixtures of SLN distributions in section 5.2. In the table,
we also provide the information criteria to assess the performance of fitted models. We observe that the
results obtained from the joint location, scale and skewness models of mixtures of SLN distributions are
significantly superior to the results obtained from the joint location, scale and skewness models of
mixtures of SN distributions. In addition, Figure 2 displays the fitted regression lines on the scatter plot
of the data. These fitted lines also confirm the superiority of the SLN fits over the SN fits. It can be seen
that unlike the SLN fits, the SN fits are ruined by the outliers.
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Figure 1. (a) The scatterplot of the “Pinus Nigra” tree data set. (b) Histogram of the height.
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Figure 2. The scatter plot of the data set along with the fitted regression lines gained from joint
location, scale and skewness models of mixtures of SLN and SN distributions

Table 3. Estimation results for the “Pinus Nigra” tree data set

SN SLN
Model Parameter Estimate SE Estimate SE

m, 0.156582 0.031161 0.164801 0.024763

T, 0.584023 0.050864 0.563643 0.056175

Location Bio 3.764876 37.131904 3.327843 0.507334

B11 0.015053 0. 251693 0.016494 0.002568

Bso 5.829494 0.415441 7.055084 0.332883

B1 0.026380 0.008871 0.016949 0.002414

Bso 9.521251 16.989675 10.440033 0.723771

Ba1 0.020691 0.055243 0.015172 0.003698

Scale Y10 -2.790566 1.866088 -2.263616 1.754836

Y11 0.012334 0.010113 0.002901 0.009652

Y20 -4.588224 1.140637 -5.128381 0.886256

Vo1 0.029300 0.006261 0.030586 0.004570

Y30 -0.573953 2.300905 0.619260 1.860537

Va1 0.003117 0.012462 -0.006081 0.009573

Skewness 0 -0.000159 266.001222 0.712341 1.802666

a; 0.0000006 0.523874 -0.002423 0.008874

30 -0.237599 3.544586 -0.765644 0.654246

oy 0.001462 0.011849 0.006205 0.003989

s 0.039622 33.521359 -0.327859 1.185471

a3 -0.000223 0.085429 0.001229 0.006333
Information £(0) -809.1278 -796.1866
criteria AIC 1634.2556 1608.3731
BIC 1653.8883 1639.5063
EDC 1648.6977 1622.8152

7. Conclusions

In this paper, we propose the joint modelling of location, scale and skewness parameters of mixtures of
SLN distributions for modelling heteroscedastic skew-heavy tailed data set coming from a
heterogeneous population., which could be regarded as an alternative mixture model to the joint
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modelling of location, scale and skewness parameters of mixtures of SN distributions. We obtain the
ML estimates of parameters using the EM algorithm and investigated the asymptotic properties of the
estimates. Simulation study and a real data analysis show that the proposed model and method is
applicable in practice and the derived estimators of parameters are superior to the estimators obtained
from the joint modelling of location, scale and skewness parameters of mixtures of SN distributions, as
well as better model fitting. In general, we may conclude this newly proposed model is useful for
modelling heterogeneous data sets that may face with heteroscedasticity, asymmetry and heavy-
tailedness problems.
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Appendix

Al. Score function and Fisher information matrix:
Using the objective function given in (19), we obtain the score function of the ith component

90(6;;98;
600 = 22050 _ (615,61 v0. 630’

where

-, (=2 B)x; 2y (W] ety (28)
G1(B) =ZZ < hryl ( 0ij + (wj @) )_W)

= 1 1(y; — xTB; ’h,
Go(vi) = z 2y <_Ehj + z(jeh]T)](ﬁij + (W,Tai)z),

=

l(WiT“i)(Yj — x] Bi)hjllyy; (29)

2 HTYi/2
T8 \wiis: T (30)

G(ay) = Z 3, <(3’J :}Jl]f,:/)zwjulu _ (w) “l)(thTYLx Bi ) Wl)

=

and the observed Fisher information matrix of the ith component

02Q(0;;8;) 02Q(6;;0;) 9%Q(0:;0,)]
op;0B;" aB;oy;" dpioa;”
azQ(eiiai)_ aZQ(ei;éi) aZQ(Bi;ai) OZQ(Hi;éi)
00,00, | ay,08,” ay;0y;" dy0a;"
02Q(0;0;) 0%Q(6;;8;) 092Q(6;0,)
| da;0B8," da;0y;" da;0a;"

H(8;) =
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02Q(0::8:) _ _iz <ijjTﬁ1ij L, Wa)©, - ijﬁi)ijjT>
da;0B;" LY\ vz ohvi ’
0°0(6:8)  ~-, (10y—xB)wihlany;  (wla)(y; — ] B:) wih]
da 0y, _Z “i\2 ohivi/2 B oM ) '

92Q(6; 6 __zn:é“ (Yj—ijﬁi)ZWijT>
_ ’ .

A2. Proof of theorems:

In this part, we summarize the necessary conditions for the consistency and asymptotic distribution of
0. See Kiefer (1978), Peters and Walker (1978), Redner and Walker (1984), McLachlan and Peel
(2000), Cheng and Liu (2001) and Tan et al. (2007) for details about the consistency and asymptotic
properties of mixture models. We also give the proofs of Theorems 1 and 2. We follow the consistency
procedure for the mixture models given in Cheng and Liu (2001) which they extended the classic
consistency inferences given in Wald (1949). Also, we follow Tan et al. (2007) for the proof of Theorem
2.
Let L* and B be the spaces of integrable functions on the interval (—oo, ) as given below:

L ={f:fmeasureable, A =f00|f| <00},
B* ={f:f el |fll=1f =0}

Let fi,f, € LY. Then, f; = f, in L1 if and only if f;(x) = f,(x) almost everywhere in R1. Let A; and
A, be two closed sets in R™. A metric between the two sets can be defined as:

dis(A1,A,) = dis(A,,A;) = inf inf [x — y|.
yEA

2 x€A1

We note that if A; and A, are singleton sets (i.e. single points), this metric turns the Euclidian distance.
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Property 1. i) dis(A;,A,) = 0 if and only if there are sequences of points, {x,} in A; and {y,} in A,,
such that |x,, — y,| = 0asn — .

i) dis(x,, A) — 0 if and only if there is a sequence {y,,} of points in 4, such that |x,, — y,| > 0asn —
00,

Note that Property 1 will be used in the proof of Theorem 1.

Conditions:

1. The sample is independent and identically distributed from (x, h, w, y). The density f(y|®) given in
(8) is identifiable. See Definition 1 for identifiability.

2. There is a neighborhood Q of @° that for all ® € Q and for almost all y € R™. Then, the partial
derivatives 0f(y|©)/00,, 0*f(y|@©)/00, 00; and 0°f(y|@)/00, 00; 00 exist and satisfy

*f(y1©)

2*f(yl0)
70,00,00,

90,00,

< fi(y),

‘af O19) < fire®
< i,

00,

< fij ), ‘
where f; and f;; are integrable and f;, satisfies
[ i) ro109dy <0
]R‘n

3. The Fisher information matrix

_ [ 9 010)or(1e)
o) = | Ze e, ey

is well defined and positive definite at @°.
4. f;(.,0;) € BT, forany 8, € @, 1 <i < k, and the support of f; is independent of 8;. Furthermore,
fi(.,07) = f;(.,07) in B* only if 0] = 67.
5.Letl1 <i<k,andn;(y,0;) = max{f;(y, 0,),1}. Forany 6; € 9;,
Egollog{fi(y,0:)}] > —oo,
on the support of f;, and

Egollog{n;(y,0:)}] < .

Also,

Ego [log{ sup 771'(3"01')}]<°°'
¢ 0:€0,)0,-6°|<p

for p > 0 sufficiently small, and

< oo,

E g0 [log{ sup Ui(y,ei)}

0;€0;,|0;|>r>0

for r sufficiently large.
6. Let 1 <i < k. For almost every fixed x € R, |91-i|m n:(v,0,) =0.1f6,,0° € 9,
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Jim, n:(7,8,) =n(y,67),
For any n € L', let E(ﬂOIGO){n(y)} = ffooon(y) f(y|n° 6%)dy. The following lemmas will be used in
the proof of Theorem 1.

Lemma 1. If Condition 5 holds with k = 1 for any (1, 8) € Q, 8, changed by (r, 8), 89 by (z°, 8°)
and f,(.,0,) by f(.|m, 8).

Lemma2.LetC ={f € L::||fl<1,f >0}.Forany f € Candn € B*

f log(f/mndy < 0.

Note that for the proofs of these lemmas see Cheng and Liu (2001).

Proof of Theorem 1:
It is assumed that Q is compact whole of the paper. Then, it should be shown that

< fGlm, 8)f 32, 0) ... f . 6) ) _ 0} _q

lim sup (31)

P
{n*“’ moyes \f 1170, 8°)f (y2|7°, 6°) ... f (yu|°, 8°)

where S is any closed subset of Q such that dis{S, Q(x°,8°)} > 0. We have to approve for each point
(m*,0) € S, there is always a neighborhood called N (¥, 8*) of the point that

0 0

We suppose that (¥, 8*) is a finite point. Then, let {N;(c*,0%),i = 1,2, ... } be a sequence of decreasing
neighborhoods of the point (7%, 0*) that N;s; N;(7%,0%) = (7*,0%). It can be assumed that

E (70,69) log< sup  f(ylm, 0)) exists for i = 1,2, ... according to the Condition (5). Then, using
’ 1,0EN;(1*,0%)

the conditions, we get

lim 10g< sup f(y|m, 0)) = log(f (yln*, ).

Ul (m,0)EN;(1*,0%)

We also have

lim E (0 go) log <(n,e)eszblir()n*,o*)f(y|n' 0)) > E (0,90 log(f(yIm*,8%)). (33)

It is clear that the sequence {E(n.o ) log( sup f(y|m, 9))} is decreasing that
’ (m,0)eN;(7*,6%)

1og< sup f(y|m, 9)) — log( sup flm, 0)) > 0.

(m,0)EN, (1t*,0%) (m,@)EN;(1*,60%)

Then, via the Fatou’s lemma and (33), we obtain that
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lim E(no’BO) 10g< sup f(y|m, 9)) = E(T[O’HO) log(f(yln*, 0*)) < E(T[O’OO) log(f(ylno, 90)) .

Ul (m,0)EN;(*,0%)

The inequality (32) results if (*, 8*) is a finite point.
If (=¥, 8%) is an infinite point, we have to prove that (32) is true when N (¥, 8*) degenerates into the
single point (z*, 8%). It is known that the form of f(y|r*, 8%) is:

g

FOI,07) = ) i fn, (33 Om,),

i=1

where 0 < g < k — 1 and 7y, frn, (3 O3;) > 0. 1f X7, 7. < 1, and according to Lemma 2, we get
E (0 g0y log(f(yIm*,07)) < E (0,60 log(f (v, 8%).

On the other hand, we have to verify that f(y|r*, 8*) # f(y|r®, 8°). First we suppose that this is not
true. Thus, (*, 6*) € Q(n° 6°), and the limiting point of the sequence {(=3, ..., ©5)(03, ..., 03)} €
Q(r°,8°), where

nj = m; if j = my, otherwise i; = 0,

8; = 6; if j = m;, otherwise 8; — co.

It is not possible to have dis{S,Q(r° 8°)} > 0. Then, let N;(*, 8*) be a sequence of decreasing
neighborhoods of the point (r*, 8*) that n; N;(*, 8*) = (*, 8*). As per Lemma 1 and Fatou’s Lemma,

. < * *
< E(70 60) log(f (v, 6%).
Thus, the inequality (32) was proved. According to the Heine-Borel finite open cover theorem and the

same way given in the proof of Theorem 1 in Wald (1949), the equation (31) results.
Let (77, 8,,) be a function of the observations y;, ..., y,, that

f(}ﬁlﬁn' an)f(yzlﬁ-n' aTL) ---f(Ynlﬁn: an) >c>0
f 1m0, 8°)f (y,|m°, 0°) ... f (¥, |70, 0°) —

for all n and for all y,, ..., y,,. Now, we show that dis{(m,, 6,,), 2(r°, 8°)} - 0 w.p. 1 by the help of
proof of Theorem 2 given in Wald (1949). To prove this, we have to demonstrate that all limit points
(7, 8) of the sequence {7, 0,,} hold dis{(7, 8),(n° 0°)} < € for any € > 0, and this probability
equals to 1. Otherwise, there is a limit point (7,8) of the sequence {7,,8,} that
dis{(w, 8), A(°, 0°)} > € states

_sup f1lm, 8)f (y217,0) ... f (|7, 0) = f(y117n, 0) f 2|0, 02) .. f 0|7, 05
dis{(7,0),Q(1°,00)}>¢

for infinitely many n. However,

_sup film, 0)f (2|, 0) ... f (v, 8)
dis{(7,0),Q(1%,0%)}>¢

(1179, 007 (170,69 . fOnln®, 89 =70
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for infinitely many n. Since the probability of this event is 0 according to the equation (31), now we can
say that all limit points (77, @) of the sequence {i,,, 8,,} hold dis{(w, 8), Q(1°,8°)} < e. Therefore, if
the maximum likelihood estimator (T)n = (ﬁn, @n) exists, it is an consistent estimator of @ = (1, 9).

Proof of Theorem 2:

It was shown that @,, is consistent; therefore, this estimator will be an interior point of Q if n is large.
Then, we have to prove that

04(0,) B
0

It can be written by the help of Taylor’s expansion such that

0¢(0,) 0¢(0% 0%2£(0%) , . I o 03¢(0") o
=26 ~ a0 ' aeser (0”_0)+E(0"_9) B (6, -0°),
930(0") . . _ o ,
where So7 Isa three dimensional array with its ith (i = 1,...,3g — 1) component whose (j, k)th

element will be

63{)(0*i)

= jk=1.39-1,
00,00;00, '’ g

where ©*! is a mixing distribution between @,, and ®°. Then, using the expansion given above, we have

(@, — 0%’ a%(e*t) 024(0°) (8, - 0% = 0£(0°)
2V 903 ' 90007 00
where Tlla ;E:: = 0(1), and aa;(ng =1(0°) + o(1). Then, we get

23¢(0*) 9%2¢£(0%)
—_ e’
[(@" ) 567 * Ge00r

] (8, — 8°) = n{1(0%) + 0, (1)}(8, — ©°).

After rearranging the equation we obtain

_ 1 94(0°)
Vn(0, —0°%) = —{1(e"* + (1)}(\/_ %0 )

Via the central limit theorem, it can be written as:

1 0£(0°)
Vn 00

and, we have the desired result as follow:

- N(0,1(0%))

Vn (0, —0°) >N(0,1(0")7").
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