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Abstract 

 

Joint modelling skewness and heterogeneity is challenging in data analysis, particularly in regression 

analysis which allows a random probability distribution to change flexibly with covariates. This paper, 

based on a skew Laplace normal (SLN) mixture of location, scale, and skewness, introduces a new 

regression model which provides a flexible modelling of location, scale and skewness parameters 

simultaneously. The maximum likelihood (ML) estimators of all parameters of the proposed model via 

the expectation-maximization (EM) algorithm as well as their asymptotic properties are derived. 

Numerical analyses via a simulation study and a real data example are used to illustrate the performance 

of the proposed model.  

 

Keywords: EM algorithm, joint location, scale and skewness models, mixture model, ML estimation, 

SLN, SN.  

 

 

1. Introduction 

 

Joint mean and dispersion models have been widely used for modelling heteroscedastic data sets in a 

homogenous population for many years. For example, there have been a number of studies concentrating 

on joint mean and dispersion models: Park (1966) introduced a log linear model for the variance 

parameter and described the Gaussian model using a two stage process to estimate the parameters; 

Harvey (1976) proposed a likelihood ratio test for heteroscedasticity and investigated the maximum 

likelihood (ML) estimation of the location and scale effects; modelling of variance heterogeneity in 

normal regression analysis was offered by Aitkin (1987); Verbyla (1993) estimated the parameters of 

the normal regression model under the log linear dependence of the variances on explanatory variables 

via the restricted ML; Engel and Huele (1996) examined an extension of the response surface approach 

to Taguchi type experiments for robust design by accommodating generalized linear modeling; Taylor 

and Verbyla (2004) proposed the joint modelling of location and scale parameters of the t distribution; 

Lin and Wang (2009) introduced a robust approach for the joint modelling of mean and scale parameters 

for longitudinal data; Bayesian inference for the joint modelling of location and scale parameters of the 

t distribution for longitudinal data was investigated by Lin and Wang (2011); Wu and Li (2012) studied 

the variable selection for joint mean and dispersion models of the inverse Gaussian distribution; Wu et 

al. (2012) examined the variable selection in joint mean and variance models of Box-Cox 

transformation; Wu et al. (2013) proposed to use the skew normal (SN) (Azzalini (1985, 1986)) 

distribution for variable selection in the joint location and scale models; Li and Wu (2014) presented the 

joint modelling of location and scale parameters of the SN distribution; Wu (2014) proposed variable 

selection in the joint location and scale models using the skew student-t-normal (STN) distribution; and 

Zhao and Zhang (2015) studied variable selection of varying dispersion student-t regression models. 

Recently, joint location, scale and skewness models are started to use modelling heteroscedastic and 
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skew data sets in a homogenous population as well as joint location and scale models. For instance, Li 

et al. (2017) explored variable selection in the joint location, scale and skewness models of the SN 

distribution; Wu et al. (2017) offered variable selection in the joint location, scale and skewness models 

of the STN distribution; and Doğru and Arslan (2018b) proposed the joint modelling of location, scale 

and skewness parameters of the skew Laplace normal (SLN) distribution.  

Since the estimators of classical regression models under normality assumption are very sensitive to 

the outliers, heavy-tailedness, and the skewness in the data, the robust mixture regression models have 

been proposed. It is known that mixture regression models are useful tools for the analysis of 

heterogeneous data sets. Mixture regression models were first introduced by Quandt (1972) and Quandt 

and Ramsey (1978) as switching regression models. These models are commonly used in areas such as 

engineering, genetics, biology, econometrics, and marketing. In addition, these models are used to model 

the relationship between variables that belong to unknown latent groups.  Some of recent work on the 

topic can be summarized as follows: Wei (2012) and Yao et al. (2014) introduced the robust mixture 

regression model based on the t distribution; Zhang (2013) examined the mixture regression model using 

the Pearson Type VII distribution; Song et al. (2014) proposed the robust mixture regression model 

using the Laplace distribution; Liu and Lin (2014) proposed the mixture regression model based on the 

SN distribution (Azzalini (1985, 1986)); Doğru (2015) and Doğru and Arslan (2017a) proposed the 

robust mixture regression model based on the skew t distribution (Azzalini and Capitanio (2003)) to 

cope with both heavy-tailedness and skewness in the data; and Doğru and Arslan (2016) investigated 

the robust mixture model based on a mixture of different distributions. Recently, Doğru and Arslan 

(2017b) proposed finite mixtures of SLN distributions and finite mixtures of SLN distributions 

methodology is also applied to the mixture regression problem, and Dai et al. (2019) proposed robust 

variable selection in finite mixture of regression models based on the t distribution. The SLN distribution 

is a special case of the skew exponential power distribution proposed by Azzalini (1986) and further 

studied by Gómez et al. (2007). However, all the mixture regression modelling mentioned above is under 

the assumption that there is no heteroscedasticity and skewness for different covariates in different 

subgroups of observations. But Li et al. (2016) have recently considered this problem and proposed a 

skew-normal mixture of joint location, scale and skewness models to examine the heteroscedastic skew 

normal data set consisting of a heterogeneous population. This model was a generalization of the mixture 

regression model based on the SN distribution which was proposed by Liu and Li (2014).  

 

Both SN and SLN distributions have the same number of parameters to accommodate location, scale, 

and skewness, but SLN distribution has heavier tails, which could be used to model heavy-tailedness 

along with the skewness in the data.  In this paper, we propose the joint modelling of location, scale and 

skewness parameters of mixtures of SLN distributions for modelling heteroscedastic skew-heavy tailed 

data set coming from a heterogeneous population. Our proposed model will be also an alternative to the 

joint modelling of location, scale and skewness parameters of mixtures of SN distributions. Additionally, 

this newly proposed model can be viewed as a generalization of the mixture regression model based on 

the SLN distribution which was studied by Doğru and Arslan (2017b).  

 

Furthermore, another approach called Bayesian methods for density regression based on a non-

parametric mixture of regression models was proposed by Dunson et al. (2007). This Bayesian method 

was also used before by Fernández and Steel (1998) for linear regression models to model skew error 

distributions with fat tails. In addition, Dunson et al. (2007) provided a class of weighted mixture of 

Dirichlet process priors for the uncountable collection of mixture distributions. On the topic of mixture 

regression in Statistics, our method is a frequentist approach and different from a Bayesian method such 

as Dunson et al. (2007) and Fernández and Steel (1998). Given that Bayesian method often gives 

identical answers to frequentist Statistics, and our EM algorithm does not require as much memory to 

store the results as MCMC sampling if you live in the big data world, different methods should be 

available for practitioners. 
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The rest of the paper is designed as follows: Section 2 details the basic information about SLN 

distribution. Section 3 gives the joint modelling of location, scale and skewness parameters of mixtures 

of SLN distributions. Section 4 demonstrates the ML estimation of the joint modelling of location, scale 

and skewness parameters of mixtures of SLN distributions via the EM algorithm. Sections 5 and 6 

present the performance of the proposed model providing a simulation study and a real data example. 

Section 7 is devoted to some conclusions.  

 

 

2. Skew Laplace normal distribution 

 

Let 𝑌 be a random variable which has the SLN distribution (𝑌 ∼ 𝑆𝐿𝑁(𝜇, 𝜎2, 𝜆)) with the location 

parameter 𝜇 ∈ ℝ, scale parameter 𝜎2 ∈ (0,∞) and the skewness parameter 𝜆 ∈ ℝ. Its probability 

density function (pdf) is given by 

 

𝑓(𝑦) = 2𝑓𝐿(𝑦; 𝜇, 𝜎)Φ (𝜆
𝑦 − 𝜇

𝜎
),    − ∞ < 𝑦 < ∞, (1) 

 

where 𝑓𝐿(𝑦; 𝜇, 𝜎) represents the pdf of Laplace distribution with 

 

𝑓𝐿(𝑦; 𝜇, 𝜎) =
1

2𝜎
𝑒−

|𝑦−𝜇|

𝜎 , 

 

and  Φ is the cumulative distribution function of the standard normal distribution. 

 

2.1 Stochastic representation of the SLN distribution 

 

Let 𝑍 ∼ 𝑆𝑁(0,1, 𝜆) and 𝑉 with the pdf 𝑓𝑉(𝑣) = 𝑣
−3 exp(−(2𝑣2)−1),   𝑣 > 0 be two independent 

random variables. Then, the random variable 𝑌 ∼ 𝑆𝐿𝑁(𝜇, 𝜎2, 𝜆) can be written as:  

 

𝑌 = 𝜇 + 𝜎
𝑍

𝑉
  . (2) 

 

Moreover, using the stochastic representation of the SN (Azzalini (1986, p. 201) and Henze (1986, 

Theorem 1)) distributed random variable 𝑍, the following stochastic representation of the random 

variable 𝑌 is obtained as: 

 

𝑌 = 𝜇 + 𝜎 (
𝜆|𝑍1|

√𝑉2(𝑉2 + 𝜆2)
+

𝑍2

√𝑉2 + 𝜆2
) , (3) 

 

where 𝑍1 ∼ 𝑁(0,1) and 𝑍2 ∼ 𝑁(0,1) are independent  random variables. This stochastic representation 

leads to the following hierarchical representation of the SLN distribution: 

 

𝑌|𝑢, 𝑣 ∼ 𝑁 (𝜇 +
𝜎𝜆𝑢

𝑣2 + 𝜆2
,

𝜎2

𝑣2 + 𝜆2
) ,  

𝑈|𝑣 ∼ 𝑇𝑁 ((0,
𝑣2 + 𝜆2

𝑣2
) ; (0,∞)) , 

𝑉 ∼ 𝑓𝑉(𝑣) = 𝑣
−3 exp(−(2𝑣2)−1), 

 

(4) 

where 𝑈 = √𝑉−2(𝑉2 + 𝜆2)|𝑍1| and 𝑇𝑁(∙) shows the truncated normal distribution. 

 

To derive an EM algorithm of Section 4, we now need some  conditional expectations with the 

following proposition. 
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Proposition 1.  According to the hierarchical representation given in (4), the following conditional 

expectations are obtained: 

 

𝐸(𝑉2|𝑦) =
𝜎

|𝑦 − 𝜇|
  , (5) 

𝐸(𝑈|𝑦) = 𝜆𝑠 +
Φ(𝜆𝑠)

𝜙(𝜆𝑠)
  , (6) 

𝐸(𝑈2|𝑦) = 1 + 𝜆𝑠𝐸(𝑈|𝑦) . 
 

 

(7) 

3. Joint location, scale and skewness models of mixtures of SLN distributions 

 

Let 𝑦1, 𝑦2, … , 𝑦𝑛 be a random sample from a 𝑔-component mixtures of SLN distributions, then the pdf 

of this mixture model is given by: 

 

𝑓(𝑦𝑗|𝚯) =∑𝜋𝑖

𝑔

𝑖=1

𝑓𝑖(𝑦𝑗; 𝜇𝑖 , 𝜎𝑖
2, 𝜆𝑖) , (8) 

 

where 𝜋𝑖 is the mixing probability with ∑ 𝜋𝑖
𝑔
𝑖=1 = 1 , 0 ≤ 𝜋𝑖 ≤ 1, 𝑓𝑖(𝑦𝑗; 𝜇𝑖 , 𝜎𝑖

2, 𝜆𝑖) represents the pdf 

of the 𝑖𝑡ℎ component (pdf of the SLN distribution) given in (1) and 𝚯 =

(𝜋1, … , 𝜋𝑔, 𝜇1, … , 𝜇𝑔, 𝜎1
2, … , 𝜎𝑔

2, 𝜆1, … , 𝜆𝑔)′ is the unknown parameter vector.  

Let us consider the following joint location, scale and skewness models of mixtures of SLN 

distributions: 

 

{
  
 

  
 
𝑦𝑗 ∼∑𝜋𝑖

𝑔

𝑖=1

𝑓𝑖(𝑦𝑗; 𝜇𝑖𝑗 , 𝜎𝑖𝑗
2 , 𝜆𝑖𝑗),   𝑗 = 1,2, … , 𝑛,

      𝜇𝑖𝑗 = 𝒙𝑗
𝑇𝜷𝑖  ,                                            

log 𝜎𝑖𝑗
2 = 𝒉𝑗

𝑇𝜸𝑖  ,                                             

   𝜆𝑖𝑗 = 𝒘𝑗
𝑇𝜶𝑖  , 𝑖 = 1, … , 𝑔,                 

 (9) 

 

where 𝑦𝑗 is the 𝑗𝑡ℎ observed response and 𝒙𝑗 = (𝑥𝑗1, … , 𝑥𝑗𝑝)
𝑇
, 𝒉𝑗 = (ℎ𝑗1, … , ℎ𝑗𝑞)

𝑇
 and 𝒘𝑗 =

(𝑤𝑗1, … , 𝑤𝑗𝑟)
𝑇

 are observed covariates corresponding to 𝑦𝑗. The covariate vectors 𝒙𝑗 , 𝒛𝑗 and 𝒘𝑗 are not 

needed to be identical. Also, 𝜷𝑖 = (𝛽𝑖1, … , 𝛽𝑖𝑝)
𝑇

 is a 𝑝 × 1 vector of unknown parameters in the location 

model of the 𝑖𝑡ℎ component, 𝜸𝑖 = (𝛾𝑖1, … , 𝛾𝑖𝑞)
𝑇

 is a 𝑞 × 1 vector of unknown parameters in the scale 

model of the 𝑖𝑡ℎ component, and 𝜶𝑖 = (𝛼𝑖1, … , 𝛼𝑖𝑟)
𝑇 is a 𝑟 × 1 vector of unknown parameters in the 

skewness model of the 𝑖𝑡ℎ component.  

 

Note that if 𝜎𝑖𝑗
2  and 𝜆𝑖𝑗 are constant, then the model (9) reduces to the mixture regression model based 

on the SLN distribution which was introduced by Doğru and Arslan (2017b). Therefore, model (9) can 

also be considered as an extension of the existing mixture regression model based on the SLN 

distribution.  We assume that the number of component 𝑔 is fixed and known through of the paper and 

deal with the estimation of the parameter vector 𝚯 = (𝜋1, … , 𝜋𝑔, 𝜽1, … , 𝜽𝑔)
𝑇

, where 𝜽𝑖 = (𝜷𝑖
𝑇 , 𝜸𝑖

𝑇 , 𝜶𝑖
𝑇) 

for 𝑖 = 1, . . , 𝑔.  

As what pointed out by Li et al. (2016), Hennig (2000) and Wang et al. (1996),  the issue of 

identifiability”  from a finite mixture models models needs to be defined, and in our case, we have: 
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Definition 1.  The finite SLN mixture of location, scale and skewness model given in (9) is said to be 

identifiable if the following equation holds for any two parameter vectors  𝚯 = (𝜋1, … , 𝜋𝑔,𝜽1, … , 𝜽𝑔)
𝑇
 

and  𝚯∗
= (𝜋1

∗, … , 𝜋𝑔
∗ ,𝜽1

∗ , … , 𝜽𝑔∗
∗
)
𝑇
: 

 

∑𝜋𝑖

𝑔

𝑖=1

𝑓𝑖(𝑦; 𝜇𝑖 , 𝜎𝑖
2, 𝜆𝑖) =∑𝜋𝑖

∗

𝑔∗

𝑖=1

𝑓𝑖(𝑦; 𝜇𝑖
∗, 𝜎𝑖

2∗, 𝜆𝑖
∗) 

 

for each 𝑖 = 1, …𝑔 and all possible values of 𝑦.  This then indicates 𝑔 = 𝑔∗ and 𝚯 = 𝚯∗.  
 

 

4. ML estimation of the joint location, scale and skewness models of mixtures of SLN distributions 

 

Let {(𝒙1, 𝒉1, 𝒘1, 𝑦1), … , (𝒙𝑛, 𝒉𝑛, 𝒘𝑛, 𝑦𝑛)} be a sample to estimate the unknown parameter vector 𝚯. The 

ML estimator of 𝚯 for a 𝑔-component SLN mixture of joint location, scale and skewness models can be 

found by maximizing the following log-likelihood function with respect to 𝚯: 

 

ℓ(𝚯) =∑log(∑𝜋𝑖

𝑔

𝑖=1

𝑓𝑖(𝑦𝑗; 𝒙𝑗
𝑇𝜷𝑖 , 𝒉𝑗

𝑇𝜸𝑖 , 𝒘𝑗
𝑇𝜶𝑖))

𝑛

𝑗=1

. (10) 

 

However, a numerical algorithm should be used since this log-likelihood function cannot be directly 

maximized. Generally, the EM algorithm is used to obtain the ML estimator of 𝚯. Here, we will 

implement the following EM algorithm to estimate the parameters:  

Let 𝑍𝑗 = (𝑍1𝑗 , … , 𝑍𝑔𝑗)
𝑇

 be the latent variables with 

 

𝑍𝑖𝑗 = {
1, 𝑖𝑓 𝑗𝑡ℎ 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑖𝑡ℎ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

 

where 𝑗 = 1,… , 𝑛 and 𝑖 = 1,… , 𝑔. To conduct the EM algorithm, we use the stochastic representation 

of the SLN distribution given in (3). Let 𝑉 and 𝑈 be the latent variables. Using the hierarchical 

representation given in (4), we have the following hierarchical representation for the SLN mixture of 

joint location, scale and skewness models: 

 

𝑌𝑗|𝑢𝑗 , 𝑣𝑗 , 𝑍𝑖𝑗 = 1 ∼ 𝑁(𝒙𝑗
𝑇𝜷𝑖 +

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄ (𝒘𝑗

𝑇𝜶𝑖)𝑢𝑗

𝑣𝑗
2 + (𝒘𝑗

𝑇𝜶𝑖)
2 ,

𝑒𝒉𝑗
𝑇𝜸𝑖

𝑣𝑗
2 + (𝒘𝑗

𝑇𝜶𝑖)
2) ,  

𝑈𝑗|𝑣𝑗 , 𝑍𝑖𝑗 = 1 ∼ 𝑇𝑁((0,
𝑣𝑗
2 + (𝒘𝑗

𝑇𝜶𝑖)
2

𝑣𝑗
2 ) ; (0,∞)) ,  

𝑣𝑗|𝑍𝑖𝑗 = 1 ∼ 𝑓(𝑣𝑗) = 𝑣𝑗
−3 exp (−(2𝑣𝑗

2)
−1
). (12) 

 

Let 𝒖 = (𝑢1, … , 𝑢𝑛), 𝒗 = (𝑣1, … , 𝑣𝑛) and 𝒛 = (𝑧1, … , 𝑧𝑛) be the missing data and (𝒚, 𝒖, 𝒗, 𝒛) be the 

complete data, where 𝒚 = (𝑦1, … , 𝑦𝑛). Then, the complete data log-likelihood function of 𝚯 can be 

written using the hierarchical representation given in (12) as follows: 

 

ℓ𝑐(𝚯; 𝒚, 𝒖, 𝒗, 𝒛) =∑∑𝑧𝑖𝑗

𝑔

𝑖=1

{log 𝜋𝑖 − log 𝜋 −
1

2
𝒉𝑗
𝑇𝜸𝑖 − 2 log 𝑣𝑗 − (2𝑣𝑗

2)
−1

𝑛

𝑗=1
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−
1

2
(
(𝑦𝑗 − 𝒙𝑗

𝑇𝜷𝑖)
2

𝑒𝒉𝑗
𝑇𝜸𝑖

𝑣𝑗
2 + 𝑢𝑗

2 − 2
𝒘𝑗
𝑇𝜶𝑖

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄

(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)𝑢𝑗 +

(𝒘𝑗
𝑇𝜶𝑖)

2

𝑒𝒉𝑗
𝑇𝜸𝑖

(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)

2
)}. (13) 

 

The ML estimator of 𝚯 can be derived by maximizing this function. However, this maximization yields 

the estimator that will be dependent on the latent variables. Therefore, we have to take the conditional 

expectation of the complete data log-likelihood function given 𝑦𝑗 to cope with this latency problem. 

Then,  we have the conditional expectation (13) as: 

𝐸(ℓ𝑐(𝚯; 𝒚, 𝒖, 𝒗, 𝒛)|𝑦𝑗) =∑∑𝐸(𝑍𝑖𝑗|𝑦𝑗)

𝑔

𝑖=1

𝑛

𝑗=1

{log 𝜋𝑖 − log 𝜋 −
1

2
𝒉𝑗
𝑇𝜸𝑖 − 2𝐸(log 𝑉𝑗|𝑦𝑗) 

−𝐸 (2(𝑉𝑗
2)
−1
| 𝑦𝑗) −

1

2
(
(𝑦𝑗 − 𝒙𝑗

𝑇𝜷𝑖)
2

𝑒𝒉𝑗
𝑇𝜸𝑖

𝐸(𝑉𝑗
2|𝑦𝑗) + 𝐸(𝑈𝑗

2|𝑦𝑗)  

−2
𝒘𝑗
𝑇𝜶𝑖

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄

(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)𝐸(𝑈𝑗|𝑦𝑗)+

(𝒘𝑗
𝑇𝜶𝑖)

2

𝑒𝒉𝑗
𝑇𝜸𝑖

(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)

2
)}. 

(14) 

 

The conditional expectation components related to unknown parameters  𝑖𝑛 (14) 𝑜𝑛𝑙𝑦 ℎ𝑎𝑣𝑒 𝐸(𝑉𝑗
2|𝑦𝑗), 

𝐸(𝑈𝑗|𝑦𝑗) and 𝐸(𝑈𝑗
2|𝑦𝑗)  which can be computed using the conditional expectations given in (5)-(7), and  

𝐸(𝑍𝑖𝑗|𝑦𝑗) which can be calculated using the classical theory of mixture modeling.    Let

 

�̂�𝑖𝑗 =
�̂�𝑖𝑓𝑖(𝑦𝑗; 𝒙𝑗

𝑇�̂�𝑖 , 𝒉𝑗
𝑇�̂�𝑖 , 𝒘𝑗

𝑇�̂�𝑖)

∑ �̂�𝑖𝑓𝑖(𝑦𝑗; 𝒙𝑗
𝑇�̂�𝑖 , 𝒉𝑗

𝑇�̂�𝑖 , 𝒘𝑗
𝑇�̂�𝑖)

𝑛
𝑖=1

 , (15) 

�̂�𝑖𝑗 = 𝐸(𝑉𝑗
2|𝑦𝑗) =

𝑒𝒉𝑗
𝑇�̂�𝑖 2⁄

|𝑦𝑗 − 𝒙𝑗
𝑇�̂�𝑖|

  , (16) 

�̂�1𝑖𝑗 = 𝐸(𝑈𝑗|𝑦𝑗) = �̂�𝑖𝑗 +
Φ(�̂�𝑖𝑗)

𝜙(�̂�𝑖𝑗)
  , (17) 

�̂�2𝑖𝑗 = 𝐸(𝑈𝑗
2|𝑦𝑗) = 1 + �̂�𝑖𝑗�̂�1𝑖𝑗  , (18) 

 

where �̂�𝑖𝑗 = 𝒘𝑗
𝑇�̂�𝑖

(𝑦𝑗−𝒙𝑗
𝑇�̂�𝑖)

𝑒
𝒉𝑗
𝑇�̂�𝑖 2⁄

 . Then, we obtain the following objective function after re-writing above 

conditional expectations in (14): 

 

𝑄(𝚯; �̂�) =∑∑�̂�𝑖𝑗

𝑔

𝑖=1

𝑛

𝑗=1

{log 𝜋𝑖 −
1

2
𝒉𝑗
𝑇𝜸𝑖 −

1

2
(
(𝑦𝑗 − 𝒙𝑗

𝑇𝜷𝑖)
2

𝑒𝒉𝑗
𝑇𝜸𝑖

�̂�𝑖𝑗 + �̂�2𝑖𝑗 

−2
𝒘𝑗
𝑇𝜶𝑖

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄

(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)�̂�1𝑖𝑗 +

(𝒘𝑗
𝑇𝜶𝑖)

2

𝑒𝒉𝑗
𝑇𝜸𝑖

(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)

2
)}. 

(19) 

 

 

To this end, the steps of the EM algorithm can be organized as follows: 

 

 

EM algorithm: 

1. Take initial value for 𝚯(0). 

2. E-Step: Compute the following expectations for the 𝑘 = 0,1,2, … iteration 
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�̂�𝑖𝑗
(𝑘)

=
�̂�𝑖
(𝑘)
𝑓𝑖 (𝑦𝑗; 𝒙𝑗

𝑇�̂�𝑖
(𝑘)
, 𝒉𝑗

𝑇�̂�𝒊
(𝑘)
, 𝒘𝑗

𝑇�̂�𝑖
(𝑘)
)

∑ �̂�𝑖
(𝑘)
𝑓𝑖 (𝑦𝑗; 𝒙𝑗

𝑇�̂�𝑖
(𝑘)
, 𝒉𝑗

𝑇�̂�𝒊
(𝑘)
, 𝒘𝑗

𝑇�̂�𝑖
(𝑘)
)𝑛

𝑖=1

 (20) 

�̂�𝑖𝑗
(𝑘)

= 𝐸(𝑉𝑗
2|𝑦𝑗 , �̂�

(𝑘)) =
𝑒𝒉𝑗

𝑇�̂�𝒊
(𝑘)

2⁄

|𝑦𝑗 − 𝒙𝑗
𝑇�̂�𝑖

(𝑘)
|
  , (21) 

�̂�1𝑖𝑗
(𝑘)

= 𝐸(𝑈𝑗|𝑦𝑗 , �̂�
(𝑘)) = �̂�𝑖𝑗

(𝑘)
+
Φ(�̂�𝑖𝑗

(𝑘)
)

𝜙 (�̂�𝑖𝑗
(𝑘)
)
  , (22) 

�̂�2𝑖𝑗
(𝑘)

= 𝐸(𝑈𝑗
2|𝑦𝑗 , �̂�

(𝑘)) = 1 + �̂�𝑖𝑗
(𝑘)
�̂�1𝑖𝑗
(𝑘)
 , (23) 

 

where, �̂�𝑖𝑗
(𝑘)

= 𝒘𝑗
𝑇�̂�𝑖

(𝑘)
 
(𝑦𝑗−𝒙𝑗

𝑇�̂�𝑖
(𝑘)
)

𝑒
𝒉𝑗
𝑇�̂�
𝑖
(𝑘)

2⁄
.  

 

Note that we divide both the numerator and denominator in (20) by the largest term in the sum 

in the denominator, which was suggested by Wang et al. (1996) to prevent overflow in the computation 

of �̂�𝑖𝑗
(𝑘)

. 

3. M-Step: Use the conditional expectations given in (20)-(23) and obtain 𝑄(𝚯; �̂�(𝑘)). Maximize 

𝑄(𝚯; �̂�(𝑘)) with respect to 𝚯 to obtain new estimates. The (𝑘 + 1)𝑡ℎ parameter estimates for the 𝑖𝑡ℎ 

component can be updated using the following maximization results: 

 

�̂�𝑖
(𝑘+1)

=
∑ �̂�𝑖𝑗

(𝑘)𝑛
𝑗=1

𝑛
 , (24) 

�̂�𝑖
(𝑘+1)

= �̂�𝑖
(𝑘)
+ (−𝐻 (𝜽𝑖

(𝑘)
))
−1

𝐺 (𝜽𝑖
(𝑘)
) , (25) 

 

where �̂�𝑖
(𝑘)

= (�̂�𝑖
(𝑘)𝑇

, �̂�𝒊
(𝑘)𝑇

, �̂�𝑖
(𝑘)𝑇

), 𝐺(𝜽𝑖) is the score function of the 𝑖𝑡ℎ component with 

 

𝐺(𝜽𝑖) =
𝜕𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜽𝑖
= (𝐺1

𝑇(𝜷𝑖), 𝐺2
𝑇(𝜸𝑖), 𝐺3

𝑇(𝜶𝑖))
𝑇
, 

 

and  𝐻(𝜽𝑖) is the observed Fisher information matrix of the 𝑖𝑡ℎ component with 

 

𝐻(𝜽𝑖) =
𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜽𝑖𝜕𝜽𝑖
𝑇 =

[
 
 
 
 
 
 
 
𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜷𝑖𝜕𝜷𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜷𝑖𝜕𝜸𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜷𝑖𝜕𝜶𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜸𝑖𝜕𝜷𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜸𝑖𝜕𝜸𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜸𝑖𝜕𝜶𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜶𝑖𝜕𝜷𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜶𝑖𝜕𝜸𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜶𝑖𝜕𝜶𝑖
𝑇 ]
 
 
 
 
 
 
 

. 

 

4. Repeat E and M steps until the convergence is obtained.  

Remark. See Appendix for the detail expressions of 𝐺(𝜽𝑖) and 𝐻(𝜽𝑖).    

 

 

 

5. Asymptotic properties 
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Let {(𝒙1, 𝒉1, 𝒘1, 𝑦1), … , (𝒙𝑛, 𝒉𝑛, 𝒘𝑛, 𝑦𝑛)} be a random sample, Ω be the parameter space, and 𝚯 =

(𝜋1, … , 𝜋𝑔, 𝜽1, … , 𝜽𝑔)
𝑇
∈ Ω, where 𝜽𝑖 = (𝜷𝑖

𝑇 , 𝜸𝑖
𝑇 , 𝜶𝑖

𝑇),  for 𝑖 = 1, . . , 𝑔, be the collection of all 

parameters in the log-likelihood function given in (10), and 𝚯0 is the true value of the parameter 𝚯, 

respectively. For the mixture model given in (8),  

 

𝜋 ∈ 𝐴 ≡ {(𝜋1, … , 𝜋𝑔): 𝜋𝑖 ≥ 0, 𝑖 = 1,… , 𝑔,∑𝜋𝑖

𝑔

𝑖=1

= 1} , 

𝜽 ∈ 𝚯 ≡ {(𝜽1, … , 𝜽𝑔): 𝜽𝑖 ∈ 𝚯𝒊 , 𝑖 = 1,…𝑔}, 

 

and the 𝚯𝒊 , 𝑖 = 1,…𝑔, are closed convex sets that belongs to 𝑅𝑝. Let Ω = 𝐴 × 𝚯. For any given 

(𝜋0, 𝚯0) ∈ Ω, it can be defined as 

 

Ω(𝜋0, 𝜽0) = {(𝜋, 𝜽): (𝜋, 𝜽) ∈ Ω 𝑎𝑛𝑑 𝑓(. |𝜋, 𝜽) = 𝑓(. |𝜋0, 𝜽0)}. 
 

Assume that �̂�𝑛 = (�̂�𝑛, �̂�𝑛) is the estimate of 𝚯 obtained by the EM-type algorithm given by the 

equations (24) and (25), then the asymptotic properties of this estimator and its standard errors of 

estimation are detailed as follows: 

 

5.1 Consistency and asymptotic distribution  

 

Theorem 1. Let 𝑓(𝑦|𝚯) be a pdf given in (8). Let 𝚯0 = (𝜋0, 𝜽0) be the true value of 𝚯 = (𝜋, 𝜽), which 

exists at some point in the region Ω,  and {�̂�𝑛 = (�̂�𝑛, �̂�𝑛), 𝑛 = 1,2, … } is a sequence.  Then, if we 

assume that Conditions *-* given in Appendix hold, there is a unique strongly consistent solution of the 

mixture models likelihood equations. Then, 𝑑𝑖𝑠{(�̂�𝑛, �̂�𝑛), Ω(𝜋
0, 𝜽0)} → 0,𝑤. 𝑝. 1. 

 

Proof. See Appendix for the proof of Theorem 1. 

 

Theorem 2. Under Conditions *-*, the asymptotic distribution of 𝑛1 2⁄ (�̂�𝑛 − 𝚯
0) is asymptotically 

normal with mean zero and covariance matrix 𝐼(𝚯0)−1 

 

𝑛1 2⁄ (�̂�𝑛 − 𝚯
0)

𝑑
→𝑁(0, 𝐼(𝚯0)−1), 

 

where 𝐼(𝚯0)−1 is the inverse of the Fisher information matrix. 

 

Proof. See Appendix for the proof of Theorem 2. 

 

5.2 Estimation of the standard errors 

 

To calculate the standard errors of ML estimators for the parameters of joint location, scale and skewness 

models of mixtures of SLN distributions, we will use the information based method given by Basford 

et al. (1997). In this method, the observed information matrix can be approximated by the empirical 

information matrix. To do so, we use the inverse of the empirical information matrix to get an 

approximation to the asymptotic covariance matrix of estimators. The empirical information matrix can 

be defined as: 

 

𝐼𝑒(�̂�) =∑�̂�𝑗�̂�𝑗
𝑇

𝑛

𝑗=1

 , (26) 
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where �̂�𝑗 = 𝐸�̂� (
𝜕ℓ𝑐𝑗(𝚯;𝒚𝑗,𝒖𝑗,𝒗𝑗,𝒛𝑗)

𝜕𝚯
| 𝒚𝑗) , 𝑗 = 1,… , 𝑛 are the individual scores and ℓ𝑐𝑗(𝚯; 𝒚𝑗 , 𝒖𝑗 , 𝒗𝑗 , 𝒛𝑗) is 

the complete data log-likelihood function for the 𝑗𝑡ℎ observation. The components of the score vector 

�̂�𝑗 are (�̂�𝑗,𝜋1 , … , �̂�𝑗,𝜋𝑔−1 , �̂�𝑗,𝜷1 , … , �̂�𝑗,𝜷𝑔 , �̂�𝑗,𝜸1 , … , �̂�𝑗,𝜸𝑔 , �̂�𝑗,𝜶1 , … , �̂�𝑗,𝜶𝑔)
𝑇

, where 

 

�̂�𝑗,𝜋𝑟 =
�̂�𝑟𝑗

�̂�𝑟
−
�̂�𝑔𝑗

�̂�𝑔
 , 𝑟 = 1,… , 𝑔 − 1, 

�̂�𝑗,𝜷𝑖 = 𝐺1(�̂�𝑖) , �̂�𝑗,𝜸𝑖 = 𝐺2(�̂�𝑖), and �̂�𝑗,𝜶𝑖 = 𝐺3(�̂�𝑖) , 𝑖 = 1,… , 𝑔.  

 

Here, 𝐺1(�̂�𝑖), 𝐺2(�̂�𝑖) and 𝐺3(�̂�𝑖) are given with the equations (28)-(30). Thus, using these equations, 

we can form the information matrix 𝐼𝑒 given in (26). After this, the standard errors of �̂� can be found 

using the square root of the matrix 𝐼𝑒(�̂�)
−1

.     

 

 

6. Applications 

 

In this section, we conduct a simulation study and a real data analysis to show the performance of the 

proposed mixture model over the joint location, scale and skewness models of mixtures of SN 

distributions. For the computation of the estimators of parameters, we use the EM algorithm given in 

Section 4. We summarize the computation details as follows: 

 

Details of computation: 

 

i) The simulation study and real data example are conducted using a MATLAB R2017b software. 

ii) For all numerical computations, the stopping rule is taken as 10−6. 

iii) Initial values for the EM algorithm: the good initial values in the simulation are the true parameter 

values; the initial values in the real data example are the estimates from the normal mixture regression 

for the parameters of location models and  6 × 1 zero vector as initial values for all scale and skewness 

models. 

iv) In the simulation study, we compare the performance of joint location, scale and skewness models 

of mixtures of SLN distributions with the joint location, scale and skewness models of mixtures of SN 

distributions under different data sets. The data sets are generated from SLN, SN and STN distributions 

to compare the behavior of estimators according to the skew and heavy-tailed data sets. 

 

The data set from the SLN distribution can be generated as follows:  

- Sample 𝑈 from the uniform distribution 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)  and set  𝑉 = √−
1

2 log𝑈
 . 

- Sample  𝑍1 and 𝑍2 independently from the standard normal distribution 𝑁(0,1).  

- After this, setting 𝑌 = 𝜇 + 𝜎 (
𝜆|𝑍1|

√𝑉2(𝑉2+𝜆2)
+

𝑍2

√𝑉2+𝜆2
) with appropriate parameter values gives the SLN 

distributed sample. 

 

Note that the procedures given in Azzalini and Capitanio (1999) and Cabral et al. (2008) are used for 

the data generating procedures of SN and STN distributions. 

 

 

 

6.1. Simulation study 
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The simulation study below is based on two scenarios with aim to illustrate the performance of parameter 

estimates and model fitting of the proposed joint modelling of location, scale and skewness parameters 

of mixtures of SLN distributions over the joint location, scale and skewness models of mixtures of SN 

distributions. The performance of the parameter estimators is evaluated via the bias and the mean 

squared error (MSE). The formulas of the bias and the MSE are given below: 

 

𝑏𝑖𝑎�̂�(𝜃) = �̅� − 𝜃,   𝑀𝑆�̂�(𝜃) =
1

𝑁
∑(𝜃𝑗 − 𝜃)

2
𝑁

𝑗=1

 , 

 

where 𝜃 is the true parameter value, 𝜃𝑗 is the estimate of 𝜃 for the 𝑗𝑡ℎ simulated data and �̅� =
1

𝑁
∑ 𝜃𝑗
𝑁
𝑗=1 . 

The number of replications 𝑁 = 500 times. The sample sizes (𝑛) are respectively taken as 200, 400 and 

600 for all simulation configurations.  

 

Scenario 1. We generate the data {(𝑥1𝑗 , 𝑦𝑗), 𝑗 = 1,… , 𝑛} from the following two component mixture of 

joint location, scale and skewness models 

 

{
 
 

 
 
𝑦𝑗 ∼ 𝜋1𝑓1(𝜇1𝑗 , 𝜎1𝑗

2 , 𝜆1𝑗) + 𝜋2𝑓2(𝜇2𝑗 , 𝜎2𝑗
2 , 𝜆2𝑗),   𝑗 = 1,2, … , 𝑛,

      𝜇𝑖𝑗 = 𝒙𝑗
𝑇𝜷𝑖  ,                                            

log 𝜎𝑖𝑗
2 = 𝒉𝑗

𝑇𝜸𝑖  ,                                             

   𝜆𝑖𝑗 = 𝒘𝑗
𝑇𝜶𝑖  , 𝑖 = 1,2,                 

 (27) 

 

where all covariate vectors 𝒙𝑗 , 𝒉𝑗 and 𝒘𝑗 are independently generated from uniform distribution 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1,1), 𝛽1 = (0,1,1)
𝑇, 𝛾1 = (0,1,1)𝑇 and 𝛼1 = (0,1,1)

𝑇 for the first component, 𝛽2 =
(0,−1,−1)𝑇, 𝛾2 = (0,−1,−1)

𝑇 and 𝛼2 = (0,−1,−1)
𝑇 for the second component, and the mixing 

proportion 𝜋1 = 0.25. The considered distributions of 𝑓1(. ) and 𝑓2(. ) are given with the following 

cases: 

 

Case I: 𝑓1 ∼ 𝑆𝐿𝑁(𝜇1𝑗 , 𝜎1𝑗
2 , 𝜆1𝑗), 𝑓2 ∼ 𝑆𝐿𝑁(𝜇2𝑗 , 𝜎2𝑗

2 , 𝜆2𝑗). 

Case II: 𝑓1 ∼ 𝑆𝑁(𝜇1𝑗 , 𝜎1𝑗
2 , 𝜆1𝑗), 𝑓2 ∼ 𝑆𝑁(𝜇2𝑗 , 𝜎2𝑗

2 , 𝜆2𝑗). 

Case III: 𝑓1 ∼ 𝑆𝑇𝑁(𝜇1𝑗 , 𝜎1𝑗
2 , 𝜆1𝑗 , 𝜈), 𝑓2 ∼ 𝑆𝑇𝑁(𝜇2𝑗 , 𝜎2𝑗

2 , 𝜆2𝑗 , 𝜈) where 𝜈 shows the degrees of freedom 

parameter, and it is taken as 3.  

 

Scenario 2. We generate the data {(𝑥1𝑗 , 𝑦𝑗), 𝑗 = 1,… , 𝑛} from the two component mixture of joint 

location, scale and skewness models given in (27) with the true parameters 𝛽1 = (0,1,1)
𝑇, 𝛾1 = (0,1,1)

𝑇 

and 𝛼1 = (0,1,1)
𝑇 for the first component, 𝛽2 = (0,−1,−1)

𝑇, 𝛾2 = (0,−1,−1)𝑇 and 𝛼2 =
(0,−1,−1)𝑇 for the second component, and the mixing proportion 𝜋1 = 0.5. 

 

We consider the following distributions for 𝑓1(. ) and 𝑓2(. ): 

Case I: 𝑓1 ∼ 𝑆𝐿𝑁(𝜇1𝑗 , 𝜎1𝑗
2 , 𝜆1𝑗), 𝑓2 ∼ 𝑆𝐿𝑁(𝜇2𝑗 , 𝜎2𝑗

2 , 𝜆2𝑗). 

Case II: 𝑓1 ∼ 𝑆𝑁(𝜇1𝑗 , 𝜎1𝑗
2 , 𝜆1𝑗), 𝑓2 ∼ 𝑆𝑁(𝜇2𝑗 , 𝜎2𝑗

2 , 𝜆2𝑗). 

Case III: 𝑓1 ∼ 𝑆𝑇𝑁(𝜇1𝑗 , 𝜎1𝑗
2 , 𝜆1𝑗 , 𝜈), 𝑓2 ∼ 𝑆𝑇𝑁(𝜇2𝑗 , 𝜎2𝑗

2 , 𝜆2𝑗 , 𝜈)where 𝜈 shows the degrees of freedom 

parameter, and it is taken as 3.  

 

The simulation results for Scenarios 1  and 2 are outlined in Tables 1-3  and Tables 4-6 respectively. 

The tables contain the bias, MSE values of the parameter estimates, along with the true parameter values. 

According to the tables, we get the following results: The proposed estimation procedure can accurately 

estimate all parameters of the SLN mixture of joint location, scale and skewness models. When we are 
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comparing the estimators under the skew and/or heavy-tailed data set, we have similar results for all the 

cases. For the Case I, II and III for all scenarios, the proposed estimation method fit better than the SN 

mixture of joint location, scale and skewness models. Further, the MSE values of the SN mixture of 

joint location, scale and skewness models parameter estimates are larger than the SLN mixture of joint 

location, scale and skewness models parameter estimates. In summary, the results of our simulation 

study show that the the SLN mixture of joint location, scale and skewness models should be used when 

the data set is skew and/or heavy-tailed. 
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Table 1. The bias and the values of MSE for the different sample sizes for Case I of Scenario 1. 
     SLN SN 

𝑛  Model Parameter True Bias MSE Bias MSE 

200 

Component 1 

Location 

𝛽10 0 0.001609 0.000523 0.011240 0.280015 

𝛽11 1 -0.000866 0.001937 -0.129769 0.942425 

𝛽12 1 0.000342 0.001835 -0.208158 0.768263 

Scale 

𝛾10 0 -0.060628 0.018006 0.781018 0.890588 

𝛾11 1 -0.065036 0.025605 -0.562109 1.637458 

𝛾12 1 -0.074615 0.027414 -0.500881 1.501806 

Skewness 

𝛼10 0 0.001422 0.001843 -0.010485 0.007808 

𝛼11 1 -0.042347 0.012478 -0.947892 0.939000 

𝛼12 1 -0.038905 0.010831 -0.960368 0.977903 

 𝜋1 0.25 0.002221 0.002511 0.024569 0.010822 

Component 2 

Location 

𝛽20 0 -0.001010 0.000247 -0.009864 0.011726 

𝛽21 -1 -0.000618 0.000746 0.026629 0.042916 

𝛽22 -1 0.000028 0.000769 0.025152 0.047674 

Scale 

𝛾20 0 -0.048273 0.008344 0.326883 0.177632 

𝛾21 -1 0.030339 0.009403 0.038803 0.224439 

𝛾22 -1 0.004941 0.009548 -0.056450 0.215279 

Skewness 

𝛼20 0 -0.002709 0.001166 0.001246 0.002856 

𝛼21 -1 0.023648 0.004822 0.655526 0.446036 

𝛼22 -1 0.027575 0.005621 0.662656 0.455720 

400 

Component 1 

Location 𝛽10 0 -0.001250 0.000127 0.036724 0.697977 

𝛽11 1 0.000215 0.000448 -0.189467 0.651509 

𝛽12 1 -0.003555 0.000623 -0.283836 0.706189 

Scale 𝛾10 0 -0.042464 0.008039 0.974165 1.160705 

𝛾11 1 -0.063019 0.011630 -0.401689 0.524403 

𝛾12 1 -0.061203 0.011875 -0.581877 0.802200 

Skewness 𝛼10 0 -0.001549 0.000768 -0.001310 0.017263 

𝛼11 1 -0.051244 0.007253 -0.967317 0.952731 

𝛼12 1 -0.032932 0.004571 -0.963397 0.952814 

 𝜋1 0.25 0.007604 0.001144 0.030443 0.007137 

Component 2 

Location 𝛽20 0 0.001108 0.000063 0.008083 0.004737 

𝛽21 -1 -0.000025 0.000268 0.035137 0.022689 

𝛽22 -1 -0.001237 0.000313 0.026257 0.025561 

Scale 𝛾20 0 -0.024183 0.003017 0.402017 0.211105 

𝛾21 -1 0.024396 0.004814 -0.018353 0.094900 

𝛾22 -1 0.027671 0.004721 0.022027 0.106480 

Skewness 𝛼20 0 0.002321 0.000425 0.001715 0.001219 

𝛼21 -1 0.020529 0.002304 0.677500 0.467822 

𝛼22 -1 0.015959 0.002323 0.673768 0.463623 

600 

Component 1 

Location 𝛽10 0 0.001199 0.000063 0.042770 0.048973 

𝛽11 1 0.003195 0.000387 -0.130805 0.202193 

𝛽12 1 -0.000065 0.000424 -0.226833 0.194833 

Scale 𝛾10 0 -0.013283 0.003021 1.045563 1.180564 

𝛾11 1 -0.041744 0.006662 -0.374963 0.582185 

𝛾12 1 -0.065954 0.009973 -0.460080 0.504019 

Skewness 𝛼10 0 0.005057 0.000598 -0.000277 0.003087 

𝛼11 1 -0.032114 0.003190 -0.970636 0.951767 

𝛼12 1 -0.026726 0.002891 -0.959954 0.934348 

 𝜋1 0.25 0.008317 0.000757 0.026867 0.004964 

Component 2 

Location 𝛽20 0 -0.000839 0.000034 -0.002218 0.002368 

𝛽21 -1 -0.004053 0.000125 0.006510 0.009653 

𝛽22 -1 -0.001872 0.000107 0.031415 0.010706 

Scale 𝛾20 0 -0.024593 0.002368 0.415573 0.193907 

𝛾21 -1 0.030459 0.003143 -0.020431 0.086157 

𝛾22 -1 0.030171 0.003184 0.039385 0.069028 

Skewness 𝛼20 0 0.001464 0.000311 0.000417 0.000940 

𝛼21 -1 0.023689 0.002314 0.689811 0.480334 

𝛼22 -1 0.018305 0.001650 0.685139 0.472959 
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Table 2. The bias and the values of MSE for the different sample sizes for Case II of Scenario 1 
     SLN SN 

𝑛  Model Parameter True Bias MSE Bias MSE 

200 

Component 1 

Location 

𝛽10 0 0.001109 0.000769 -0.012841 0.066953 

𝛽11 1 -0.016551 0.002856 -0.000516 0.178959 

𝛽12 1 -0.013614 0.003198 0.001712 0.203035 

Scale 

𝛾10 0 -0.235791 0.067199 -0.170880 0.151085 

𝛾11 1 -0.087698 0.028067 -0.188926 0.526102 

𝛾12 1 -0.086925 0.029040 -0.145863 0.508284 

Skewness 

𝛼10 0 -0.001093 0.002182 0.002699 0.002998 

𝛼11 1 -0.089190 0.018228 -0.824070 0.707861 

𝛼12 1 -0.080104 0.015585 -0.819849 0.702039 

 𝜋1 0.25 -0.005405 0.002303 0.003829 0.003348 

Component 2 

Location 

𝛽20 0 0.002140 0.000281 0.006141 0.006055 

𝛽21 -1 0.006230 0.001136 0.001387 0.021180 

𝛽22 -1 0.004524 0.001148 -0.006446 0.021494 

Scale 

𝛾20 0 -0.239452 0.062775 -0.099366 0.031959 

𝛾21 -1 0.040523 0.011194 0.016009 0.063325 

𝛾22 -1 0.039572 0.011416 0.021868 0.064961 

Skewness 

𝛼20 0 0.001430 0.001928 0.000334 0.002344 

𝛼21 -1 0.106507 0.019447 0.637837 0.422275 

𝛼22 -1 0.108943 0.019563 0.637480 0.421178 

400 

Component 1 

Location 𝛽10 0 -0.000349 0.000221 -0.001654 0.021374 

𝛽11 1 -0.008243 0.000978 0.006227 0.064144 

𝛽12 1 -0.009139 0.001029 0.006050 0.068607 

Scale 𝛾10 0 -0.211798 0.050122 -0.015247 0.049273 

𝛾11 1 -0.094044 0.017843 -0.184842 0.185828 

𝛾12 1 -0.087006 0.016954 -0.146736 0.174489 

Skewness 𝛼10 0 0.000254 0.001128 -0.000867 0.000975 

𝛼11 1 -0.084456 0.011285 -0.816848 0.677439 

𝛼12 1 -0.087060 0.012280 -0.824266 0.689911 

 𝜋1 0.25 -0.003995 0.001204 -0.001563 0.001633 

Component 2 

Location 𝛽20 0 0.000080 0.000105 0.001491 0.003003 

𝛽21 -1 0.004448 0.000445 0.006867 0.009911 

𝛽22 -1 0.003268 0.000457 -0.002297 0.010119 

Scale 𝛾20 0 -0.227366 0.054167 -0.054554 0.013307 

𝛾21 -1 0.043732 0.006399 0.042027 0.035319 

𝛾22 -1 0.045252 0.006347 0.039654 0.033329 

Skewness 𝛼20 0 0.000499 0.000866 0.000736 0.001093 

𝛼21 -1 0.108800 0.015154 0.657821 0.438906 

𝛼22 -1 0.107182 0.015169 0.658440 0.441105 

600 

Component 1 

Location 𝛽10 0 -0.000560 0.000134 -0.000940 0.013028 

𝛽11 1 -0.007480 0.000516 0.009413 0.042451 

𝛽12 1 -0.007855 0.000514 0.001101 0.036672 

Scale 𝛾10 0 -0.201989 0.044573 0.043493 0.040170 

𝛾11 1 -0.091518 0.014095 -0.200900 0.142848 

𝛾12 1 -0.088876 0.013752 -0.191354 0.139637 

Skewness 𝛼10 0 -0.000809 0.000688 -0.000859 0.000664 

𝛼11 1 -0.084658 0.010356 -0.820236 0.679964 

𝛼12 1 -0.080771 0.009500 -0.818160 0.676026 

 𝜋1 0.25 -0.006843 0.000847 -0.005198 0.001117 

Component 2 

Location 𝛽20 0 0.000088 0.000055 0.002358 0.001909 

𝛽21 -1 0.004066 0.000248 0.004324 0.006555 

𝛽22 -1 0.002990 0.000240 -0.001375 0.006185 

Scale 𝛾20 0 -0.218468 0.049523 -0.034601 0.008564 

𝛾21 -1 0.047229 0.004806 0.050445 0.023689 

𝛾22 -1 0.046040 0.004750 0.050332 0.022725 

Skewness 𝛼20 0 0.000434 0.000577 -0.000833 0.000660 

𝛼21 -1 0.105586 0.013574 0.661310 0.441874 

𝛼22 -1 0.104923 0.013422 0.662377 0.443240 
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Table 3. The bias and the values of MSE for the different sample sizes for Case III of Scenario 1. 
     SLN SN 

𝑛  Model Parameter True Bias MSE Bias MSE 

200 

Component 1 

Location 

𝛽10 0 -0.000397 0.000616 0.018731 0.135352 

𝛽11 1 -0.017140 0.003016 -0.180409 0.452858 

𝛽12 1 -0.016814 0.002614 -0.128414 0.425086 

Scale 

𝛾10 0 -0.310774 0.120583 0.357399 0.556072 

𝛾11 1 -0.104443 0.047028 -0.591648 1.712985 

𝛾12 1 -0.103863 0.047722 -0.539700 1.769955 

Skewness 

𝛼10 0 -0.001789 0.003271 -0.004973 0.010617 

𝛼11 1 -0.129420 0.033552 -0.932381 0.914104 

𝛼12 1 -0.127279 0.031659 -0.930578 0.913499 

 𝜋1 0.25 -0.011568 0.002692 0.021119 0.008344 

Component 2 

Location 

𝛽20 0 0.000607 0.000227 0.003627 0.008094 

𝛽21 -1 0.007019 0.000883 0.014838 0.038019 

𝛽22 -1 0.007826 0.000918 0.014923 0.021441 

Scale 

𝛾20 0 -0.373253 0.150206 -0.337700 0.214894 

𝛾21 -1 0.054963 0.019771 0.015238 0.203828 

𝛾22 -1 0.060928 0.020446 0.011487 0.234463 

Skewness 

𝛼20 0 0.001061 0.002267 -0.001227 0.003831 

𝛼21 -1 0.183551 0.043735 0.709829 0.520136 

𝛼22 -1 0.185624 0.045361 0.710655 0.524452 

400 

Component 1 

Location 𝛽10 0 0.001467 0.000226 0.001841 0.047356 

𝛽11 1 -0.015171 0.001109 -0.182278 0.302034 

𝛽12 1 -0.013767 0.001026 -0.161205 0.275155 

Scale 𝛾10 0 -0.291731 0.103225 0.675286 0.794572 

𝛾11 1 -0.080879 0.032578 -0.669896 1.174824 

𝛾12 1 -0.106559 0.034302 -0.747111 1.401166 

Skewness 𝛼10 0 0.001539 0.003459 -0.003024 0.003464 

𝛼11 1 -0.136283 0.026396 -0.971675 0.974001 

𝛼12 1 -0.141216 0.035989 -0.958415 0.946797 

 𝜋1 0.25 -0.012628 0.001533 0.008994 0.008108 

Component 2 

Location 𝛽20 0 -0.000443 0.000092 -0.001880 0.003777 

𝛽21 -1 0.006435 0.000330 0.059456 0.055267 

𝛽22 -1 0.007003 0.000383 0.058185 0.055851 

Scale 𝛾20 0 -0.360828 0.135552 -0.232327 0.133715 

𝛾21 -1 0.062898 0.011724 0.092793 0.159561 

𝛾22 -1 0.069038 0.013493 0.115241 0.159555 

Skewness 𝛼20 0 -0.000137 0.001246 0.001095 0.001364 

𝛼21 -1 0.183425 0.038827 0.732075 0.544502 

𝛼22 -1 0.182880 0.039148 0.726522 0.537019 

600 

Component 1 

Location 𝛽10 0 -0.000301 0.000088 -0.049243 0.524876 

𝛽11 1 -0.013445 0.000588 -0.228720 0.976806 

𝛽12 1 -0.011839 0.000468 -0.275677 0.261613 

Scale 𝛾10 0 -0.281397 0.086396 0.770466 0.822284 

𝛾11 1 -0.088600 0.019999 -0.745200 0.918232 

𝛾12 1 -0.104672 0.020942 -0.811049 1.082750 

Skewness 𝛼10 0 -0.001545 0.001552 0.008113 0.011606 

𝛼11 1 -0.138424 0.024753 -0.972339 0.959915 

𝛼12 1 -0.137585 0.026023 -0.980113 0.973411 

 𝜋1 0.25 -0.010421 0.000913 0.018112 0.009126 

Component 2 

Location 𝛽20 0 -0.000354 0.000055 0.024777 0.170531 

𝛽21 -1 0.005619 0.000197 0.075376 0.142800 

𝛽22 -1 0.005965 0.000208 0.071837 0.081430 

Scale 𝛾20 0 -0.349705 0.125276 -0.178856 0.176302 

𝛾21 -1 0.056785 0.009037 0.073615 0.128455 

𝛾22 -1 0.059668 0.008717 0.114503 0.134638 

Skewness 𝛼20 0 -0.002565 0.000750 -0.005638 0.011737 

𝛼21 -1 0.186865 0.038309 0.750850 0.574010 

𝛼22 -1 0.174977 0.033985 0.733508 0.551020 
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Table 4. The bias and the values of MSE for the different sample sizes for Case I of Scenario 2. 
     SLN SN 

𝑛  Model Parameter True Bias MSE Bias MSE 

200 

Component 1 

Location 

𝛽10 0 0.000576 0.000279 -0.007611 0.043553 

𝛽11 1 0.000085 0.000996 -0.077230 0.177593 

𝛽12 1 -0.001168 0.001003 -0.086459 0.217542 

Scale 

𝛾10 0 -0.047044 0.011284 0.502081 0.387389 

𝛾11 1 -0.030875 0.012611 -0.072009 0.398917 

𝛾12 1 -0.035084 0.011440 -0.102232 0.358123 

Skewness 

𝛼10 0 0.001772 0.001240 -0.000974 0.006147 

𝛼11 1 -0.028360 0.006700 -0.791869 0.662071 

𝛼12 1 -0.023361 0.006035 -0.776437 0.621219 

 𝜋1 0.5 0.000425 0.002541 0.003687 0.011088 

Component 2 

Location 

𝛽20 0 -0.001577 0.000293 0.001691 0.044979 

𝛽21 -1 -0.001644 0.001039 0.029027 0.186494 

𝛽22 -1 -0.000176 0.000886 0.052016 0.124408 

Scale 

𝛾20 0 -0.047673 0.010704 0.507695 0.413876 

𝛾21 -1 0.043480 0.013851 0.101352 0.531926 

𝛾22 -1 0.036514 0.013561 0.105172 0.508195 

Skewness 

𝛼20 0 -0.000825 0.001265 0.001548 0.002572 

𝛼21 -1 0.025550 0.006343 0.782613 0.633634 

𝛼22 -1 0.029111 0.006238 0.786309 0.634687 

400 

Component 1 

Location 𝛽10 0 -0.000291 0.000104 0.008866 0.015111 

𝛽11 1 -0.001074 0.000416 -0.117399 0.141666 

𝛽12 1 -0.001204 0.000344 -0.099611 0.150786 

Scale 𝛾10 0 -0.033043 0.004771 0.629843 0.469345 

𝛾11 1 -0.037432 0.007730 -0.182876 0.354569 

𝛾12 1 -0.048396 0.006422 -0.207732 0.266259 

Skewness 𝛼10 0 0.001814 0.000654 0.001749 0.001040 

𝛼11 1 -0.028906 0.003516 -0.810502 0.668093 

𝛼12 1 -0.027801 0.003830 -0.802324 0.654907 

 𝜋1 0.5 -0.001597 0.001356 -0.006254 0.007064 

Component 2 

Location 𝛽20 0 0.000510 0.000106 0.007376 0.025332 

𝛽21 -1 -0.001176 0.000373 0.117996 0.147458 

𝛽22 -1 -0.000416 0.000391 0.107499 0.117666 

Scale 𝛾20 0 -0.028700 0.004814 0.619026 0.461890 

𝛾21 -1 0.039896 0.006090 0.190832 0.256190 

𝛾22 -1 0.028728 0.005998 0.135455 0.294544 

Skewness 𝛼20 0 -0.000018 0.000468 -0.000837 0.000985 

𝛼21 -1 0.024436 0.003584 0.803397 0.654470 

𝛼22 -1 0.027482 0.003377 0.807567 0.662511 

600 

Component 1 

Location 𝛽10 0 -0.000412 0.000045 -0.003796 0.006020 

𝛽11 1 0.000365 0.000195 -0.112051 0.051485 

𝛽12 1 0.001325 0.000208 -0.099321 0.042431 

Scale 𝛾10 0 -0.033643 0.035067 0.699558 0.546034 

𝛾11 1 -0.029745 0.005856 -0.178957 0.190350 

𝛾12 1 -0.031489 0.005236 -0.168946 0.176055 

Skewness 𝛼10 0 0.003812 0.000761 0.004628 0.000809 

𝛼11 1 -0.036921 0.023650 -0.809107 0.659929 

𝛼12 1 -0.039523 0.040666 -0.800467 0.646277 

 𝜋1 0.5 0.000497 0.001032 -0.000007 0.004664 

Component 2 

Location 𝛽20 0 0.000744 0.000065 0.003492 0.009150 

𝛽21 -1 -0.000409 0.000209 0.096864 0.042253 

𝛽22 -1 -0.000083 0.000192 0.079985 0.045150 

Scale 𝛾20 0 -0.013648 0.002221 0.696584 0.542612 

𝛾21 -1 0.043055 0.004942 0.201331 0.159944 

𝛾22 -1 0.039937 0.005640 0.179940 0.168125 

Skewness 𝛼20 0 -0.000130 0.000360 -0.003756 0.000564 

𝛼21 -1 0.020215 0.001864 0.798827 0.642789 

𝛼22 -1 0.024863 0.002338 0.806310 0.654582 
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Table 4. The bias and the values of MSE for the different sample sizes for Case II of Scenario 2. 
     SLN SN 

𝑛  Model Parameter True Bias MSE Bias MSE 

200 

Component 1 

Location 

𝛽10 0 0.000400 0.000394 0.002326 0.013972 

𝛽11 1 -0.007895 0.001607 0.007523 0.044839 

𝛽12 1 -0.005967 0.001589 0.018829 0.045107 

Scale 

𝛾10 0 -0.228935 0.059330 -0.118107 0.058020 

𝛾11 1 -0.067914 0.016118 -0.040547 0.136666 

𝛾12 1 -0.061875 0.017052 -0.028742 0.143562 

Skewness 

𝛼10 0 0.000616 0.001829 -0.002269 0.002161 

𝛼11 1 -0.089356 0.015649 -0.726383 0.543608 

𝛼12 1 -0.094598 0.016173 -0.729759 0.549161 

 𝜋1 0.25 0.000624 0.002814 -0.001949 0.004484 

Component 2 

Location 

𝛽20 0 0.001630 0.000375 0.010066 0.013562 

𝛽21 -1 0.006655 0.001506 -0.012123 0.044529 

𝛽22 -1 0.005553 0.001416 -0.012485 0.049339 

Scale 

𝛾20 0 -0.227995 0.058990 -0.100487 0.054764 

𝛾21 -1 0.065551 0.015969 0.061956 0.137695 

𝛾22 -1 0.061699 0.015080 0.053632 0.130893 

Skewness 

𝛼20 0 0.001083 0.002060 -0.001189 0.001897 

𝛼21 -1 0.094128 0.016714 0.730903 0.550750 

𝛼22 -1 0.092514 0.016357 0.728376 0.545504 

400 

Component 1 

Location 𝛽10 0 0.000311 0.000153 0.002448 0.006716 

𝛽11 1 -0.004760 0.000515 0.004439 0.019050 

𝛽12 1 -0.004910 0.000549 0.004550 0.020130 

Scale 𝛾10 0 -0.211273 0.048133 -0.029562 0.022327 

𝛾11 1 -0.065168 0.009642 -0.069854 0.066099 

𝛾12 1 -0.066527 0.010520 -0.084333 0.077434 

Skewness 𝛼10 0 0.001008 0.000968 0.001322 0.000896 

𝛼11 1 -0.094340 0.012150 -0.739738 0.554068 

𝛼12 1 -0.090583 0.011694 -0.731974 0.542744 

 𝜋1 0.25 0.000250 0.001496 0.000198 0.002163 

Component 2 

Location 𝛽20 0 0.000117 0.000134 0.002080 0.006601 

𝛽21 -1 0.006370 0.000536 -0.005312 0.018605 

𝛽22 -1 0.004913 0.000511 -0.001585 0.020120 

Scale 𝛾20 0 -0.211647 0.048038 -0.037857 0.021406 

𝛾21 -1 0.068266 0.010291 0.077592 0.065552 

𝛾22 -1 0.073354 0.010531 0.096149 0.071954 

Skewness 𝛼20 0 0.000172 0.000918 -0.001406 0.000911 

𝛼21 -1 0.089055 0.011358 0.731854 0.542872 

𝛼22 -1 0.093250 0.012096 0.737231 0.550062 

600 

Component 1 

Location 𝛽10 0 -0.000346 0.000081 -0.017651 0.305096 

𝛽11 1 -0.007140 0.000337 -0.006654 0.030378 

𝛽12 1 -0.006254 0.000343 -0.011107 0.038824 

Scale 𝛾10 0 -0.208837 0.045863 -0.009180 0.123349 

𝛾11 1 -0.064483 0.007912 -0.074416 0.055170 

𝛾12 1 -0.067862 0.007913 -0.092083 0.064276 

Skewness 𝛼10 0 -0.000028 0.000608 0.013843 0.199475 

𝛼11 1 -0.093164 0.011070 -0.728692 0.559871 

𝛼12 1 -0.090784 0.010699 -0.723645 0.587739 

 𝜋1 0.25 -0.000429 0.001045 0.000656 0.002116 

Component 2 

Location 𝛽20 0 -0.000450 0.000083 -0.001506 0.005639 

𝛽21 -1 0.005443 0.000336 -0.001007 0.013321 

𝛽22 -1 0.006094 0.000353 0.004707 0.014236 

Scale 𝛾20 0 -0.207342 0.045030 -0.021564 0.017919 

𝛾21 -1 0.066245 0.008025 0.077442 0.043951 

𝛾22 -1 0.064901 0.007717 0.071057 0.047627 

Skewness 𝛼20 0 -0.001343 0.000572 -0.002810 0.001889 

𝛼21 -1 0.093732 0.011206 0.734284 0.552744 

𝛼22 -1 0.092198 0.010544 0.733229 0.549518 
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Table 6. The bias and the values of MSE for the different sample sizes for Case III of Scenario 2. 
     SLN SN 

𝑛  Model Parameter True Bias MSE Bias MSE 

200 

Component 1 

Location 

𝛽10 0 0.000369 0.000320 0.009921 0.103064 

𝛽11 1 -0.011891 0.001455 -0.069605 0.175460 

𝛽12 1 -0.010132 0.001192 -0.074488 0.181750 

Scale 

𝛾10 0 -0.327350 0.120565 -0.009022 0.282907 

𝛾11 1 -0.066364 0.024149 -0.125100 0.568277 

𝛾12 1 -0.061852 0.025730 -0.057684 0.621618 

Skewness 

𝛼10 0 0.000000 0.002518 -0.000699 0.024888 

𝛼11 1 -0.151068 0.034839 -0.795599 0.663874 

𝛼12 1 -0.156801 0.035730 -0.809014 0.720977 

 𝜋1 0.25 -0.000261 0.003117 -0.005383 0.012187 

Component 2 

Location 

𝛽20 0 -0.000458 0.000346 -0.002735 0.033440 

𝛽21 -1 0.008763 0.001203 0.057113 0.138349 

𝛽22 -1 0.009424 0.001263 0.052256 0.132388 

Scale 

𝛾20 0 -0.336142 0.144971 -0.011376 0.209101 

𝛾21 -1 0.093657 0.042260 0.179458 0.581779 

𝛾22 -1 0.090997 0.044242 0.180798 0.685933 

Skewness 

𝛼20 0 -0.001632 0.003017 0.001293 0.002923 

𝛼21 -1 0.154233 0.053127 0.800751 0.662200 

𝛼22 -1 0.151986 0.043501 0.802162 0.663834 

400 

Component 1 

Location 𝛽10 0 -0.000528 0.000115 -0.009012 0.083574 

𝛽11 1 -0.008848 0.000516 -0.122024 0.206062 

𝛽12 1 -0.008340 0.000541 -0.103521 0.202619 

Scale 𝛾10 0 -0.304696 0.134916 0.119134 0.192750 

𝛾11 1 -0.077674 0.015681 -0.229209 0.337922 

𝛾12 1 -0.083622 0.023190 -0.264490 0.408142 

Skewness 𝛼10 0 0.001182 0.001560 0.002757 0.006455 

𝛼11 1 -0.150202 0.044357 -0.822553 0.698361 

𝛼12 1 -0.147265 0.039669 -0.806582 0.661021 

 𝜋1 0.25 0.001665 0.001536 0.003344 0.009825 

Component 2 

Location 𝛽20 0 -0.000055 0.000104 0.046246 0.167193 

𝛽21 -1 0.008269 0.000507 0.074121 0.121277 

𝛽22 -1 0.010226 0.000593 0.097022 0.206187 

Scale 𝛾20 0 -0.318470 0.108036 0.127403 0.193529 

𝛾21 -1 0.073210 0.015581 0.204215 0.364476 

𝛾22 -1 0.073182 0.015678 0.238675 0.477829 

Skewness 𝛼20 0 0.001753 0.001097 -0.002325 0.003442 

𝛼21 -1 0.154353 0.029965 0.818965 0.688081 

𝛼22 -1 0.157860 0.030440 0.815663 0.678820 

600 

Component 1 

Location 𝛽10 0 0.001204 0.000066 -0.029192 0.183424 

𝛽11 1 -0.007370 0.000300 -0.058255 0.123120 

𝛽12 1 -0.007523 0.000319 -0.086713 0.169070 

Scale 𝛾10 0 -0.304066 0.097874 0.228212 0.283121 

𝛾11 1 -0.063873 0.012985 -0.262691 0.376105 

𝛾12 1 -0.063463 0.011449 -0.244429 0.386810 

Skewness 𝛼10 0 -0.001203 0.000975 0.014326 0.019875 

𝛼11 1 -0.155690 0.029917 -0.820609 0.698134 

𝛼12 1 -0.151315 0.028539 -0.830182 0.723467 

 𝜋1 0.25 0.001196 0.000958 -0.004667 0.010895 

Component 2 

Location 𝛽20 0 -0.000436 0.000068 0.011472 0.110872 

𝛽21 -1 0.008005 0.000317 0.083733 0.100941 

𝛽22 -1 0.009288 0.000312 0.108439 0.067094 

Scale 𝛾20 0 -0.306306 0.100791 0.231837 0.273336 

𝛾21 -1 0.076241 0.012435 0.327785 0.378631 

𝛾22 -1 0.070747 0.011809 0.315733 0.461707 

Skewness 𝛼20 0 -0.001390 0.001475 -0.004572 0.007106 

𝛼21 -1 0.156591 0.032026 0.823369 0.697389 

𝛼22 -1 0.153986 0.030491 0.820885 0.688152 
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6.2. Real data example 

 

     We apply the proposed method for the analysis of the “Pinus Nigra” tree data set. This data set was 

given by García-Escudero et al. (2010) for the robust clusterwise linear regression using trimming. Also, 

this data set was investigated by Doğru and Arslan (2018a) for the robust mixture regression modelling 

based on the least trimmed squares estimation method. The data set includes heights (in meters) and 

diameters (in millimeters) of 362 trees, which form in a cultivated forest of Pinus Nigra located in the 

north of Palencia (Spain). Figure 1 gives the scatter plot of the “Pinus Nigra” tree data set and the 

histogram of the heights. It was pointed out by García-Escudero et al. (2010) that there are three groups 

in the data set and also some outliers on the top right corner and one isolated point on the bottom right 

corner. We can also observe this from Figure 1(a).  Overall, Figure 1 shows that this data set may contain 

heteroscedasticity and skewness in different subgroups because of its heterogeneous structure. 

Therefore, there is desirable to analyze this data by the joint location, scale and skewness models of 

mixtures of SLN distributions or SN distributions. We then compare the performance of joint location, 

scale and skewness models of mixtures of SLN distributions with the joint location, scale and skewness 

models of mixtures of SN distributions, based on the following information criteria: 

 

−2ℓ(�̂�) + 𝑚𝑐𝑛 , 

 

where ℓ(∙) represents the maximized log-likelihood, 𝑚 is the number of free parameters to be estimated 

in the model and 𝑐𝑛 is the penalty term. Here, we take 𝑐𝑛 = 2 for the Akaike information criteria (AIC) 

(Akaike (1973)), 𝑐𝑛 = log(𝑛) for the Bayesian information criteria (BIC) (Schwarz (1978)) and 𝑐𝑛 =

0.2√𝑛 for the efficient determination criteria (EDC) (Bai et al. (1989)). 

Table 3 shows the estimates and the corresponding standard errors (SEs) for the parameters of the 

three components obtained from the joint location, scale and skewness models of mixtures of SN and 

SLN distributions, respectively. The SEs of estimators are computed using the Fisher information-based 

method given by Basford et al. (1997), see the details of computation of the SEs for the ML estimators 

of joint location, scale and skewness models of mixtures of SLN distributions in section 5.2. In the table, 

we also provide the information criteria to assess the performance of fitted models. We observe that the 

results obtained from the joint location, scale and skewness models of mixtures of SLN distributions are 

significantly superior to the results obtained from the joint location, scale and skewness models of 

mixtures of SN distributions. In addition, Figure 2 displays the fitted regression lines on the scatter plot 

of the data. These fitted lines also confirm the superiority of the SLN fits over the SN fits. It can be seen 

that unlike the SLN fits, the SN fits are ruined by the outliers.     

 

 
Figure 1. (a) The scatterplot of the “Pinus Nigra” tree data set. (b) Histogram of the height. 
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Figure 2. The scatter plot of the data set along with the fitted regression lines gained from joint 

location, scale and skewness models of mixtures of SLN and SN distributions 

 

Table 3. Estimation results for the “Pinus Nigra” tree data set 

 

  SN SLN 

Model Parameter Estimate SE Estimate SE 

 𝜋1 0.156582 0.031161 0.164801 0.024763 

 𝜋2 0.584023 0.050864 0.563643 0.056175 

Location 𝛽10 3.764876 37.131904 3.327843 0.507334 

𝛽11 0.015053 0. 251693 0.016494 0.002568 

𝛽20 5.829494 0. 415441 7.055084 0.332883 

𝛽21 0.026380 0.008871 0.016949 0.002414 

𝛽30 9.521251 16.989675 10.440033 0.723771 

𝛽31 0.020691 0.055243 0.015172 0.003698 

Scale 𝛾10 -2.790566 1.866088 -2.263616 1.754836 

𝛾11 0.012334 0.010113 0.002901 0.009652 

𝛾20 -4.588224 1.140637 -5.128381 0.886256 

𝛾21 0.029300 0.006261 0.030586 0.004570 

𝛾30 -0.573953 2.300905 0.619260 1.860537 

𝛾31 0.003117 0.012462 -0.006081 0.009573 

Skewness 𝛼10 -0.000159 266.001222 0.712341 1.802666 

𝛼11 0.0000006 0.523874 -0.002423 0.008874 

𝛼20 -0.237599 3.544586 -0.765644 0.654246 

𝛼21 0.001462 0.011849 0.006205 0.003989 

𝛼30 0.039622 33.521359 -0.327859 1.185471 

𝛼31 -0.000223 0.085429 0.001229 0.006333 

Information 

criteria 
ℓ(�̂�) -809.1278 -796.1866 

AIC 1634.2556 1608.3731 

BIC 1653.8883 1639.5063 
EDC 1648.6977 1622.8152 

 

 

7. Conclusions 

 

In this paper, we propose the joint modelling of location, scale and skewness parameters of mixtures of 

SLN distributions for modelling heteroscedastic skew-heavy tailed data set coming from a 

heterogeneous population., which could be regarded as an alternative mixture model to the joint 
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modelling of location, scale and skewness parameters of mixtures of SN distributions. We obtain the 

ML estimates of parameters using the EM algorithm and investigated the asymptotic properties of the 

estimates. Simulation study and a real data analysis show that the proposed model and  method is 

applicable in practice  and the derived estimators of parameters  are superior to the estimators obtained 

from the joint modelling of location, scale and skewness parameters of mixtures of SN distributions, as 

well as better model fitting. In general, we may conclude this newly proposed model is useful for 

modelling heterogeneous data sets that may face with heteroscedasticity, asymmetry and heavy-

tailedness problems. 
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Appendix 

 

A1. Score function and Fisher information matrix: 

Using the objective function given in (19), we obtain the score function of the 𝑖𝑡ℎ component 

 

𝐺(𝜽𝑖) =
𝜕𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜽𝑖
= (𝐺1

𝑇(𝜷𝑖), 𝐺2
𝑇(𝜸𝑖), 𝐺3

𝑇(𝜶𝑖))
𝑇
, 

 

where 

 

𝐺1(𝜷𝑖) =∑�̂�𝑖𝑗 (
(𝑦𝑗 − 𝒙𝑗

𝑇𝜷𝑖)𝒙𝑗

𝑒𝒉𝑗
𝑇𝜸𝑖

(�̂�𝑖𝑗 + (𝒘𝑗
𝑇𝜶𝑖)

2
) −

(𝒘𝑗
𝑇𝜶𝑖)𝒙𝑗�̂�1𝑖𝑗

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄

)

𝑛

𝑗=1

 , 
(28) 

𝐺2(𝜸𝑖) =∑�̂�𝑖𝑗 (−
1

2
𝒉𝑗 +

1

2

(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)

2
𝒉𝑗

𝑒𝒉𝑗
𝑇𝜸𝑖

(�̂�𝑖𝑗 + (𝒘𝑗
𝑇𝜶𝑖)

2
)

𝑛

𝑗=1

 , 
 

−
1

2

(𝒘𝑖
𝑇𝜶𝑖)(𝑦𝑗 − 𝒙𝑗

𝑇𝜷𝑖)𝒉𝑗�̂�1𝑖𝑗

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄

) 
(29) 

𝐺3(𝜶𝑖) =∑�̂�𝑖𝑗 (
(𝑦𝑗 − 𝒙𝑗

𝑇𝜷𝑖)𝒘𝑗�̂�1𝑖𝑗

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄

−
(𝒘𝑗

𝑇𝜶𝑖)(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)

2
𝒘𝑗

𝑒𝒉𝑗
𝑇𝜸𝑖

)

𝑛

𝑗=1

 , 
(30) 

 

and the observed Fisher information matrix of the 𝑖𝑡ℎ component 

 

𝐻(𝜽𝑖) =
𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜽𝑖𝜕𝜽𝑖
𝑇 =

[
 
 
 
 
 
 
 
𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜷𝑖𝜕𝜷𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜷𝑖𝜕𝜸𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜷𝑖𝜕𝜶𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜸𝑖𝜕𝜷𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜸𝑖𝜕𝜸𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜸𝑖𝜕𝜶𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜶𝑖𝜕𝜷𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜶𝑖𝜕𝜸𝑖
𝑇

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜶𝑖𝜕𝜶𝑖
𝑇 ]
 
 
 
 
 
 
 

 , 
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where 

 

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜷𝑖𝜕𝜷𝑖
𝑇 = −∑�̂�𝑖𝑗 (

𝒙𝑗𝒙𝑗
𝑇

𝑒𝒉𝑗
𝑇𝜸𝑖
�̂�𝑖𝑗 +

(𝒘𝑖
𝑇𝜶𝑖)

2

𝑒𝒉𝑗
𝑇𝜸𝑖

𝒙𝑗𝒙𝑗
𝑇)

𝑛

𝑗=1

 , 

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜷𝑖𝜕𝜸𝑖
𝑇

= −∑�̂�𝑖𝑗 (
(𝑦𝑗 − 𝒙𝑗

𝑇𝜷𝑖)𝒙𝑗𝒉𝑗
𝑇

𝑒𝒉𝑗
𝑇𝜸𝑖

(�̂�𝑖𝑗 + (𝒘𝑗
𝑇𝜶𝑖)

2
) −

1

2

(𝒘𝑗
𝑇𝜶𝑖)𝒙𝑗𝒉𝑗

𝑇�̂�1𝑖𝑗

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄

)

𝑛

𝑖=1

 , 

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜷𝑖𝜕𝜶𝑖
𝑇

= −∑�̂�𝑖𝑗 (
𝒙𝑗𝒘𝑗

𝑇�̂�1𝑖𝑗

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄

− 2
(𝒘𝑖

𝑇𝜶𝑖)(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)𝒙𝑗𝒘𝑗

𝑇

𝑒𝒉𝑗
𝑇𝜸𝑖

)

𝑛

𝑖=1

 , 

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜸𝑖𝜕𝜷𝑖
𝑇 = −∑�̂�𝑖𝑗 (

(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)𝒉𝑗𝒙𝑗

𝑇

𝑒𝒉𝑗
𝑇𝜸𝑖

(�̂�𝑖𝑗 + (𝒘𝑗
𝑇𝜶𝑖)

2
) −

1

2

(𝒘𝑗
𝑇𝜶𝑖)𝒉𝑗𝒙𝑗

𝑇�̂�1𝑖𝑗

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄

)

𝑛

𝑖=1

 , 

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜸𝑖𝜕𝜸𝑖
𝑇

= −∑�̂�𝑖𝑗 (
1

2

(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)

2
𝒉𝑗𝒉𝑗

𝑇

𝑒𝒉𝑗
𝑇𝜸𝑖

(�̂�𝑖𝑗 + (𝒘𝑗
𝑇𝜶𝑖)

2
) −

1

4

(𝒘𝑗
𝑇𝜶𝑖)(𝑦𝑗 − 𝒙𝑗

𝑇𝜷𝑖)𝒉𝑗𝒉𝑗
𝑇�̂�1𝑖𝑗

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄

)

𝑛

𝑖=1

 , 

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜸𝑖𝜕𝜶𝑖
𝑇

= −∑�̂�𝑖𝑗 (
1

2

(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)𝒉𝑗𝒘𝑗

𝑇�̂�1𝑖𝑗

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄

−
(𝒘𝑗

𝑇𝜶𝑖)(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)

2
𝒉𝑗𝒘𝑗

𝑇

𝑒𝒉𝑗
𝑇𝜸𝑖

)

𝑛

𝑖=1

 , 

𝜕2𝑄(𝜽𝑖; �̂�𝑖)

𝜕𝜶𝑖𝜕𝜷𝑖
𝑇 = −∑�̂�𝑖𝑗 (

𝒘𝑗𝒙𝑗
𝑇�̂�1𝑖𝑗

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄

− 2
(𝒘𝑗

𝑇𝜶𝑖)(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)𝒘𝑗𝒙𝑗

𝑇

𝑒𝒉𝑗
𝑇𝜸𝑖

)

𝑛

𝑖=1

 , 

𝜕2𝑄(𝜽; �̂�𝑖)

𝜕𝜶𝑖𝜕𝜸𝑖
𝑇
= −∑�̂�𝑖𝑗 (

1

2

(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)𝒘𝑗𝒉𝑗

𝑇�̂�1𝑖𝑗

𝑒𝒉𝑗
𝑇𝜸𝑖 2⁄

−
(𝒘𝑗

𝑇𝜶𝑖)(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)

2
𝒘𝑗𝒉𝑗

𝑇

𝑒𝒉𝑗
𝑇𝜸𝑖

)

𝑛

𝑖=1

 , 

𝜕2𝑄(𝜽; �̂�𝑖)

𝜕𝜶𝑖𝜕𝜶𝑖
𝑇
= −∑�̂�𝑖𝑗 (

(𝑦𝑗 − 𝒙𝑗
𝑇𝜷𝑖)

2
𝒘𝑗𝒘𝑗

𝑇

𝑒𝒉𝑗
𝑇𝜸𝑖

)

𝑛

𝑖=1

 . 

 

 

A2. Proof of theorems: 

 

In this part, we summarize the necessary conditions for the consistency and asymptotic distribution of 

�̂�. See Kiefer (1978), Peters and Walker (1978), Redner and Walker (1984), McLachlan and Peel 

(2000), Cheng and Liu (2001) and Tan et al. (2007) for details about the consistency and asymptotic 

properties of mixture models. We also give the proofs of Theorems 1 and 2. We follow the consistency 

procedure for the mixture models given in Cheng and Liu (2001) which they extended the classic 

consistency inferences given in Wald (1949). Also, we follow Tan et al. (2007) for the proof of Theorem 

2. 

Let 𝐿1 and 𝐵+ be the spaces of integrable functions on the interval (−∞,∞) as given below: 

 

𝐿1 = {𝑓: 𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑎𝑏𝑙𝑒, ‖𝑓‖ = ∫ |𝑓|
∞

−∞

< ∞} , 

𝐵+ = {𝑓: 𝑓 ∈ 𝐿1, ‖𝑓‖ = 1, 𝑓 ≥ 0}. 
 

Let 𝑓1, 𝑓2 ∈ 𝐿
1. Then, 𝑓1 = 𝑓2 in 𝐿1 if and only if 𝑓1(𝑥) = 𝑓2(𝑥) almost everywhere in 𝑅1. Let A1 and 

A2 be two closed sets in 𝑅𝑚. A metric between the two sets can be defined as: 

 

𝑑𝑖𝑠(A1, A2) = 𝑑𝑖𝑠(A2, A1) = inf
𝑦∈A2

inf
𝑥∈A1

|𝑥 − 𝑦|. 

 

We note that if A1 and A2 are singleton sets (i.e. single points), this metric turns the Euclidian distance.  
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Property 1. i) 𝑑𝑖𝑠(A1, A2) = 0 if and only if there are sequences of points, {𝑥𝑛} in A1 and {𝑦𝑛} in A2, 

such that |𝑥𝑛 − 𝑦𝑛| → 0 as 𝑛 → ∞. 

ii) 𝑑𝑖𝑠(𝑥𝑛, A) → 0 if and only if there is a sequence {𝑦𝑛} of points in 𝐴, such that |𝑥𝑛 − 𝑦𝑛| → 0 as 𝑛 →
∞.  

Note that Property 1 will be used in the proof of Theorem 1.  

 

Conditions: 

1. The sample is independent and identically distributed from (𝒙, 𝒉,𝒘, 𝑦). The density 𝑓(𝑦|𝚯) given in 

(8) is identifiable. See Definition 1 for identifiability.  

2. There is a neighborhood Ω of 𝚯0 that for all 𝚯 ∈ Ω and for almost all 𝑦 ∈ ℝ𝑛. Then, the partial 

derivatives ∂f(𝑦|𝚯) ∂𝚯⁄
𝑖
, ∂2f(𝑦|𝚯) ∂𝚯⁄

𝑖
∂𝚯𝑗 and ∂3f(𝑦|𝚯) ∂𝚯⁄

𝑖
∂𝚯𝑗 ∂𝚯𝑘 exist and satisfy 

  

|
𝜕𝑓(𝑦|𝚯)

𝜕𝚯𝑖
| ≤ 𝑓𝑖(𝑦), |

𝜕2𝑓(𝑦|𝚯)

𝜕𝚯𝑖𝜕𝚯𝑗
| ≤ 𝑓𝑖𝑗(𝑦), |

𝜕3𝑓(𝑦|𝚯)

𝜕𝚯𝑖𝜕𝚯𝑗𝜕𝚯𝑘
| ≤ 𝑓𝑖𝑗𝑘(𝑦), 

 

where 𝑓𝑖 and 𝑓𝑖𝑗 are integrable and 𝑓𝑖𝑗𝑘 satisfies 

 

∫ 𝑓𝑖𝑗𝑘(𝑦)
ℝ𝑛

𝑓(𝑦|𝚯0)𝑑𝑦 < ∞.  

 

3. The Fisher information matrix  

 

𝐼(𝚯) = ∫
𝜕𝑓(𝑦|𝚯)

𝜕𝚯𝑖𝑅𝑛

𝜕𝑓(𝑦|𝚯)

𝜕𝚯𝑗
𝑓(𝑦|𝚯)𝑑𝑦 

 

is well defined and positive definite at 𝚯0. 

 

4. 𝑓𝑖(. , 𝜽𝑖) ∈ 𝐵
+, for any 𝜽𝑖 ∈ 𝜣, 1 ≤ 𝑖 ≤ 𝑘,  and the support of 𝑓𝑖 is independent of 𝜃𝑖. Furthermore, 

𝑓𝑖(. , 𝜽𝑖
1) = 𝑓𝑖(. , 𝜽𝑖

2) in 𝐵+ only if 𝜽𝑖
1 = 𝜽𝑖

2. 

5. Let 1 ≤ 𝑖 ≤ 𝑘, and 𝜂𝑖(𝑦, 𝜽𝑖) = max{𝑓𝑖(𝑦, 𝜽𝑖), 1}. For any 𝜽𝑖 ∈ 𝚯𝑖,  
 

𝐸𝜽𝑖
0[log{𝑓𝑖(𝑦, 𝜽𝑖)}] > −∞, 

 

on the support of 𝑓𝑖, and 

 

𝐸𝜽𝑖
0[log{𝜂𝑖(𝑦, 𝜽𝑖)}] < ∞. 

 

Also,  

 

𝐸𝜽𝑖
0 [log { sup

𝜽𝑖∈Θ𝑖,|𝜽𝑖−𝜽𝑖
0|≤𝜌

𝜂𝑖(𝑦, 𝜽𝑖)}] < ∞, 

 

for 𝜌 > 0 sufficiently small, and  

 

𝐸𝜽𝑖
0 [log { sup

𝜽𝑖∈Θ𝑖,|𝜽𝑖|>𝑟>0
𝜂𝑖(𝑦, 𝜽𝑖)}] < ∞, 

 

for 𝑟 sufficiently large. 

6. Let 1 ≤ 𝑖 ≤ 𝑘. For almost every fixed 𝑥 ∈ 𝑅, lim
|𝜽𝑖|→∞

𝜂𝑖(𝑦, 𝜽𝑖) = 0. If 𝜽𝑖 , 𝜽𝑖
0 ∈ 𝚯𝑖, 
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lim
𝜽𝑖→𝜽𝑖

0
𝜂𝑖(𝑦, 𝜽𝑖) = 𝜂(𝑦, 𝜽𝑖

0), 

 

For any 𝜂 ∈ 𝐿1, let 𝐸(𝜋0,𝜽0){𝜂(𝑦)} = ∫ 𝜂(𝑦)
∞

−∞
𝑓(𝑦|𝜋0, 𝜽0)𝑑𝑦. The following lemmas will be used in 

the proof of Theorem 1.  

 

Lemma 1. If Condition 5 holds with 𝑘 = 1 for any (𝜋, 𝜽) ∈ Ω, 𝜽1 changed by (𝜋, 𝜽), 𝜽1
0 by (𝜋0, 𝜽0) 

and 𝑓1(. , 𝜽1) by 𝑓(. |𝜋, 𝜽). 
 

Lemma 2 . Let 𝐶 = {𝑓 ∈ 𝐿1: ‖𝑓‖ < 1, 𝑓 > 0}. For any 𝑓 ∈ 𝐶 and 𝜂 ∈ 𝐵+ 

 

∫ log(𝑓 𝜂⁄ )𝜂𝑑𝑦 < 0
∞

−∞

. 

 

Note that for the proofs of these lemmas see Cheng and Liu (2001). 

 

Proof of Theorem 1: 

It is assumed that Ω is compact whole of the paper. Then, it should be shown that  

 

𝑃 { lim
𝑛→∞

sup
(𝜋,𝜽)∈𝑆

(
𝑓(𝑦1|𝜋, 𝜽)𝑓(𝑦2|𝜋, 𝜽)…𝑓(𝑦𝑛|𝜋, 𝜽)

𝑓(𝑦1|𝜋
0, 𝜽0)𝑓(𝑦2|𝜋

0, 𝜽0)… 𝑓(𝑦𝑛|𝜋
0, 𝜽0)

) = 0} = 1, (31) 

 

where 𝑆 is any closed subset of Ω such that 𝑑𝑖𝑠{𝑆, Ω(𝜋0, 𝜽0)} > 0. We have to approve for each point 
(𝜋∗, 𝜽∗) ∈ 𝑆, there is always a neighborhood called 𝑁(𝜋∗, 𝜽∗) of the point that 

 

𝐸(𝜋0,𝜽0) log ( sup
(𝜋,𝜽)∈𝑁(𝜋∗,𝜽∗)

𝑓(𝑦|𝜋, 𝜽)) < 𝐸(𝜋0,𝜽0) log(𝑓(𝑦|𝜋
0, 𝜽0)). (32) 

 

We suppose that (𝜋∗, 𝜽∗) is a finite point. Then, let {𝑁𝑖(𝜋
∗, 𝜽∗), 𝑖 = 1,2, … } be a sequence of decreasing 

neighborhoods of the point (𝜋∗, 𝜽∗) that ∩𝑖≥1 𝑁𝑖(𝜋
∗, 𝜽∗) = (𝜋∗, 𝜽∗). It can be assumed that 

𝐸(𝜋0,𝚯0) log ( sup
𝜋,𝜽∈𝑁𝑖(𝜋

∗,𝜽∗)
𝑓(𝑦|𝜋, 𝜽)) exists for 𝑖 = 1,2, … according to the Condition (5). Then, using 

the conditions, we get 

 

lim
𝑖→∞

log ( sup
(𝜋,𝜽)∈𝑁𝑖(𝜋

∗,𝜽∗)
𝑓(𝑦|𝜋, 𝜽)) = log(𝑓(𝑦|𝜋∗, 𝜽∗)). 

 

We also have  

 

lim
𝑛→∞

𝐸(𝜋0,𝜽0) log ( sup
(𝜋,𝜽)∈𝑁𝑖(𝜋

∗,𝜽∗)
𝑓(𝑦|𝜋, 𝜽)) ≥ 𝐸(𝜋0,𝜽0) log(𝑓(𝑦|𝜋

∗, 𝜽∗)) . (33) 

 

It is clear that the sequence {𝐸(𝜋0,𝜽0) log ( sup
(𝜋,𝜽)∈𝑁𝑖(𝜋

∗,𝜽∗)
𝑓(𝑦|𝜋, 𝜽))} is decreasing that 

 

log ( sup
(𝜋,𝜽)∈𝑁1(𝜋

∗,𝜽∗)
𝑓(𝑦|𝜋, 𝜽)) − log ( sup

(𝜋,𝜽)∈𝑁𝑖(𝜋
∗,𝜽∗)

𝑓(𝑦|𝜋, 𝜽)) ≥ 0. 

 

Then, via the Fatou’s lemma and (33), we obtain that 
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lim
𝑖→∞

𝐸(𝜋0,𝜽0) log ( sup
(𝜋,𝜽)∈𝑁𝑖(𝜋

∗,𝜽∗)
𝑓(𝑦|𝜋, 𝜽)) = 𝐸(𝜋0,𝜽0) log(𝑓(𝑦|𝜋

∗, 𝜽∗)) < 𝐸(𝜋0,𝜽0) log(𝑓(𝑦|𝜋
0, 𝜽0)) . 

 

The inequality (32) results if (𝜋∗, 𝜽∗) is a finite point.  

If (𝜋∗, 𝜽∗) is an infinite point, we have to prove that (32) is true when 𝑁(𝜋∗, 𝜽∗) degenerates into the 

single point (𝜋∗, 𝜽∗). It is known that the form of 𝑓(𝑦|𝜋∗, 𝜽∗) is: 

 

𝑓(𝑦|𝜋∗, 𝜽∗) =∑𝜋𝑚𝑖
∗

𝑔

𝑖=1

𝑓𝑚𝑖
(𝑦; 𝜽𝑚𝑖

∗ ), 

 

where 0 ≤ 𝑔 ≤ 𝑘 − 1 and 𝜋𝑚𝑖
∗ 𝑓𝑚𝑖

(𝑦; 𝜽𝑚𝑖
∗ ) > 0. If ∑ 𝜋𝑚𝑖

∗𝑔
𝑖=1 < 1, and according to Lemma 2, we get 

 

𝐸(𝜋0,𝜽0) log(𝑓(𝑦|𝜋
∗, 𝜽∗)) < 𝐸(𝜋0,𝜽0) log(𝑓(𝑦|𝜋

0, 𝜽0)). 

 

On the other hand, we have to verify that 𝑓(𝑦|𝜋∗, 𝜽∗) ≠ 𝑓(𝑦|𝜋0, 𝜽0). First we suppose that this is not 

true. Thus, (𝜋∗, 𝜽∗) ∈ Ω(𝜋0, 𝜽0), and the limiting point of the sequence {(𝜋1
𝑠 , … , 𝜋𝑘

𝑠)(𝜽1
𝑠 , … , 𝜽𝑘

𝑠 )} ∈
Ω(𝜋0, 𝜽0), where 

 

𝜋𝑗
𝑠 = 𝜋𝑗

∗ if 𝑗 = 𝑚𝑖 ,  otherwise 𝜋𝑗
𝑠 = 0, 

𝜽𝑗
𝑠 = 𝜽𝑗

∗ if 𝑗 = 𝑚𝑖 ,  otherwise 𝜽𝑗
𝑠 → ∞. 

 

It is not possible to have 𝑑𝑖𝑠{𝑆, Ω(𝜋0, 𝜽0)} > 0. Then, let 𝑁𝑖(𝜋
∗, 𝜽∗) be a sequence of decreasing 

neighborhoods of the point (𝜋∗, 𝜽∗) that ∩𝑖 𝑁𝑖(𝜋
∗, 𝜽∗) = (𝜋∗, 𝜽∗). As per Lemma 1 and Fatou’s Lemma,  

 

lim
𝑖→∞

𝐸(𝜋0,𝜽0) log ( sup
(𝜋,𝜽)∈𝑁𝑖(𝜋

∗,𝜽∗)
𝑓(𝑦|𝜋, 𝜽)) ≤ 𝐸(𝜋0,𝜽0) log(𝑓(𝑦|𝜋

∗, 𝜽∗)) 

< 𝐸(𝜋0,𝜽0) log(𝑓(𝑦|𝜋
0, 𝜽0)). 

 

Thus, the inequality (32) was proved. According to the Heine-Borel finite open cover theorem and the 

same way given in the proof of Theorem 1 in Wald (1949), the equation (31) results.  

Let (�̅�𝑛, �̅�𝑛) be a function of the observations 𝑦1, … , 𝑦𝑛 that 

 

𝑓(𝑦1|�̅�𝑛, �̅�𝑛)𝑓(𝑦2|�̅�𝑛, �̅�𝑛)… 𝑓(𝑦𝑛|�̅�𝑛, �̅�𝑛)

𝑓(𝑦1|𝜋
0, 𝜽0)𝑓(𝑦2|𝜋

0, 𝜽0)…𝑓(𝑦𝑛|𝜋
0, 𝜽0)

≥ 𝑐 > 0 

 

for all 𝑛 and for all 𝑦1, … , 𝑦𝑛. Now, we show that 𝑑𝑖𝑠{(𝜋𝑛, 𝜃𝑛), Ω(𝜋
0, 𝜽0)} → 0 w.p. 1 by the help of 

proof of Theorem 2 given in Wald (1949). To prove this, we have to demonstrate that all limit points 

(�̅�, �̅�) of the sequence {�̅�𝑛, �̅�𝑛} hold 𝑑𝑖𝑠{(�̅�, �̅�), Ω(𝜋0, 𝜽0)} ≤ 𝜖 for any 𝜖 > 0, and this probability 

equals to 1. Otherwise, there is a limit point (�̅�, �̅�) of the sequence {�̅�𝑛, �̅�𝑛} that 

𝑑𝑖𝑠{(�̅�, �̅�), Ω(𝜋0, 𝜽0)} > 𝜖 states  

 

sup
𝑑𝑖𝑠{(�̅�,�̅�),Ω(𝜋0,𝜽0)}>𝜖

𝑓(𝑦1|𝜋, 𝜽)𝑓(𝑦2|𝜋, 𝜽)…𝑓(𝑦𝑛|𝜋, 𝜽) ≥ 𝑓(𝑦1|�̅�𝑛, �̅�𝑛)𝑓(𝑦2|�̅�𝑛, �̅�𝑛)…𝑓(𝑦𝑛|�̅�𝑛, �̅�𝑛) 

 

for infinitely many 𝑛. However, 

 
sup

𝑑𝑖𝑠{(�̅�,�̅�),Ω(𝜋0,𝜽0)}>𝜖
𝑓(𝑦1|𝜋, 𝜽)𝑓(𝑦2|𝜋, 𝜽)…𝑓(𝑦𝑛|𝜋, 𝜽)

𝑓(𝑦1|𝜋
0, 𝜽0)𝑓(𝑦2|𝜋

0, 𝜽0)…𝑓(𝑦𝑛|𝜋
0, 𝜽0)

≥ 𝑐 > 0 
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for infinitely many 𝑛. Since the probability of this event is 0 according to the equation (31), now we can 

say that all limit points (�̅�, �̅�) of the sequence {�̅�𝑛, �̅�𝑛} hold 𝑑𝑖𝑠{(�̅�, �̅�), Ω(𝜋0, 𝜽0)} ≤ 𝜖. Therefore, if 

the maximum likelihood estimator �̂�𝑛 = (�̂�𝑛, �̂�𝑛) exists, it is an consistent estimator of 𝚯 = (𝜋, 𝜽).  

 

Proof of Theorem 2:  

It was shown that �̂�𝑛 is consistent; therefore, this estimator will be an interior point of Ω if 𝑛 is large. 

Then, we have to prove that 

 

𝜕ℓ(�̂�𝑛)

𝜕𝚯
= 0. 

 

It can be written by the help of Taylor’s expansion such that 

 

0 =
𝜕ℓ(�̂�𝑛)

𝜕𝚯
=
𝜕ℓ(𝚯0)

𝜕𝚯
+
𝜕2ℓ(𝚯0)

𝜕𝚯𝜕𝚯𝑇
(�̂�𝑛 − 𝚯

0) +
1

2
(�̂�𝑛 − 𝚯

0)
𝑇 𝜕3ℓ(𝚯∗𝑖)

𝜕𝚯3
(�̂�𝑛 − 𝚯

0), 

 

where 
𝜕3ℓ(𝚯∗𝑖)

𝜕𝚯3
 is a three dimensional array with its 𝑖𝑡ℎ (𝑖 = 1, … ,3𝑔 − 1) component whose (𝑗, 𝑘)𝑡ℎ 

element will be 

 

𝜕3ℓ(𝚯∗𝑖)

𝜕𝚯𝑖𝜕𝚯𝑗𝜕𝚯𝑘
 , 𝑗, 𝑘 = 1,… ,3𝑔 − 1, 

 

where 𝚯∗𝑖 is a mixing distribution between �̂�𝑛 and 𝚯0. Then, using the expansion given above, we have  

 

1

2
[(�̂�𝑛 − 𝚯

0)
𝑇 𝜕3ℓ(𝚯∗𝑖)

𝜕𝚯3
+
𝜕2ℓ(𝚯0)

𝜕𝚯𝜕𝚯𝑇
] (�̂�𝑛 − 𝚯

0) = −
𝜕ℓ(𝚯0)

𝜕𝚯
 . 

 

where 
1

𝑛

𝜕3ℓ(𝚯∗𝑖)

𝜕𝚯3
= 𝑂(1), and 

1

𝑛

𝜕2ℓ(𝚯0)

𝜕𝚯𝜕𝚯𝑇
= 𝐼(𝚯0) + 𝑜(1). Then, we get 

 

[(�̂�𝑛 − 𝚯
0)
𝑇 𝜕3ℓ(𝚯∗𝑖)

𝜕𝚯3
+
𝜕2ℓ(𝚯0)

𝜕𝚯𝜕𝚯𝑇
] (�̂�𝑛 − 𝚯

0) = 𝑛{𝐼(𝚯0) + 𝑜𝑝(1)}(�̂�𝑛 − 𝚯
0). 

 

After rearranging the equation we obtain 

 

√𝑛(�̂�𝑛 − 𝚯
0) = −{𝐼(𝚯0)−1 + 𝑜(1)} (

1

√𝑛

𝜕ℓ(𝚯0)

𝜕𝚯
). 

 

Via the central limit theorem, it can be written as: 

 

1

√𝑛

𝜕ℓ(𝚯0)

𝜕𝚯
→ 𝑁(0, 𝐼(𝚯0)) 

 

and, we have the desired result as follow: 

  

√𝑛(�̂�𝑛 − 𝚯
0)

𝑑
→𝑁(0, 𝐼(𝚯0)−1). 
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