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1. Introduction

The concept of consistent ordering is central to the
theory of the successive over-relaxation (SOR) iterative

method for the solution of the set of equations

Ax = b . (D
If the matrix A is consistently ordered and satisfies
certain convergence properties then the theoretical
determination of the accelerating parameter, which
maximizes the asymptotic rate of convergence of the SOR

method, is possible.

The earliest definition of consistent ordering was
due to Young (1954), who defined a consistently ordered
matrix in terms of an ordering vector related to the
disposition of zero and non-zero elements in the matrix.
Young considered only point iterative methods and his
original definition and the related theory applied only
to a certain class of matrices, matrices with property
(A). More general definitions of consistent ordering
have been given by Arms, Gates and Zondek (1956),
Forsythe and Wasow (1960), Kjellberg (1961), Varga (1962),
Broyden (1964, 1968), and Verner and Bernal (1968). In
particular Arms, Gates and Zondek (1956), generalised

Young's definitions to block partitioned matrices and



extended the theory to block SOR, whilst Varga (1962),
with his definition of consistent ordering, extended the
theory still further to the much wider class of p-cyclic
matrices. Matrices with property (A) are in fact 2-cyclic
and Varga’s definition includes the definitions of Young
and of Arms, Gates and Zondek as special cases.

A well-known property of a p-cyclic matrix is that
it can always be transformed, by a permutation similarity
transformation, into a consistently ordered form known as
a "normal form". In fact this property is often used to
define a p-cyclic matrix. Although graph theory may be
used to establish the cyclicity of a matrix (Varga (1962),
p. 100) and to check, in certain cases, whether a given
p-cyclic matrix A is consistently ordered, the graph
theoretic approach does not conveniently yield the permu-
tation matrix P which transforms A into a normal and
therefore consistently ordered form PAP" « The purpose of
the present paper is to develop techniques for determining
P.

In section 2 we consider in detail a definition of a
p-cyclic matrix suggested by Varga((1962) , p.103, ex.1) .
This definition is a generalization of Young's property (A)
and introduces the concept of an ordering vector to the
p-cyclic (p > 2 ) case. By generalizing the techniques
indicated by young (1954), we show that the use of

ordering vectors leads to simple and systematic methods



for establishing the cyclicity of a matrix and for
determining P.
The more recent definitions of consistent ordering,
due to Broyden (1964, 1968) and Verner and Bernal (1968),
include Varga’s definition a3 a special case but exclude
direct reference to p-cyclicity. Many of the matrices
encountered in these generalizations are however p-cyclic,
and the significance of ordering vectors in these cases
is discussed in section 3. In particular we establish
formulae to generate ordering vectors for matrices which
have the consistently ordered block form considered by
Broyden (1964, p.280) and Verner and Bernal (1968, p.219).
We note that most of the results in the present
paper may also be deduced from Young’s recent generaliza-
tions of property (A). (Young (1971), Chap.13). However,
our approach highlights the usefulness of ordering
vectors in determining consistently ordered forms of a

p-cyclic matrix in a relatively simple and direct manner.



Ordering vectors and p-cyclic matrices.

We assume throughout that A = (ajj) 1s an nxn matrix and that
T partitions A into submatrices Ajj, 1,j = 1,2 . ...N, so that the
diagonal blocks Ajj. are square and non-singular.

Definition 1, (Varga (1962), p.103, Ex.1)

The matrix A is p-cyclic, relative to the partitioning m if
there exist p disjoint nonempty subsets S, m = 0,1, ....,p-1 of

W, the set of the first N positive integers, such that
p-1

U -

m=0

and if Aij # 0 then either i =j, orif 1LJS,, then j €S__,
subscripts taken modulo p. (i.e., S_1 = Sp—l)'

This definition generalises the definition given by
Young (1954), p.93t for property (A) matrices and provides a

simple method for establishing the cyclicity of a matrix. Thus,

given a matrix A we set 1[/T,, and attempt to construct sets
Th> Tm-1> Tm-2> Tm-3, ... having the properties of the sets in
Definition 1. If A is p-cyclic this process generates m-p+1

disjoint sets, T, T v Ty pyy Which may be identified

m> "m- 1
by the relation
Sk—(m-p+l) = T,k = (m-p+1)(1)m,
as the sets Sp, Si, ...,Sp_1 of Definition 1. If A is not
cyclic at some stage the sets T; cease to be disjoint and the

process is terminated.



Example 1.  For the matrix

f' (4] 0 A
244 844 85
a.21 9.22 523 0 (¢]
. - 1° © ®33  "a 35
4 = »
0 a'k2 o] S,M 0
L Q a52 4] (o) 355 J

partitioned so that its diagonal sub ma trice 3 are 1x1, we obtain

the following distribution of elements in the sets.

T,., =5 T.i =35, Tw = S,
Row 1 ] =4 i =1
5
Row 4 ] =2 i =4
Row 2 1 =2 j =1
3
Row 3 ] =4 1= 3
5
Row 5 j =2 i=5

As the sets SO, Sy and Sy are disjoint and
SoUSiUS, = (1,2,3,4,5) =W,

the matrix A is 3-cyclic.



The theorem which follows is a generalisation of theorem 2.1
of Young (1954), P.97, and introduces the concept of the
ordering vector in the study of p - cyclic matrices.
Theorem 1, (See Varga (1962) ,p. 103,Ex. 2).
The matrix A is p-cyclic, relative to the partitioning =, if
and only if there exists a row vector y = {yl,yz,.,yN} with
integral components such that if A;; # 0 and 1 # j then

Y 7Y is equal to -1 or p - 1 and for each integer r,

0<r<p-1 there exists at least one y; = r(modp) .

Proof: Assume that A is p - cyclic and, referring to
Definition 1, let ¥ =k if i€ St If Ay#0andi # ]
then either,

(1) 1S, and j €Sy, _; (i#0), in which case
Y, = k, y; = k—1 and hence i 7Y =—1, or

(ii) 1eSy and jeS in which case y; = 0, y.=p-1

p-D
and hence yj -y = p-1.

Conversely assume that_y exists and let Sis k=0,1,2,,.,p—1,
denote respectively sets of integers i such that i [JSy. if
y; = k(modp). If i~y = —1 it follows that y, =k(modp),
y;=(k-1)(modp), i.e., 1€8y, je S, 1, k=12 ,., p-1L
and if yj -, =p-—1 it follows that Y, = 0 and yj = p—1,
i.e., i €8 and je Sy_1 . Since, for every integer r,
0 <r <p-1 y has at least one component equal to r(modp),

the existence of the sets S, S, ... s Spois of Definition 1



is established and the proof of the theorem is complete.

A vector y with the above properties is said to be an
ordering vector for the matrix A. Clearly the actual numerical
value of a component of y is not important. Only the difference
between any two components is significant and thus, if an
ordering vector has M distinct components these will always be
taken to be the integers 0,1,2,..., M-1.

An ordering vector for a p-cyclic matrix is the vector

y={yi}i, . where

y, =kifi0S,,
and Sk,k: 0,1, ..., p —1, are the sets of definition 1. In

fact, p ordering vectors y™ = {yl(n)}lle ,n=1,2, ..., p,

each with p distinct components may be obtained by setting
y"=(k+n-1)(modp)ifies,.

In general, for a given p-cyclic matrix there also exist

ordering vectors with M > p distinct components. Thus, for the

3 - cyclic matrix A, of Ex.1, four ordering vectors are :
y =1{2,02,1,1}, y* ={0,1,0,2,2,}, y*? =1{1,2,1,0,0},
each with three distinct components and also the vector

y® =032} ,

which has four distinct components. An ordering vector

y = {yi} with M > p distinct components can always be transformed

into a vector y'={y',} with p distinct components by setting

y; =yi (modp) .



For example, by setting
) 4
yi =yi® (mod3)

the vector y(4) , considered above, is transformed into the vector

Y =1{01022 =y®?,

Conversely, a vector y = { y; ] with p distinct components can
sometimes be transformed into a vector with more than p distinct

components by replacing some of the y; by y; + p. For example if
the component y§2) =0, of ﬁ,, is replaced by 3 the vector y(4)

is obtained. If however, the components yg3)= 1 and y5(3)= 0,

of X(S) , are replaced respectively by 4 and 3 the resulting vector

{1,2,4,0,3} is not an ordering vector.

We define a normal form of a p-cyclic matrix as follows.
Definition 2. The p-oyclic matrix A, partitioned by =, is

said to be in a normal form if there exists an ordering vector

y= {y;\, such that if Ajj # 0 and j > i then ¥~ Y, =p-1

and if Aij;#_ 0 and i > j then Y~V = 1.

It is clear that the ordering vector of definition 2 has its
components arranged in ascending order of magnitude. Thus, the

p-cyclic matrix A is in a normal form if a row vector y= {Yi}ilil ,
with its components arranged in ascending order of magnitude, is

an ordering vector for A.

Let A be a p-cyclic matrix which has a vector y = {yi}li\I:1



as an ordering vector and let P denote an nxn permutation matrix
which permutes the entries of A by blocks. The following theorem
shows that A can always be transformed into a normal form PAP".
Theorem 2. The matrix PAP", obtained by arranging the rows and
columns of blocks of A with increasing y; is in a normal form.
Proof : The vector y’, obtained by arranging the components of y
in ascending order of magnitude, is an ordering vector for PAP"
If Pi; denotes the nxn permutation matrix such that Pj; A
is A with its i and j rows of blocks interchanged, then the matrix P
of Theorem 2 say be determined as follows :
P is set equal to the unit matrix I and when the components y; and
yi of y are interchanged P is premultiplied by Pj;. The final
matrix P obtained in this way is the required permutation matrix.
Clearly, P is not unique and the number of normal forms PAP" ,
associated with an ordering vector y, equals the number of ways
that y can be transformed into y’.
Example 2. Consider the 3-oyolic matrix A; , of Example 1.
A permutation matrix P, which gives a normal form PA,P" associated

with the ordering vector y ) = {2,0,2,1 ,1 ] is determined as follows:

yV=142,02,1,1} . P=1 ,
(2,02,1,1} —> {0,2,2,1,1} : P=Pp, ,
{0,2,2,1,11 > {0,1,2,1,2} : P=Py P,
{0,1,2,1,2} — {0,1,1,2,2} y : P =P34 Pys Py

Le. P=D34 P25 Pi2-
The theorem which follows establishes the block structure for

a normal form of a p-cyclic matrix.



Theorem 3. The p-cyclic matrix A, partitioned by =, is in

a normal form of a p-cyclic matrix if and only if it has the

block form

D, Byp
I By ot
B
32 Dy .
Y ) BM"?"’;';M }'{ > p’
’ =
[ ] [
@& ®
Byt | Dy

where all the Dy, are square block diagonal matrices, whose

diagonal blocks are submatrices Ajj. of A.

Proof: Assume that A is in a normal form of a p-cyclic

matrix and that the vector y = {yl}g),with M > p distinct

components arranged in ascending order of magnitude, is an
ordering vector for A« Assume further that n; of the components

of y are equal toi-1,1=1,2,...,M, and let

r=12,. M,

so that

y; = k-1 for i:(Lk_1+1)(l)Lk.

~~

10.



11.

The vector y is such that if Aj; # 0 and j > 1,
Yi—yr =p-landif Ay [0, 0 andi>jy —y; =1 It

follows that In the nx row blocks of A, lying between the row
blocks Ly_; and Ly +1, apart from the diagonal entries
Aji, 1= (Ly_; +1) (1) Ly, the only other non-null entries Ajj

occur in the positions defined by

= D O, . 5
J=(L + 1) DLy

and
1 = _ 1) (1
' (L D (L k<M-p + 2. (4)
J=(Lysp2 + D) MLy

Non-null off-diagonal entries occur, for k = 1 in positions
defined by (4) only, and for k > M - p+ 2 in positions defined
by (3) only. This establishes the fact that A has the block
form (2). We have also shown that each D; is a block diagonal

matrix consisting of nj rows and columns of blocks.

Conversely, suppose that A has the block form (2) where
each D, is a block diagonal matrix consisting of n. rows and
columns of blocks. To show that A is p-cyclic and in a normal
form it is sufficient to exhibit an appropriate ordering vector.

The vector

£0,0 ....,0,1,1, ....,1,2,2,..,2,3 ,....... LM -1,



12.

with n; of its components equal to 1 - 1 is such a vector

and this completes the proof of the theorem.

Assume that the matrix A is p-cyclic and has y as an

ordering vector. The proof of Theorem 3 shows that the

block structure of a normal form PAPT, associated with vy,

is completely determined by the number of distinct components

in y. Thus, PAP' has the block form (2) where,

(i) M is equal to the number of distinct components

(i1) each D;j is a block diagonal matrix consisting of

n; rows and columns of blocks, where n; is the number of

components in y equal toi- 1. (We point out that although

the D;’s are block diagonal they are not necessarily true

diagonal matrices).

Example 3. Consider the 3-cyclio matrix A; of
Example 1. The matrices (5), (6), (7) and (8), which

follow, are normal forms of A; associated respectively with
the ordering vectors X(l) ={2,0,2,1,1}, X(Z) =1{0,1,0,2,2},
y® = {1,2,1,0,0} and y¥ {0,1,3,2,2}. (In what follows the

subscripts i, j of an element a;;. always refer to the

position of this element in the original matrix Aj.)



P34 P2s Pio Aj Pio Pos Pay

P23 A Py

P14 Pas Aj P14 Pas

8o 0 0 a25 &y
352 9.55 OM 0 . ‘0
85 0 20 0 0
° 35 f3 |85 O
0 8, 5 &), 0 &4
: -
8, 0 0 8, 8, 5.1
0 833 0 2y, 035.
*21 "2 | *22 % 0
0 0 8,0 | &, 0
0 o 'a52 Y 85
.
8, 0 0 ( 3#2.
0 ‘5.557 0 0 5.52
bno % | 30 00
24, 845 0 39| 0
0 0 a23 9.21 9.22.'-

13.

r (9

(6)

(7)



rl
R O a15 a,”+ 4]
a21 322 0 0 8.25
P3s A Pss - - ®)
3
0 a52 a55 0 0
0 abz ¢ au_ 0
0
0 535 a’}h &}3
- 4

Appropriate ordering vectors for the matrices (5), (6), (7) and (8)

are respectively the vectors,

yO" = 0,1,1,2,21 , y@'= 10,0,1,2,2} . y®' = {0,0,1,1,2

and y@' = {0,1,2,2,3} .

From Theorems 2 and 3 it follows that a definition of a p-cyclic

matrix, equivalent to Definition 1 is :

Definition 3. The nxn matrix A is p-cyclic, relative to the

partitioning mw, if there exists an nxn permutation matrix P, which

permutes the entries of A by blocks, such that PAP" has the block form (2).

When p = 2, the above definition is the one given by Forsythe
and Wasow (1960) for 2- cyclic (property(A)) matrices.
For any p-cyclic matrix A , an appropriate ordering vector

is the vector y = {y;}

14.



where,

y; =i if i08;, i=0L2,..p—1,

is
and S; are the sets of Definition 1 . A normal form PAPT

associated with the above vector has the block form,

32 3

SN

SIS SN

B D
n,p=l Tp

(i,e*, form (2) with M = p), and thus another definition of

a p-cyclic matrix is ;

Definition 4. The matrix A is p-cyclic, relative to

the partitioning m, if there exists a permutation matrix P,
which permutes the entries of A by blocks, such that PAP'
has the block form (9).

This is how Varga (1962) defines a p-cyclic matrix.
The block form (9) is usually referred to as the normal form
of a p-cyclic matrix. However, our definition of a normal

form does not impose the restriction M=p on (2) and is thus

15.



16.

more get

We note that it is always possible to transform a p-cyclic

matrix A into the block form

k]
Dy 1 By
Dy o3
B
pl . . , M = p.(10)
Bot1,2 * :
. Dy Byt u
Sh—
By, Mopart ' Dy
-~

where, as before, the D;’s are block diagonal matrices. Thus,

if a vector y with M > p distinct components is an ordering

vector for A, the above form is obtained by arranging the rows
and columns of blocks of A with decreasing y;. Whenp =2,
forms (2) and (10) are identical and give the well known

tri-diagonal representation of a properly (A) matrix.



3. More general consistently ordered block forms.

Square matrices which have the block form,

! B
1 { 1,q+1

D2 .B2,q+2 i

H B
r+1,1 .

Br+ 2,2

M,M=-r ¥

-

where all the D; are non-singular block diagonal matrices,
are consistently ordered by the definitions of Broyden
(1964, 1968) and Verner and Bernal (1968, see Theorem III, p. 218) .

It is known that such matrices are also (q + r)/d-cyclic, where

d=(q,1)
is the highest common factor of q and r. We now show that

their cyclicity can easily be established by constructing

appropriate ordering vectors.

Let q*= q/d, r* = r/d and examine separately the

17.
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following two cases, in which we assume without loss of

generality that M > q + .
Case (i): (r,q* + r*) =1, 1.e. r and q*+r* relatively prime.

Consider the vector y = {yi}l;/il where ,

v, 087D (mod(q* + 1) |
r

1=12,....,M.

(12)

Since (r,q* + r* ) =1 there always exists an integral

solution x to the congruence

rx 11 — 1) (mod(q* + %)),
(see for ex. Birkhoff and MacLane (1962), p24), and the
vector y has M components of which q*+ r* are distinct and

equal to 0,1,..... , q* + r* -1. Further, it can

easily be shown that,

q*+r*—1 061 (mod(q* + r*)) DBCrl (mod(q* + r*)).

Since a matrix in the form (11) is such that if B;; L0

then j - 1 is equal to q or-r, it follows that the vector vy,

as defined by (12), is such that if B;; [J0 then y; —y;i

is equal to -1 or q* + r * - 1. Thus, with p=q* + r*, y

satisfies the conditions of Theorem 1, showing that the

matrix is (q* + r*) - cyclic.

Case (ii) : (r,gq* +r*) # 1 .
Express r* as,
r* = kd; .
where (k,d) =1 and (d; ,d) # 1, or d; = 1 , and consider the

18.



vector y = {yi}%\gl , whose components are generated

as follows:

Q Déi;—l) (mod(q +r1))

B, DI%I (mod (q +1+1)) , (13)

i Jﬁg—i(mod(q*ﬂ*)) ,
1

Since (k,d) =1 and q + r = (q* + r*)d it follows that
(k,q + r) =1 and that the vector a = {a;} }\ﬁl has

M components of which q + r are distinct and equal to

0,1,....,q+r-1. Further, since

q+r-dd OBdd 0Bdyd (mod(q + 1)) [f% (mod(q + 1)),

the components of o are such that if Bij# 0 and
i # jthen aj— ajisequalto-d;dorq+r—d d.
Also, since (d,q+r+1)=1landq+r—-d;d=(q*+r*-d;) d,

the components of the vector B = {Bi}il\il , are integers, in

the range 0 to q + r, such that if B;; [10 and i #j then

Bj — Bi is equal to —d; or g* + r* - d;. Finally, since

(di, g* +r *-d;) =1, the last formula in (13) is
identical to formula (12) with r, q* and (i - 1) replaced
respectively by d;, q*+ r* - d; and B;. It follows that

the vector y has M components, of which q* + r* are

distinct and equal to 0,1, ..., ¢* + r*- 1, such that

if B;j B0 and i # j then yj — y;i is equal to -1 or

19.



20.
q* + r*-1. This shows that the matrix is (q*+ r*) -cyclic.
We note that the block forms (2) and (10) are
respectively the particular casesq=q=p -1, r=r*=1
and q=q*=1,r=r* =p-1 of (11). When p = M formula
(12) generates the ordering vectors [0,1,....p -2, p— 1}
and [p -1, p -2, ...., 1,0} for (2) and (10) respectively.
We also note that when d; =1, i.e, when (r* ,d) =1, the

vector B = {Bi}?ﬁl , generated by the second formula in

(13), satisfies all the properties of Theorem 1. Thus, in

this special case, B is an appropriate ordering vector for

(11). However, the values of the components ; range from

0 to q + r and the third formula "normalises" the B;'s

so that they take the values 0,1, ..., q* + r*-1.

Example 4. We illustrate the use of formulae (12)
and (13) by considering the following three cases of
form (11).

Case (i):q=5,r=3, M =10. (8-cyclic).

By formula (12),

y. DB(I;—I (mod8) [ B(i —1)mod8).

Thus, an ordering vector in this case is,
y = {0,3,6,1,4,7,2,5,0,3}.
Case (i1). q=10,r- 6, M =16. (8 - cyclic).

In thiscased=2,q*=5r*=k=3 and d;.= 1.



By formula (13),

0 B(i_Tl)(mod 16) [1B1 (i — 1)(mod 16),
i=1,2, ...... , 15, 16,
i. e.
o= 4{0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5} ,
B; jﬁ% (mod 17) (®a; (mod 17),
i=1,2, ..., 15,16,
i. e.
p =10,14,3,9,6,12,1,15,4,10,7,13,2,16,5,11}
and
yi UB; (mod8) ,
i=1,2, ...... ,15, 16,
i.e.
y=1{0,6,3,1,6,4,1,7,4,2,7,5,2,0,5,3} .
Case (iii). q= 30, r=24, M= 54.(9-cyclic)
In this case d=6,q* =35, r*=4,k=1and d, = 4.
By formula (13),
o; 0 (i-1)(mod 54),
i=1,2, ..., 53,54,
i.e.

ap = 0, Oy = 1,...,(124 = 23,(125 = 24,(126 = 25,...,0.31 = 30,(132 = 31,...0.54 = 53,

B; Dé‘é—i (mod 55) [1B60; (mod 55),

1=1,2,...,53, 54,

21.



22.
1.€.

By =0, B, = 46,.,0,, =13, Brs =4,0,6 =50,.... p5,,= 5 py, = 51, ..., fs, = 18and
yi DB’%(mod 9) [IB7B; (mod 9)

i=1,2, ..., 53,54,
i.e.
y, = 0, y, = 7Y = L ¥y = Ly =8,.5y5,= 8y =06, ., ¥y5y = 0.
A p-cyelic matrix can always be transformed, by a
permutation similarity transformation, into form (11).
For the case r = 1 this is established by Theorems 2 and 3.
We now show that this property is more general and holds
for any r which is relatively primetoq=p —r .
Assume that the matrix A is p-cyclic, relative to the

partitioning m let y = {yi}ilil be an ordering vector for

A and define the vector,

5= (5,1
5= (il "
o; [fy; (modp), 1=1,2,.., N,

where p = q +r and (q,r) = 1. If Aj;. /B0 and i I j then
yi —yi 1s equalto-1orp -1, Since,
r(p-1) C-r (modp) [ q (modp),
it follows that the vector & is such that if A;; 7180,
i [, then §; - §; is equal to q or - r. By proving

a result similar to Theorem 3 it is easy to show that the



matriic PAP" | obtained by arranging the rows and columns
of blocks of A with increasing 9;., has the form (11).

The permutation matrix P may of course be determined by
the technique of Example 2.

Example 5. The matrix,

a, ., o 0 0 &, 5 0

%21 ®p © ° ° 226
A& _ 0 Bz 1.11.‘3:5 0 v} 0

0 a )3 8, 0 0

0 0 0 5'51_,. a55 0

0 0 c (8] a.65 ace

partitioned so that its diagonal submatrices are 1x1,
is 5-cyclic and in a normal form An ordering vector for
this matrix is the vector
y =(0,1,2,3,4.5) ,
and with r = 2 formula (12) generates the vector,

5 =(0,2,4,1,3,0) .

A permutation matrix P, such that PA JPTis A4, with its

rows and columns of blocks arranged with ascending 9;, is

P = P43 Pp3 Ps.

23.



The transformed matrix is then

o a,u‘_ 0 4} ah-.?’
526 0 9,22 0 0
(] 351'_ 0 3.55 0

and has the form (11) withr=2 and q.=5 -2 = 3.

From the above it is clear that the vectord, as defined

by (14), may be thought of as a generalized ordering vector
and that block form (11) is a generalized normal form of a
p-cyclic matrix. It has however been proved by Nichols and
Fox (1969) that the optimum convergence rate for the SOR method
is obtained when the matrix has the form (11 ) with r = 1 and
q = p-1. (i.e., when the matrix has the form (2)). Hence, in
practice one would transform a p-cyclic matrix into form (2)
and this could be done by using an ordering vector y satisfying
the conditions of Theorem 1, In particular if A has the form
(11) and r [0 1 then formula (12) or (13) immediately gives

the required y.

24.
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