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ABSTRACT

A method is given for solving two dimensional
harmonic mixed boundary value problems in simply-connected
polygonal domains with re-entrant boundaries. The method
consists of a numerical conformal mapping together with
three other conformal transformations. The numerical
mapping transforms the original domain onto the unit circle,
which in turn is mapped onto a rectangle by means of two
bilinear and one Schwarz-Christoffel transformations. The

transformed problem in the rectangle is solved by inspection.



1. Introduction
Let R € E” be a simply-connected domain with boundary
S, where S=Us:,i=1234,, and S,,, being adjacent
subarcs of S, and consider the two dimensional mixed boundary

value problem in which the function u(x,y) satisfies

A[U-(X/ Y) :| = O/ (XI Y) € RI
ux,y) = ug, (x,¥) € Sy,
ou(x, y)
- < = OI ’ S 14
ov By €5, (1)
u(x, Y) = Uy, (%, Y) € Sy
du y) - _ % 7) € 5.
ov i

In (1) A is the Laplacian operator and 9 is the derivative

in the direction of the outward normal to the boundary.

A conformal transformation method (CTM) has recently
been proposed [6] for the numerical solution of problems
of type (I). In particular, this method has been developed
to deal with problems containing boundary singularities for
which standard numerical techniques, such as finite differences
and finite elements, fail to produce accurate solutions.

The CTM consists of three conformal transformations whose
combined effect is to map G = R U S in the w = x+iy plane onto

the rectangle

G'={(¢n :0<L¢EL1, 0<SngHy, (2)



in the w' = & + in plane and thus to transform the

original problem in G into the problem,

Alv(&,n)] =0, 0<é<l, O<mp<H,

ov(E,0) v H) 0. 0<&<l
on on 3)

v(0,7) =uo, v(l,p)= w, 02 nH

in G’. The solution of (3) is

v n) = (u; — uo)[i + u—"], 4)

u; — u,
and hence if P = (x,y) € G is mapped into P'=(g,n)eG',
it follows that u(P) = v(P') and so from (4) the solution
of (1) at P is known immediately if the real co-ordinate
of the point P' is found.

If A =w,B=w,c=w,;and D= wy are respectively

the four end points of the subarcs S;, S,, S3, and S4 (with

AB = S, BC = S,etc), then the three transformations of

the CTM are:
(i) The transformation,
z=T(w) , )
where T(w) is a function of w, analytic in R, so that
(5) is a conformal mapping of G € w-plane onto

G =the upper half z - plane.



(i1) The bilinear transformation,
£ = T(w,) — T(w,) _Jz - T(w,) , 6)
T(w,) — T(wy) z — T(w,)

mapping G,yez-plane onto G,=the upper half t-plane.

(i11)The Schwarz-Christoffel transformation,
1
1 “1,,n
w'= sn” (t2,m), 7
K(m) (t*,m) (7)

where an denotes the Jacobian elliptic sine and K(m)
is the complete elliptic integral of the first kind with

modulus,
1

= (T(w4) — T(w2)] T(wy) — T(wy) 2
T(w,) — T(w,) ) | T(w;) — T(w,)

The effect of (7) is to map G, € t- plane onto the rectangle

1

G' given by (2) with H =K {(@ - m?2}/K( m) , in the
w'= § + in plane.

The form of the mapping function T(w) clearly
depends on the geometry of the domain R. However, once
transformation (5) is constructed, the solution of (1)
is determined from (6), (7) and (4) by a standard procedure
which is described with full computational details in [6].

In [5] and [6] the CTM is applied to problems

defined in rectangular domains which contain boundary



singularities. In these oases for bounded domains the
mapping function T(w) is a Jacobian elliptic sine and
for a semi-infinite strip it is a trigonometric cosine.
In the present paper we apply the CTM to problems of
type (1) defined in non-rectangular polygonal regions
containing re-entrant corners at which boundary singularities
occur. We consider in particular L-shaped domains and a
domain with two re-entrant corners. For these regions the
mapping function T(w) is not known in a closed form and
thus the transformation (5) is performed numerically,
The numerical mapping technique used is due to Symm [3],
and is described briefly in Section 2 below. The CTM
solutions to the problems considered in Section 3 are in
good agreement with those recently obtained by Symm [4],
who uses an integral equation method modified to deal with
the singularities at the re-entrant corners.

Results that we have obtained by the CTM, for
problems of the type considered in the present paper,
have been used by Bell and Crank [1 ] in a study of
diffusion in a continuum containing non-permeable rectangular
prisms.

Numerical Conformal Mapping Technique.

Following Symm [3], we consider the simply-connected
domain R of (1). We take O to be the origin of co-ordinates
in the w-plane and assume, without loss of generality, that

O € R. Itis well-known that the function F(w) which maps



G = RUS conformally onto the unit disc [{[<1 in

the {- plane, so that the point O Ge R is transformed into
the centre { = (0,0) of the disc, is given uniquely, apart

from an arbitrary rotation, by

{ = F(W) = exp{log W + g(x, y) + ih(x, y)}

In (8) the functions g(x,y) aad h(x,y) are real valued
conjugate harmonic in R, and g(x,y) satisfies the boundary

value problem

Alg(x,y)]=0, (x,y) € R,

2

ax, y) = —3log (x* + y°), (%, y) € S.

When the harmonic function g(x,y) 1is represented as a

single-layer logarithmic potential

g(x,y) :I10g|w—w|c(w)|dm, w=(x,y)€G,
S

where o(w) is a certain source density on S, its conjugate

h(x,y) is given by

h(x,y) = [arg(w — ©) 6 (®) |d0), w=(xy)eqG
S

and the boundary condition of (9) becomes

j310g|w - 0)|c(0)) |dco| = —%log(x2 + y2 ), w=(x,y)eS.

®)

)

(10)

(11)

(12)



Equation (12) is a Fredholm integral equation of the
first kind in o(w) and its solution always exists, subject
only to a possible rescaling of R; see Jaswon [2]. The
method of Symm consists of solving (12) numerically for
o(m). The functions g(x,y) and h(x,y) are then calculated,
for any w € G, from approximations to the relations (10) and
(11) and finally an approximation to the mapping function
F(w) is determined, for any w € G, from (8).

The numerical solution of (12) is obtained as follows:
the boundary S is divided into the N intervals I[;,I5 ....,

In, not necessarily of the same length, and o(®) is

approximated by o(w) = o, where o, is constant for any point

o€l el,2,... ,N. Equation (12) is thus replaced by

i{[,, log| w- ||a’a)|}0'r =—Llog(x* +y%), w=(x,y) €S,
r=1

and is then applied to N "nodal" points w = (x3 ,y3 ) € Is,
s=1,2,...., N. For the polygonal regions considered in
the present paper w is taken to be the mid-point of Ig .

There results the system of N linear equations

N

Z {[I log|WS - 03||do)|}5r = —%log(xg + yg), s =1,2....Y,
r=1 E
for the N unknowns o,,5,,....,0y,. Denoting the end points

of I; by wr_% and wr+% , the coefficients of . in (13) are

(13)



approximated by,

h
agr =?r{log|wS W 1 | +4log|w, —w, |+log|w, W1 \},s;ﬁr,
2 2

and

a, = 2hr{10gwr— Wy —1} =2h,{logh, —1},
2

where 2h, represents the length of I. . Thus, the system of

equations actually solved is,
Ac=r,

where A = [a is the NxN matrix whose coefficients are

sr]
. N N
given by (14) and (15), and QZ{GS}:p gz{rs}_

N dimensional column vectors with T :—%log(x +ys)

Equations (16) are solved by Gaussian elimination and then
approximations g(x,y) and h(x, y) to g(x,y) and h(x,y)
respectively, are computed by replacing (10) and (11) by

g(x,y)z iﬁr(w)csr,w = (X,y)e R,

r=1

E(X, y) = i OLr(w)Gr,w = (X, y) e G,

r=1

For any point w = (x,y) € S the function g(x,y) is of course
computed from the boundary condition of (9). In (17) and

(18) £.(w) and a,(w) denote respectively suitable approxima-

tions to the integrals J;r 10g|w— a)| |da)| and L arg(w — (o)|d(o| .

(14)

(15)

(16)

(17)

(18)



For the regions considered in the present paper we

take in particular,

Er(w):%{logw—wr_l | +4log|w—w, |+10g|w—wr+l |},W€R,
2 2

hr
?{arg(w—wr_%)+4arg(w—wr)+arg(w—wr+%)} ,weG-1,

o (W)= hr{arg@v—wr_%)+arg®v—wr+%)}, W=Ww,,

2h argv—w,), w-w -
2

Once §(x, y) and h(x, y) are computed the approximation F(w)

to the mapping function F(w) is obtained by replacing (8) by

~

Fw) = exp{log w + g(x, y) + ih(x, y)}.

Finally, the bilinear transformation

z—il+€
= [

which maps the disc |[{ <1 onto the upper half z-plane, is

used to approximate the mapping function T(w) of (5) by,
f = 11101
1 — F(w)

We point out that for straight line intervals I, there

exist formulae for the exact evaluation of the integrals

i log|w—-o]ldo], w €G.

(19)

(20)



However, most of the error in Fw) arises from the
replacement of the continuous function o(w) by the

step function o,r =1,2,...,N and thus the use of the

exact formulae, in place of the approximations (14),(15)
and (19), does not appreciably improve the accuracy of
the numerical mapping. The approximations are comoution-
ally more convenient and for this reason are used in the
present paper. Furthermore, formulae of type (14),(15)
and (19) are also suitable for curved intervals of S and
their use increases the flexibility of our procedure.

An attractive feature of Symm's mapping technique
is that the intervals 1., need not be of the same length.
It is thus possible to refine the mesh locally, by
increasing the density of the intervals, in any subarc S
of S where inaccuracies in the numerical mapping are
expected (e.g. in the neighbourhood of a re-entrant corner).
However, from our experiments it appears that a uniform
refinement of the mesh over the whole boundary S gives
better overall accuracy than a local refinement over S,
when the same number of intervals is used. For the regions
considered here, we take h, = h for all r We do however
recognise the need for further investigation on the
possibility of increasing the accuracy of the mapping by

other distributions of the intervals on S.



Numerical Results

In this Section the CTM is applied to problems of
type (1) defined in various L-shaped regions and also to
a problem defined in an octagonal region containing two
re-entrant corners. However, in order that the accuracy
of the CTM may be investigated when the transformation (5)
is performed numerically, the method is first applied to a
problem defined in a rectangular domain.
In all the problems considered, the numerical conformal
mapping is performed by dividing the boundary S of G into
N straight line intervals of equal length. When G is
symmetric about an axis then, by assuming the function
o'(m) to have the same symmetry and distributing the intervals
appropriately about the axis, the number of equations (16)

to be solved is reduced from N to N/2.

10.



Problem 1, Consider the harmonic mixed boundary

value problem illustrated in Figure 1 for which G is the

rectangle {(x, y) : |x| <1 |y| <0. 5}. The problem is

of type (1) with w; = A = (1,0.5), W, =B = (-1,0.5),

W3 =C=(-1,-0.5) and W4 =D = (0, -0.5).

B u:O A
y
duz o
.a_Q::O e
ax 0 x ox
Aua=z=0
C us=1 D ﬂ_o :
ay
w -plane.
Figure 1.

The "analytic" CTM solution of this problem has
been obtained in [5] by taking the origin of coordinates
in the w-plane to be the point D and using the exact

mapping function
T(w)=sn(Kw, 1\/51 K=K(1/\/E),

in the transformation (5). In the present paper the CTM.

solution of this problem is again obtained but the

11.



transformation (5) is now performed numerically

using the technique of Section 2 with N=120. The
symmetry of G about the y-axis is used in the numerical
conformal mapping and thus the number of equations (16)
actually solved is 60. The "numerical” CTM results are
given, on a square mash of length 0.2, in Table 1 and are

compared with the "analytic" CTM results of [5].

12.
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14.

Problem 2 The harmonic mixed boundary value
problem illustrated in Figure 2 is of type (1 ) with
W =AW, =B W, =EandW, = F.
gu = 0
E a;_r D
_ gu _ o
Au = O A%
u =1
2a _,
y+ c oy B
u=0
0 > G
A
F 2u =
y
w — plane

Figure 2.

CTM solutions to this problem are obtained for the following



15.

geometries of the L-shaped domain G.

(i) AB=BC=CD =DE =0.5, EF =FA = 1.

(ii) AB=0.6, BC=CD =0.4, DE=0.6, EF=FA=1.

(iii) AB = BC = 0.4, CD = DE = 0.6, EF = FA = 1.

(iv) AB=0.8, BC=CD=0.2, DE=0.3, EF =1, FA =0.5.

In (i) and (ii1) the numerical conformal mapping is

performed with N = 100. Since, for both these geometries,
G is symmetric about the line CF the actual number of
equations (16) solved is 50. In (iii) and (iv) the numerical
conformal mapping is performed with N = 100 and N = 75
respectively. The CTM solutions for the oases (i), (ii), (iii)
and (iv) are given, on a square mesh of length 0.1, in
Tables 2, 3, 4 and 5 respectively. In Tables 2 and 5 the
solutions, for the cases (i) and (iv), obtained by Symm [4]

are included for comparison.



TABIE 2

A each mesh noint the

minbers represents

l

Inteeral Fon, Method, [4]

1,0000 0,969 09425 0,902 0,905% 0,905
0,999 (0,970 10,8227 10,9205 10,9%0 10,9009
1,000 {0,986 10,9398 10,9163 [0,9007 [0,8953
1,000 [0,9687 [0,9400 10,9166 [0,9012 10,8957
1,000 10,947 10,9319 [0.9004 [0.88% {0,877
10000 [0,0048 (0,932 10,908 10,880 10,8793
1,0000 10,958, (0,918 10,889 {0,881 {0,482
71,0000 0,985 |0,9191 (0,883 |0.8587 0,887
1,0000 (0,952 10,9013 0,858 (0,816 10,798
1,0000 10,9503 [0,9015 0,855 0,815, 10,7961
1,0000 10,9411 [0.8816 (0,207 10,7560 10,6663 0.8 02580 02311 01170 0,000
1,000 [0,9412 [0.8818 (08210 (0,755 [0.6667 [0.4860 10,3579 10,230 1177 [0, 0000
1,0000 (0,992 (0,863 07897 {07066 (06026 0,478 {0,355 {0,2355 But17L 10,0000
1,000 09325 (08633 [0.7898 [0, 7066 [0.A010 [0ATRD [0eih9 10,2350 P17 [0,0000
1000|0925 10,487 {07672 (0,67 [0.T60 [0uBls 0,90 10,2326 P 1162 10,0000
10000 0,925, (08487 [0.767 (0,072 10.TE [0dfi2 [02486 [0.2323 BL116T [0.0000
L0000 10,020, {08388 10758 [0.6605 10506 0,45 10,28 102l 119 J0u0ono
LM (000 (0287 01507 |00b07 [0 0L [0ii% 1022005 10281 Paitld (0,000
WMWDMWOMMOMWUMMOﬁ%OMWOﬁWO&ﬂPMWOMM
10000 {00175 10,8331 J0769 (06515 (0,551 ALTL JOe085 02280 [0. 1138 (0000
1,0000 10,9163 (0,315 [07426 106486 [0,5500 Puias2 00376 .21 g0 [o.0000
1001 0.9%6 OB 0TI GRAT 0,595 0,85 03371 0021 0,113 0,0000

b= 3



THBIE 3

1,0000

0,994

0.9017

0,858

0,8238

08009

09084

0,891

08545

0.8179

07933

1,000

0951

0,8919

0,826

0,8002

0. 7691

1,000

0,9400

0,810

0,824

0,7712

07265

1,0000

0,930

0,8680

08020

0,668

0.7928

0,7844

0,759

007049

05726

0,38%

0,29

0,0000

1,0000

0,9279

08550

0,780,

0,7017

0. 5045

0,375

0273

0,1228

0,000

1,000

09224

0,837

0,762

0,6761

04757

0.35%

0,202

0,1201

0,0000

1,0000

0.9181

0.8350

0.7690

0,658

0,579

0,347

0230 |

(0, 0000

1,0000

0,915

0,889

0,401

0647

0,598

0.l

0,392

0209

01145

0, 0000

1,0000

0,9137

0,826

0,7350

06412

0,543

0,408

0033/#)#

0,227

0,0000

1,0000

0,913

0,827

07334

0,691

0, 5412

04389

3330

0,232

0,0000

L



TABIE /

1.0000

0,969

0.9419

0.9173

0,8980

0,8858

1,0000

0,969

0,9401

0.9146

10,3945

0.8817

1./000

0,965

0.9347

09064,

0,8838

0.8690

1,0000

0,9621

0,9258

0.8927

0,8653

08465

1,0000

0,9%3

0, 9137

0.8735

0.8381

0.8117

1,0000

0.9495

0,8993

0,8499

0,8024

0.7608

1,0000

0.9424

0,8842

0.8246

0,7623

0.69.6

0.,8815

0.8772

0.86%9

0,807

0.7400

0, 5983

0,4054

0,2634

0,1315

1,0000

0,935

0,8705

0,8017

10,7268

0,6400

0, 5290

0.2953

0,612

0,1300

1,000

06,9309

0,8598

047845

0.7021

0.6088

0,5012

0,3811

0,2553

0.1279

1,000

0,9280

0,8533

07742

0.6832

0,599

0.4871

0,3719

0,2506

0,1260

1.0000

(.9270

0,9515

0.7706

0,6840

0. 5380

04823

0.3691

0,2481

0. 1257

00000

0,0000

0,£000

0.0000

0,700

81T



TABLE 5

At each mesh point- the

numbers renresents

e

Iintegral Eon, Method {4]

1,0000

0,905

0,824

0.99%

1,0000

0,9005

0.8917

0,823

008007

0.7910

0,760,

1,0000

1,0000

0,8906

08667

0.7982

0,735

0.75%

0,5%6%

0,432

1,0000

1,0000

0,8660

08403

0.7321

0,702

0,57

0,4681

0,249

0,239

1,0000

1,000

0,8401

0,8222

0,6700

0,635

0,4692

0.4397

0.2360

0,2208

1,0000

1,0000

0.8222

0,819

06365

0,6193

04360

0,4191

0,212

0,216

1,0000

1,0000

0.8119

0,8064

0,6193

0.6103

0.4192

004103

0.2116

0,2063

1,000

1,0000

0,806,

0,8035

0,6103

0,6057

0.4103

0,4057

0,2063

0,2035

1,0000

1,0000

0,8034

0,802

0,605

0.6035

0,40%

0,403

0,203

0,2021

1,000

1,0000

0,801

0,8020

0,6031

0,602

0,403

0,4023

0,2019

0,201

1,0000

1,0000

0.8012

0,8022

0,6020

0,602

0,4020

0,402

0,2013

0,2001

1,0000

0,8009

0,6016

0u4017

0,201

0,000
-0,0002

0,0000
0,000

0,0000
0,0000

0,6000
0,0000

0,000
0,000

0,0000
0,0000

(2000
0,0000

0,000
0,0000

0,0000
0,0009

“6T



20.

Problem 3 . Consider the harmonic mixed boundary
value problem illustrated in Figure 3. The domain G, an
octagon with dimensions AB = BC = EF= FG = 0.8,

GH = HA = CD = DE = 0.2, contains two re-entrant corners

at D and H. The problem is of type (1) with w; = A,

woy =B, w3 = E and wq = F.

c B
gu =0
.a..."-":O ay
ox G
B D
du.g
d
4 y
u=290
X
0
u=1
du = 0 au
ay-
H A
u =9 9 -9
oy ax
F G
w ~ plane,

Figure 3.



The numerical conformal mapping is performed with
N =100 and, by using the symmetry of G about the line
BF, the number of equations (16) actually solved is 50.
The CTM results are given, on a square mesh of length 0.1,

in Table 6 and are compared with the results of Symm [4].

21.



0.9993

0. 5655

0. 5462

0.4969

0.4295

0.3521 0.2685

0. 1803

0,0901

0. 5651

0. 5870

0.5452

0.5615

0.4963

0, 5052

0.4294,

0.4343

0.3521 [0.2686

0.3551 10.2704

0. 1810

0. 1820

0.0908

0.0911

0.5858

0.6940

0. 5606

0.6030

0. 5047

0. 5266

0.4341

0.4471

0.3551 [0.2706

0.3635 10.2761

0, 1823

0. 1858

0.0916

0.0934

1.0015

1.0000

0.6935

0.7511

0.6025

0.6439

0. 5263

0. 5520

0.4469

0.4641

0.363/ |0.2762

0.3756 {0.2849

0. 1859

0. 1917

0.0935

0.0964,

1. 0000

1.0000

0.7513

0.7746

0.6438

0.6708

0.5518

0. 5746

0.4640

0.4821

0.3755 |0.2849

0.3900 [0.2962

0. 1917

0. 1997

0.096/,

0. 1006

1. 0000

1, 0000

0.7746

0.7896

0.6708

0.6895

0.5745

0.5935

0.4821

0. 5000

0,3900 [0.2962

0.4065 10.3105

0. 1997

0.2104

0. 1006

0.1063

1.0000

1. 0000

0.789%

0.8003

0.6895

0,7038

0.5935

0. 5000

0.5179

0.4065 10.3105

0.4254 10.3292

0.2104

0.2254

0.1063

0. 1143

1.0000

1, 0000

0.8003

0.8083

0.7038

0.7151

0.5179

0.535%9

0.4255 [0.3292

0.4480 10.3561

0.2254

0.2489

0.1143

0. 1249

1,0000

1, 0000

0.8083

0.8142

0.7151

0.7239

0.6365

0. 5360

0. 5529

0.4482 10.3562

0.4734 10,3970

0.2487

0.3055

0. 1247

0.1327

1.0000

1, 0000

0.8141

0.8180

0.7238

0.7296

0.6366

0.6449

0. 5531

0. 5657

0.4737 [0.3975

0.4948 10,4385

1. 0000

1. 0000

0.8177

0.8197

0.7294

0.7315

0.6449

0.6479

0.5659

0. 5705

0.4953 10.4394

0.5031 P.4538

1.0000

0.8190

At each mesh point the

0.7314

0.6479

TABLE 6

0.5706

numbers represent:

0. 5037 0.4548

-

0.3065

0.4130
0.4142

0.4345
0.4349

22,

0. 0000
0. 0000

0. 0000
0,0000

0. 0000
0.C000

0. 0000
0. 0000

0, 0000
0.0000

0. 0000
0.0000

0. 0000
0. C000

0. 0000
0. 0000

0. 0000

0.1318 -0.0015

IIntegral Eqn. Method, [4]



Discussion

The results in [5] and [6] suggest strongly that the
"analytic" CTM solution of Problem 1 represents the true
solution of the problem to the number of figures quoted.
Thus, the good agreement between the two sets of results
displayed in Table 1 indicates that the "numerical" CTM
solution of Problem 1 is extremely accurate.

We recognise that, since the numerical mapping of an
irregular domain is less accurate than that of a rectangle,
the comparison of the results in Table 1 can only give some
indication of the accuracy of the "numerical" CTM for
Problems 2 and 3. However, the CTM results in Tables 2,5
and 6 are in good agreement with those obtained by Symm [4],
where an integral equation method modified to deal with
the singularities at the re-entrant corners is used.

In the present paper the "numerical”" CTM has been
applied to problems defined in polygonal domains. However,
it is clear that the method, with some simple modifications
in the numerical mapping technique, may be used for the
solution of problems of type (1) defined in general two
dimensional simply-connected domains.

In [5] and [6] the CTM, with the exact mapping function
used in (5) has been shown to be extremely efficient for
problems defined in rectangular domains. On the strength
of the present results we feel that the method deserves
strong consideration as a practical technique for solving

problems of type (1 ) even when, due to the geometry of

23.



the domain, the transformation (5) has to be performed

numerically.

The authors wish to thank Dr. G. T. Symm for many helpful

discussions and comments.
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