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The  diffusion  behaviour  of  a  composite  sheet  is 

studied   using  numerical  techniques.  The  effective 

diffusion  coefficient  is  obtained  for  particles  of 

a  dispersed  phase  arranged  on  a  regular lattice in 

a  continuum.   Typical   concentration   and  flow   patterns 

are  presented.  The  effects  of  the  shape,  size  and 

position  of  the  dispersed  phase  are  investigated 

and   the  acceptability   of   existing  approximate  models 

is   assessed. 

 



1. 

COMPOSITE MEDIA 

1.1    Introduction 

Many materials in common use are heterogeneous in structure. 

Their properties are not only of technical importance but also, 

they present interesting theoretical problems. 

Barrer (1968) distinguishes three different types of 

heterogeneous media. This paper is concerned with the first 

type, namely, dispersed phase or phases in a continuum. 

Holliday (1963) presents a number of examples of systems made 

up of one continuous polymer phase and one dispersed phase. To 

determine some overall physical property of the system, such as 

thermal or electrical conductivity, or permeability, detailed 

knowledge of the different phases is required. For a composite 

medium of this kind, Holliday (1963) specifies the following 

parameters 

(i)   The geometry and distribution of the dispersed 
phase. 

(ii)  The composition of the dispersed phase. 

(iii) The composition of the continuum. 

Laplace's equation 

V2u = 0 (1) 

describes many physical processes and, in particular, heat 

conduction and diffusion. The scalar function, u(x,y,z), 

represents some quantative aspect of the phenomenon under 

investigation, for example, temperature, potential or concentration 



of a diffusing substance. Usually, soma property associated 

with the material is of interest and in general, this can be 

defined in terms of u and its derivatives, such as conductivity, 

permeability, etc. Subsequently, the mathematical solution of 

equation (1) for a particular situation may be interpreted in 

a variety of ways. Conversely, researches into different 

physical properties of composites can be unified. 

This paper presents a study in depth of a fundamental problem, 

using numerical techniques, and discusses the validity of 

approximate models proposed by recent authors. 

In the review that follows the references are chosen to 

represent the main different mathematical approaches. The 

nomenclature, as far as possible, relates to the diffusion process. 

1.2    Review 

In 1873, Maxwell solved the problem of sparsely distributed 

spheres suspended in a continuum and obtained an effective 

diffusion coefficient for the composite medium.  His work was 

extended by Burger (1915). Eucken (1932) and Fricke (1931) to 

deal with the suspension of both ellipsoids and spheroids. 

Fricke compared his results with existing experimental data for 

the conductivity of blood and reported excellent agreement. 

On the other hand, Hamilton and Grosser (1962) correlated 

Fricke's expression for the effective diffusion coefficient with 

experimental data relating to aluminium or balsa spheres suspended 

in rubber with only limited success. They suggest a modification 

to Fricke's formulation based on the evidence of their empirical 

2. 
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studies. 

Expressing the solution of equation (1) in terms of 

Legendre functions. Rayleigh (1892) improved Maxwell's model. 

In turn, this work was developed further by Runge (1925) and 

de Vries (1952), 

Barrer (1968) quotes several references and formulae and 

a table from de Vries comparing calculated results for spheres 

by several authors. These are seen to be consistent when the 

ratio of the diffusion coefficient of the dispersed phase to 

that of the continuum is small. Barrer suggests that the formulae 

may account reasonably well for plastics containing impermeable 

filler particles, though the question of non-spherical shapes is 

not resolved. 

More recently, the idea that neighbouring parts of a composite 

may be considered to be in series or parallel has been explored. 

Jefferson et al.(l958) employed this concept to derive an expression 

for the effective diffusion coefficient of an array of uniform 

spheres arranged on a regular lattice. Tsao (1961) and, later, 

Cheng and Vachon (1969) went much further, extending the 

series-parallel technique to composites in which the dispersed 

phase consists of randomly distributed particles of irregular 

size and shape.  Although, in reality, the underlying assumptions 

of the series-parallel formulation are not strictly time, the 

attraction of the technique lies in its simplicity and applicability. 

When the volume of the dispersed phase to that of the continuum 

is small, the above authors (Jefferson et al., Tsao, and Cheng 

and Vachon) report favourable agreement between their formulations 



and experimental, data. 

Fidelle and Kirk (1971) have attempted to assess the 

degree of approximation involved in the series-parallel formulae. 

They studied Jefferson's model for spheres obtaining numerical 

solutions of equation (1) by a finite difference method. In their 

numerical procedure, the spherical surface between the two phases 

was not reproduced exactly but a best approximation with a 

rectangular grid was used. They reduced the grid size till no 

difference in the effective diffusion coefficient of the composite 

was observed for successively finer grids to the accuracy of working. 

From a comparison of their results with those of previous authors, 

they conclude that the series-parallel formulation of Cheng and 

Vaohon is the best predictor. 

A majority of the work discussed so far as been concerned 

with dilute suspensions of spherical-shaped particles and, as 

indicated, many adequate formulae exist. The important feature 

of the series-parallel technique is its adaptability to non- 

spherical shapes. In the present study it is convenient to compare 

the results of such approximate models with the numerical and 

experimental data obtained. From these comparisons it will be 

possible to assess the limitations of the series-parallel technique 

regarding the non-sphericity of the dispersed particles and the 

fractional volume occupied by them. 

Keller (1963), on the other hand, was concerned with closely 

packed spheres and produced an expression for the asymptotic 

behaviour of the effective diffusion coefficient of the composite 

as the distance between adjacent spheres decreased. Keller and 

4. 
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Sachs (l964) investigated the validity of this expression by 

obtaining finite difference solutions to the associated 

problem of a composite whose dispersed phase consists of 

closely packed cylinders. Moreover, they present results for 

the entire range of cylinder radii which allows suitable 

comparisons to be made with those computed by the present authors. 

1.3   Composites in Series and Parallel 

Crank(1956) gives the following expression for a composite  

composed of n sheets of thicknesses ℓ1, ℓ2 ,... ℓn  and  diffusion 

coefficients  D1, D2, ... , Dn,  see  figure  1(a), placed  in  series, 
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where D is the effective diffusion coefficient for the 

composite and L denotes the total width. 

Similarly, when the composite consists of n sheets placed 

in parallel, as in figure 1 (b),the effective diffusion coefficient, 

D, of the system is given by 

ℓ1D1 + ℓ2D2 + •••+ ℓnDn = LD . (3) 

The equations (2) and (3) are analogous to the formulae 

for electrical resistances in series and parallel, respectively. 

The idea exploited by Tsao, and Cheng and Vachon, is to 

split a composite into thin strips of Δℓ, as shown in figure 1(c), 

calculate an effective diffusion coefficient for each strip 

using (3) and, finally, by summing the strips in series obtain an 

effective diffusion coefficient for the composite as a whole. Thus, 
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this technique assumes the validity of equations (2) and (3), 

which, in turn, implies unidirectional flow. If the flow is 

not unidirectional then both these relationships are approximate. 

By applying the above procedure to the problems considered in 

the following sections the acceptability of such an assumption 

is assessed. 

MODEL PROBLEM 

2.1     Idealised Model 

Numerical solutions of Laplace's equation are obtained in 

a region pertaining to identical rectangular blocks dispersed on 

a regular lattice in a continuum. An extreme case is considered 

in which the blocks are impenetrable by the diffusing substance, 

that is, they have aero diffusion coefficient. In particular, 

the effects of size and arrangement of the blocks are studied. 

2.2    Symmetry and Basic Patterns 

Figure 2 shows a two-dimensional array of identical 

rectangular blocks. A typical unit of the repeating pattern 

lies between the lines AA' and BB', Symmetry about the line XX' 

leads us to consider the region in figure 3, where, for the 

moment, only two blocks are included with sizes and spacing 

as indicated. 

A steady-state problem in diffusion through this region 

is defined by the following system of equations in which u 

denotes the concentration of the diffusing substance and axes 

Ox and Oy are as indicated. Typically, the ends x = 0, ℓ are 

held at unit and zero concentrations respectively and all other 
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surfaces   are   impermeable. 
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u = 1 ,   x = 0 ,  0 ≤ y ≤ b , 
u = 0 , x = ℓ ,  0 ≤ y ≤ b , 

(5) 

and ,     
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(6) 

on the remaining parts of the boundary, where η∂
∂
 denotes 

differentiation  with  respect to the outward drawn normal to 

the boundary and D is the diffusion coefficient of the 

continuum, assumed constant. 

Suppose the solution of equations (4), (5) and (6) is 

u = f(x,y).   Introducing the transformation 

where 

we obtain 

v(xi,yi) - 1 - u(x,y)   , 

x1 = ℓ - x, and y1 = y   , }
 

(7) 

Δ2 v = 0   , 
 

and, also, 

v = 1 ,  x1 = 0, 0 ≤ y1 ≤ b , 

V = 0,    x1 = ℓ,  0 ≤ y1 ≤ b . 

These are identical to equations (4) and (5) and, similarly , 

it can easily be shown that equations (6) remain the same in 
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the new variables. The problem in terms of v,x1 , y, 

is identical to the original problem in u, x,y. 

That is, v (xl,y1) = f ( x1,y1) , 

and, using (7) gives 

v = f (ℓ - x,y) = 1 - f (x,y) . 

Therefore, the problem is anti-symmetric about x = ℓ/2. 

In particular, when x = ℓ/2, 

u( ℓ/2,y) = f ( ℓ/2,y) = ½, 0 ≤ y ≤ b. (8) 

Similarly, by considering the region between 0 < x < ℓ/2, 

for 0 < y < b, we again have symmetry of shape about x = ℓ/4. 

If g(x,y) is the solution in this region then 

g(x,y) + g(ℓ/2 - x,y) = 3/2 

and when x = ℓ/4, s(ℓ/4,y) = 3/4. 

Thus, for any region with repeated symmetry, it suffices 

to study the steady-state problem in a rectangular region 

with a re-entrant corner as in figure 4, provided the number 

of repeating basic units is an integer power of two. 

We note in passing that the blocks need not be rectangular. 

The argument applies in general, provided a symmetry can be 

identified. 

Furthermore, a staggered arrangement as in figure 5(a) 

can be studied by solving the problem  for  the rectangle with 

two re-entrant corners, as in figure 5(b). 
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2.3  Mathematical Procedure 

The major mathematical difficulty encountered in 

attempting  to obtain solutions of Laplace’s equation in 

regions illustrated in figures 4 and 5(b) arises from the 

presence of the re-entrant corners. Singularities occur in 

the solution at such a corner and some or all of the 

derivatives are unbounded. Consequently, numerical methods, 

based on finite-differences or finite elements, tend to 

produce values of low accuracy near a re-entrant corner. 

Several methods of overcoming the difficulty have been proposed. 

The steady-state results quoted in this paper have been 

obtained by using conformal transformation methods developed 

by Whiteman and Papamichael (1972, 1975). 

They transform, by conformal mapping techniques, the 

original problems, illustrated in figures 4 and 5(b) into 

the trivial problem of one-dimensional diffusion in a plane 

sheet with ends maintained at unit and zero concentrations 

respectively. This procedure is possible provided the region, 

G, tinder consideration (fig.4 or 5(b) ) is a polygon with 

boundary S where S consists of adjacent arcs S1, S2 , S3 and S4 

such that, 
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The  transformation  is  achieved  by  four  successive 

oonforoal  mappings  of  which  the  first  is  performed  numerically 

using  an  integral   equation   method  due  to  Symm  (1966). 

Considering  G  to  be  in  the  complex  plane, z = x+ iy, with 

origin 0, within G, then the mappings are : 

1. w = F(z) , 

which  maps  G  onto  the  unit  circle  |w|  ≤  1 ,  in  the  w – plane. 

,)(]
1
1[1.2 zT

w
wt =

−
+

=  

which  is  a  bilinear  transformation  mapping  the  unit  circle 

in  the  w -plane  onto  the upper half t- plane. 

,)(
)(
)(

)()(
)()(

'.3 ][][
2

1

14

24 tP
zTt
zTt

zTzT
zTzT

t =
−
−

−
−

=  

is  a  second  bilinear  transformation, where  z1, z2, z3  and 

z4  are  as  indicated in  figures 4 and 5(b), and denote the 

leading  points  of  the  four  arcs  Si, taken  in order. This remaps 

the  upper-half  t-plane  onto  itself  in  preparation  for the final 

transformation. 

4. The Schwarz - Christoffel transformation , 

5. ,),'(
)(

1' 1 mtsn
mK

w −=  

where  sn  denotes  the  Jacobian  elliptic  sine  and  k(m) is the 

complete  elliptic  integral of  the  first  kind  with modulus  m 

10. 
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given by        

   } 2
1

3 ))(({ −= zTPm  

The  effect  of  this  final  transformation  is  to  map  the 

upper-half   t'  plane  onto  a  rectangle  in the  w'  -plane  and, 

since   Laplace's   equation   is  invariant  under  conformal 

transformations,   the   solution  in  the  rectangle  is 

v(ξ,η) = 1 - ξ  

where w' = ξ + iη . 

The  form  of  F(z)  clearly  depends  on  the  geometry  of 

the  original  region.  Since,  in  general,  F(z)  cannot  he  written 

down   analytically,  the  mapping   W  =  F(z)  is  performed  numerically. 

Therefore,  the  solution   finally  obtained  is  approximate  but, 

by  analyzing  model  problems,  Whiteman  and   Papamichael  conclude 

that  this  method  compares  favourably  in  computing  speed  and 

accuracy with other methods. 

This  technique  can  be  used  for  obtaining  solutions  of 

(4)  in  any  simply-connected  domain  (see  Papamichael  and 

Whiteman,  1973),  but  for  the  purpose  of  this  study only the 

regions  illustrated  in  figures  4  and  5  are  considered, For 

convenience,  the  dimensions  of  the  basic  shapes  are  given  by 

b = 1, and a = 1 - o, (9) 

h and σ being allowed to vary. 



12. 

CALCULATED PROPERTIES OF COMPOSITES 

3.1     Concentration Distribution 

Table 1 shows a typical set of solution values covering 

a region of the type shown in figure 4, with h =σ =
2
1 . In 

figure 5, the corresponding lines of constant concentration 

(analogous to isothermals in heat flow) are plotted together 

with lines of constant flow (analogous to streamlines). 

Figure 7 presents corresponding plots for a region of the 

type illustrated in figure 5. 

These illustrate two important features of the general 

problem, the consequences of which are discussed later. 

Firstly, the variation in concentration along the line x - 0.5 

(Table 1 and  figure 6) is considerable. Thus, any approximation 

based on the drop in concentration across different parts of 

the composite must be formulated in terms of mean drops in 

concentration. Barrer (1968) realising this, introduced a 

number of scaling factors into his approach but was unable 

to determine them explicitly. 

Secondly, considering the distance between neighbouring 

"isothermals" to be an estimate of the local gradient, and 

hence the flux, it can be seen from figures 6 and 7 that 

the variation in flux throughout the region is also appreciable. 

The limitations of unidirectional models are closely 

related to these two features. 



Table 1. Concentration Values for a Typical 

Region. (h=0.5 , σ =0.5 ) 
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3.2   Rates of Plow and Effective Diffusion Coefficients 

A quantity which is commonly observed in stead-state 

diffusion experiments is the rate of flow through the medium. 

From this the diffusion coefficient can readily be deduced 

if the surface concentrations are known and the flow is 

unidirectional. Thus, the flow, F, through an area A perpendi- 

cular to the x direction is given by 

 

,)( 22

l

uuDA
x
uDAF −

−=
∂
∂

−=                             (10)

where u1, u2 are the constant surface concentrations, ℓ is 

the medium thickness and D the diffusion coefficient of the 

medium, assumed constant. 

In two- dimensional flow problems in composites, as 

illustrated for example in figure 4, equation (10) is 

replaced by 

 

∫ =∂
∂
∂−=

b

c
,0xon,y

x
uDF                              (11)

 

or, more generally, 

      ∫ ∂
∂−=

c
,ds

η
uDF                                         (12)

where C  is  any  arc  S  drawn aoross the flow and ∂ /∂η implies 

differentiation normal to S. 

The  evaluation  of  the  integral in equation (12) along 

Any  two  distinct  lines, for  example x = 0 and x = a + σ , 

in  figure  4, provides  a  useful check on the numerical integration 
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procedure.   Also,  in  view  of’  the  singularity  at  the 

re-entrant  corners  it  is  desirable  to  evaluate  F  well 

away  from  such  corners,  although,  in  theory,  F  is  bounded 

for any arc S. 

An  experimentalist    measuring  flow  rates  through 

composites  will  deduce  mean  or  effective  diffusion  coefficients 

for  the  composites  by  equating  the  measured flow to the 

expression  in  (10).  Thus, denoting  the  effective diffusion 

coefficient  by  Deff,  and  taking  the  dimensions  of  the 

composite  to  be  those  specified  in (9), we have 

 

 ∫ ∂
∂
∂

−=
1

,)(
off y

x
uDDe                                         (13)

since u1 - u2 = 1. 

Values  of  Deff  have  been  obtained  from  the  numerical 

solutions  of  Laplace's  equation  for  various  sizes  of  the  blocks 

forming   the  dispersed  phase.  The  derivatives  in  (13)  were 

estimated  by  a  central  difference  approximation  and  the 

integration  performed  using  Simpson's  Method.  This  method  was 

found  to  be  adequate  for  the  accuracy  required. 

The  results  are  presented  in  graphical  form  in  figures 8, 

9 ana 10. 

Further  results  were  obtained  experimentally  and  are 

presented  in  figure  11. These  were  obtained  by setting 

up  an  electrical  analogy  of  the  steady-state  diffusion  process. 

'Teledeltos'  paper  was  cut  to  the  required  shapes  and a 

constant   potential   difference   established   across  the  appropriate 

edges.  The  remaining  edges  provide  a  natural  'no  flow' 
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