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INTRODUCTION

We will develop a general theory to unify a number of the results
presented in TR/25, and which will enable us to discuss more complex
examples. The theory is a refinement of a paper by E. Laguerre
published in 1885. First we construct the theory for J fractions

for a certain class of functions, and then we show that the theory
readily extends to deal with M fractions. Although numerically we
can generate both J fractions and M fractions from suitable series
for a function, in general, depending on the number of significant
figures carried in the computation, the rounding errors eventually
terminate the procedure. The purpose of this paper then is to develop
the theory so that these fractions may be obtained directly from more
compact descriptions of the functions, in our case differential
equations. We will construct relations which successively generate
coefficients of the C.Fs. Further we indicate by examples how
asymptotic formulae for the coefficients in a C.F can be constructed,
and how an almost periodic C.F is approximating the positions of the

branch points. Two notions that generalise.

The theory as presented is very limited dealing only with second order
linear differential equations which are, or can be reduced to,
equations in which one solution is a polynomial. Nevertheless the
results can be extended certainly numerically to other differential
equations closely related to these. We briefly indicate this aspect,

but our work is by no means complete.



The method of constructing our theory is directly applicable to a
variety of first order problems. We conclude by deriving the J

fraction for the Laplace transform of a function.

This paper is a sequel to TR/25, and relations in that technical
report are referenced directly. We recall that in TR/25, we showed

that the f; in the linear relations
£ = dif + ¢ (-1)

fz = dzfl + sz

fo = dafar + Cn Lo
where c; d; are polynomials in x,

can be expressed as rational functions by terminating the C.F

£ = Aj Pi_1%i+1 Cn fn
i - e
Dy +  dij4q1 + +dn - f4_1
where A. = (—l)i'1 ciC; ... c; and D. is a polynomial.

In particular the n*™ approximant to f is

o ) cn _%n
fjp=—i =% ... 2=22

14

the error being



11. Laguerre's Problem

Apart from some minor refinements which we will discuss later, Laguerrre

in his paper (1885) set out to determine and study the J fraction.

€1 €2 Cn (11.1)
X +dy - x+dy - x+dp —

co(x) +

for a function f that satisfies a first order differential equation

df
w — =2vE+ U,

dx (11.2)

where U, V, W and c¢(x) denote polynomials in x.

To do this, set

(@]

n , In (11.3)

h
I

@)
@)

n n

and choose the polynomials C, (x) and D, (x) so that their ratio

h matches the terms in the series for f up to and including the

1
term Then
2n
X
d|c e} 0 £ £
w[n}_z\{“}—u :{_W{n}r 2{“} } (11.4)
dx Dy Dp dx Dy Dn
_a (2n+ 1) 2V 1
=A 1 W P + PIE] + ower terms
X X
as EQJ_ An-l—l
D. . 2ntl
n X

Performing the differentiation

1 ' 2 2
W[Dncn - ann]— 2vC ,D, — UD% = A D% { }

=Aps1 Oy (11.5)

where 6, (x) is a polynomial, for the 1left hand side is a polynomial.



Further 6, can be regarded as being of fixed degree u, the degree of

the highest term in W(;LJ + 2V(3{),only its coefficients depend on n.
X2 X

Thus we can now split (11.4) into two equations ,

A S]
v lsn] e (B - e
dx Dn n D%
f f A S
W d {L} _ 2v[ n }: — % . (11.7)
dx Dn Dn D

The. latter is particularly important because of the second order
differential equations that we will derive from it, and because

integrated it gives the error in approximating f by Cn .
Dl’l

To construct (11.1) we must derive the recurrence relations between

the f, and this we can do in the following manner.

Recurrence Relations for D, and f,

Replacing n in (11.6) by (n—1) and subtracting the result from (11.6)

gives
_—— [Cn Cn—l} _ v [Cn Cn—l} n+1 %n  Bn Oy g
- 2 2
dx | Dp D 1 Dp D1 D D .1
As Cp D 4 - C._; Dp = A
W a |: Ap ‘| _ ov |: Ap ‘|_ Anyl On _ An Op g
2 2
dx | Dy D _4 Dhn D1 Dy D _1
But A,:1 = Chy1 An, so that
W|P' D C' D J 2VD D o D2 0 D2
- - = - -c = +
nn-1 n-1n n n-1 n+1 N%n+1 n+1"n



which rearranged gives

[WD, ;+VD, + Coy1 ©p Dng] Dpy = [W D, + V Dyy — 6, D] D, (11.8)

n

These are two expressions for the same polynomial. D , and D ,; are

clearly factors of that polynomial. We can therefore equate both sides

to A, Dy Do . where A (x) is a polynomial.

This yields the two relations
WD . (V-A) Dy + Cm ©0,Dn = 0, (11.9)
WD, * (V +A,) Das Bn1 Do = 0 . (11.10)

To eliminate D we step n by one

WD + (V+A 4s1 )Dy = 6, Dunie O . (11.11)
and subtract (11.11) - (11.9)
Dw = 1 ( Unsa + [h) Dn —Cnna Dn—l, (11.12)
el’l

the required recurrence relation between the denominator polynomials.
To obtain the recurrence relation between the f, , we simply multiply
by f, and use the result (11.13) , D, fu-1 ,— Dp-1, f£n = A, ,

Dns1 fn :L .Dn+l + Dn) Dy fn —Cnt1 [Dn fn—l]

n

Dn fn+1 =1 .Dn+l + Dn) Dn fn —Cn+1 [Dn fnfl]
0

n

fn+1 =1 . (un+l + un) fn — Cns1 fn—l (11-13)
0

n

We can also deduce relations similar to (11.9) and (11.11) for the

f, , we simply state them
WEf. - (0, +v) f, + Coyy 0, £, =0 (11.14)

n

W f. + (O, -V) f,-86, foey =0 . (11.15)

n



Let us elaborate on the way (11.13) generates (11.1).
To solve Laguerre's problem, given

wdf = ove + U
dx

first we extract the polynomial c, (x) part of the solution

f = Co(X) + fo

so that W afto  _ 2vE - ¢

dx - ©

In fact [, is V, so rewriting this equation as

8, f1 = wf_0+ (A, = v) fo = (A, + V) £, - ¢ 6, (11.16)
X
we get f; =_£_ (A, + V) £, - ¢
0
£, =9L (A, + A)E, - o £,

etc.

These linear equations are equivalent to (11.1). All that remains is

to deduce a convenient means of generating successively the ¢, and the

polynomials 6, (x) and A, (x).

But first we digress and note that D,(x) and f, (x) are essentially
the two solutions of some interesting second order differential

equations.

* NOTE 1if 6y # constant U cannot be chosen arbitrarily

dc o
U=W ——-2Vc -cq 6
dx © 1>o



Second Order Differential Equations

We consider the two cases 6,=constant and 6,# constant separately.

WE, D,— W £, D, — 2V £, D, =~ A, 6, (11.17)

this follows from equation (11.7). Differentiating we get

(wig' - 2vE, ) D +9 + [wf - 2vf, ] D, +

dx
- Wf, D, — W'f, D, — WE_ D, A, O, (11.18)
For 6, = constant, 6; =0
. -1 d _ _
WD + (W +2v) D__— = [Wf-2V £f,] D=0
£, dx
which reduces to
WD, + (W' +2V) D, +K, D, =0, (11.19)
where K, (x)i1is necessarily a polynomial of fixed degree. In addition
d (W £, - 2VE, ] + Ka£,=0 (11.20)
dx
2v
jwdx.
Now put f, = e Y
' ] ] -
as Wf, = 2Ve’ y + We’ y', we find
a [ 15 5 o
— | We v'| + kpe y =0
ax
Hence the second order differential equation
W y”’+ (W +2v)y’ +k,y=0 (11.21)

2V
I o
is satisfied by both D, and e fn.



2v
Alternatively we could verify that & W .D, as well as f,

satisfied (11.20).

For 6, # constant, we use(ll.17)to eliminate A,;; in 11.18),then

WD+ W +2v —w oD —L{i[Wf}l — oV fpl - (W Ey —2v ) 20 Lp =g
on fn | dx on
"o, Dt [(mW'*"2v) e, -We,] D "k D, 0, (11.22)

where K; (x) is a polynomial of fixed degree.
The appropriate generalisation of (11.21) is that the equation

Wl y" s [(w' + 2V)0, - W e 1, + k.0 (11.23)

has the complete solution
2y
y= AEh(XHBej fn (11.24)

Interrelation between 6,A,and K,.

In the preceeding analysis we have introduced three polynomials of
fixed degrees 6, ,D, and K,. To obtain the relation between them
we now derive (11.22) directly from (11.9) and (11.10). Eliminating
Dpo; from (11.10) using (11.9)

~Cps1 6y W D'ng + (V 4Dy ) W Dp' + [VZP= Dy? + C it 8y 81 1 Dy = 0
W must be a factorof the polynomial in the square brackets,[ ] = W S,
sayy

~Cps1 ©n D, , + (V+ Ay) D, + S, D, =0 . (11.25)

Substituting (11.9)

d | WDy, +(V-0,)D \
o, — o D0 | 4 (V+A,)Dy +Sp Dy =0
dx On




and rearranging,we find

WOLD"+ [(w' +2v ) 0, -wb I D +[(v'-A )6 - (v-A,) 6", D=0.

With 6,=constant, comparing this equation with (11.19)

kK =V'-A +5S, 11.27)

n n n
WhereWs = V2 — A% + ¢ 6 6 n>1. (11.28)

n n n+1lnn-1

with @6, # constant, comparing with (11.19) gives

* \l |l
Connection between 6, and S,

W Sn = VZ - AE 2 + Cp+1 Gn en_l
" sn+1 = V2 - AZn-*—l ! Cn+2 em—l en !
subtracting
W(Sn ~ Sn+1 ) = A2n+l - Dzn + Cn+1 en en—l —Cn+2 er1+l en . (11-30)
With our definitions 6,(x + dpi)= Anx + Ay,
W(Sn - Sn+1) = en[(x + dn+1) (AE+1 _AQ,) " Cn+l S n-1 ~Cn+2 en+1]r
(11.31)
and 6, 1s therefore a factor of w(S, - Supi1) .
In fact as Laguerre shows the square bracket is W, that is for n21
(x+d ) (A = Bp) = WHe 50,7 —S,415% 4
(11.32)
and
On = Sn =Sy - (11.33)

Thus we have a polynomial relation (11.32) connecting our unknowns.
We shall find that from it, or (11.28), knowing little more than the

form of 6, and A, we can deduce the coefficients in our C.F. Before



10.

we apply our results let us say therefore a little about 6 , and [, , in

particular about [} .

The Polynomials 6, and. [,

First let us recall that 6, is a polynomial of fixed degree u, the

term in x” being given by the first term in the expansion

(2n +1) 2+ 27 (11.34)
x X

Then observe that from (11.9)

L}

D D -1
Ap =W +V+C g6 ,

Dn Dn
. _n n-1 _._n n-1 n-2
and write Dp =x +(dy+do+....+dp)x +.... =X +anpx +Bnx +...
so that
2
W on  (af—2Bn 6n dn
Ap=—|n-—H 4+ 04 1 +vV+c -2l
0k b4 <2 n+l "y b4
(11.35)

where, because A, is a polynomial, the expansion on the right must
terminate. For most purposes all we will require is the leading

term of A and the form of A, . We will simply substitute 6, and
D, in (11.32), or (11.28), equate coefficients of x and hence determine

our unknowns and in particular the coefficients of our C.F. The
other polynomials that we have introduced, S, , K, and K*, can then

be determined by the appropriate expression (11.27) to (11.29).

To clarifv the preceeding analysis we will construct the recurrence

relations and hence the C.Fs. when W is quadratic in x. There are



11.
essentially two cases. The first is when f has two distinct singularities
these we will take at + 1 by taking W = x* -1 , the denominator polynomials
will turn out to be the Jacobi polynomials. Then we will consider the
case when the singularities coincide by taking W = x* , the resulting C.F

gives useful approximations to the error function and related functions.



12.

12. Jacobi Functions

Let us consider the differential equation

1) 8f

2
%2 -
( dx

=2(x+ AXN)f + Ux) . (12.1)

For this equation
W=x*-1, V= (Ax + 1)
and the weight function

2v
w(x)=ef W dx = exp

J’_
-1 x+1

{j“u )\_udx}z(l—x)AJru,(l—i—x)A_u (12.2)

which is the weight function for the Jacobi polynomials PnWﬁ)(x)
if we take o = A+p, P=r-p.
From (11.34) and (11.35) we readily deduce that

0, = 2n+l + 2A

A, = (n+tA) x + &,

The key information is now obtained by equating coefficients in the

identity (11.28) ,
WS, = V2 - Ai + Cn+1 Op Ona

(x> = 1)Sp=(Ax + m)?-[(n + A) x + 8,]1% + Cny1 (2n +1+ 2X7) (2n-1+2X).

Sn 1s necessarily a constant,

S =27 - (n +A%) = - n(n + 2))

Ap
n+ A

dn =

and

Cn(n 4+ 2M[(n +A) 2 - p?)
Cn+1 <
m -2 24 (n + 2

Also from the expression for [,
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AwtAr= (0 + 1 + N)x + (n +A )x +_ L
n+1+ u n+ A
Au

= (2n + 1 + 2AN | x +

(n+ 1+ A) (n+ A)

where (2n + 1 + 2A) is 6 , Thus from (11.13) the J fraction for
the particular integral of (12.1) is generated by the recurrence

relation

AU 1 n(n +22x [(n +0)2 —u?)
£ -
]

z fn _; - (12.3)

/ Ay 4
(T 257 TXIT T+ 7%/ =1

In particular with U (x)= 6;, A > - ,we would obtain the J

’

fraction for

> 2A+1

the first partial numerator c.;being unity.

The denominators of these J fractions by (11.12) satisfy the same
recurrence relations as the f and are readily shown to be the Jacobi
polynomials P, (o, B) (x) arranged so that the coeffioient of x" is one.

For by (11.27)

Ko = V' - A+ S,=-n (n+ 2x + 1),

n

thus by (11.21) the denominator D,(x) and

fh(x)are both solutions
w(X)

of

(x2 = 1) "+ (2x + 2Ax + 2p) y' - n(n + 2N+ 1) vy =20 (12.4)
Yy

which is the differential equation satisfied by Jacobi polynomials

PP (x); 22 = (o, B) 2pn = a - PB.

Particular Cases

In passing we observe that the recurrence relation (12.3) simplifies
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in the following three cases:-—

. U2 —-n2 S
i) A =0 fn+1 = x1f, +2— fn—l n =1
4n -1

(12.5)

which generates the C.P (4.22) for the Associated Legendre functions

n(n +2A7)
4(n + N2 -1

il) wm =0 f,,7=xfn + fh-1 (12.6)

which, with A :v—l generates the C.F (5.6) tor the Laplace
2

transforms of Bessel functions.

iii)  p=Z £ =|x+ fn—% £1_1 (12.7)

Written as a Laplace transform the function f becomes

+A—-Uu

o _ —(x+1)t
[ (x+1) (11N (12.8)

> e Fip (aib;2t)dt  where2T %

and consequently is related to the Kummer and Whittaker functions.

Error Analysis for Jacobi functions.

With U(x) = - e, our J fraction for f is
1 €2 Cn
f= _____*=n ‘
u x+d, - Xx+dp - —n__
X + — £
1+A n—1

where ¢,y and dny are given by (12.3).
Now the error in terminating this expression after n terms is

Cn _fn

Dn  Dn

and this expression satisfies,by (11.7),the differential equation

d {fn}_zv[fn}:_%ﬁl On

dx | Dp W |Dp WDZ

Hence the error can be written as an integral

A 6p
=w(x) Jx L% du

i
n W w (u)bp (u)



and the asymptotic value of this integral for large n we have

deduced is

fn _ mr(etBaD) (k=D (a1 e g (5P {1 _tanh&_MHuo[ij}
Dn 2B (a+1)r(p+1) 2 2 n
nr (a+B+1) (x—1)% (x41)P 2e e 1
= s Tﬂ(é{uo(;)} (12.9)
r(a+1)r(B+1) 1+e
where x = cosh ¢, N= 2n+ 1+ o+ B) and ¢ =(0(+%)7r.

This expression for the error ia of a similar form to the error
estimates obtained in TR.25 and in fact generalises a number of these

results, in particular (5.28) for the Laplace transforms of Bessel

functions.

15.
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Error Function and Related Functions

For our second example we consider the equation

L2df

= 2(Ax + p)f + Ux) (12.10)
dx

where
W==x?, V=2Ax + 1

An almost identical analysis with that for the Jacobi functions
produces the recurrence relation ,

2
Au u“n(n +2AA £ Ny (12.11)

£ = x+—"2 £+
n+l { (n +1+2a) (n=2) } n (n+}\)2[4(n+)\)2_1] n

as the relation which generates the J fraction for the particular
integral of (12.10).
Now the weight function for this set of
2V
Ivdx

functionsw(x) =e = exp {j2214-2%;dx } ::XZA' e<—2u (12.12)
X % X

is clearly closely related to that for the generalised Laguerre
functions. However the C.F generated by (12.11) is not to be
confused with (2.17); it is matching a different series. It provides

a powerful sequence of approximations to the error and related

functions.
When U(x) = -2Ax, the solution of (12.10) is
2u oy 2u
—x2h g~ x __ 22X X
f(x) =x e ﬁb x2A+1 e dx ,
1
we take p =% . As an example we put p = S so that
1 |
2 IX 2 eE dx
f =x—
(x)=x— e o 3/2
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and thus
5 272 24
1) e % 12 ¢ 3 25 212"
f| =, |=— e dt =1 - : ————=.(12.13)
E2 z o 2 ot 2 ¥
l+§z 1+— 2z

Luke [ 6.4] derives an estimate for the error in terminating the
C.F for

1 1
X

27
f(x)=xDe 2 [P e ¥ dx (12.14)

20+1
be

after n terms. Making the zero convergent one, he estimates the

error behaves as

1
(-1)n*L ¢ Zr[ij r(2a+1)

Ep (%) (12.15)

228 (2x)2n+l v on y2n +1) n%

Luke's figures for these formulae are impressive, so we will reproduce

them.

Putting z = 1 in (12.13) f(1) = 0.5380 7951
n fon(d) f-fon E,
0 1.0 - -
1 0.5238 0952 0.14(-1) 0.15(-1)
2 0.5382 4561 -0.17(-3) -0.17(-3)
3 0.5330 7854 0.97(-6) 0.98(-6)
4 0.5380 7951 0 0

For our next example we increase the degree of W and hence increase
the number of singularities in f. We will find that no longer can we
derive the c¢ and d explicitely, but that we must be content with

producing a set of equations which successively generate the ¢, and d,.
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13. Three Distinct Singularities

We take W = x - 1 so that the three singularities are symmetrically

placed about the origin. Consider

(X3 —1) %=3 (ax’+ Bx + y)y + U(x) (13.1)

For this equation W = x° - 1, 2V = 3(ax’ + Bx + V) (13.2)

and the weight function

2V
= dx 2
W
W(x) =eJ‘ = exp J' 3 (af +BX+ydx = exp I A + B + c dx
3 X w2

giving
W(X) — (X _ l)OH—?*—\/ (X _ W)OH-BW +yw (X _ W2)0(+Bw+\(w2 <l3.3)

From (11.34) and (11.35) we can readily establish the form of 6, and
Un
O = (2n + 1 + 30)x +¢, (13.4)

3 2

Dn =(d +5a> x° 4 Bpx + ya (13.5)

where 0, B, and y are to be determined.
The interrelation of these quantities with the coefficients ¢, and d,
in the continued fraction can be obtained directly by equating
coefficients in (11.32)

(x + dpyr ) (Apyr — Ap) = W +Chye2 B
i.e. for n21

(x+dar1) [%° 4 (Basn = Ba) X + (Yo — ¥a)] =

%=1 + cCpo [(20+3430) % + Oni1]=Cnin [ (20=-1430) % + Ono1]
dp+1 TPny1 Bn =0
dn+l (Bn+l—ﬁn)4—yn+l-—yn ::cn+2(2ry+3+3aa——cn+l (2n =1 +3a)p(13.6)

dny1r Ypyp —¥n) =-1+cpp @ —Chyp S
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In addition we have that

en( X + dn+l ) = Ar1+1 +A
i.e.

[(2n + 1 + 3a)x + ¢n] (X 5+ doe1) = (20414300 ) x*+ (Bt » Bn) X+ (Yar1 + Va)
so that

(2n +1 +430a) dp41 +6n =By +Bn } (13.7)

mdpy = Yng1 t¥no-

A simple rearrangement of these five equations gives the following

scheme for successively computing dnsi, Bns1 s VYntir Cnsz r Pne1 -

Br+1 =Pn — dpy1

2
(2n +3 +3OC)Cn+2 =(2n -1 +30() Cn+l + (Yn+1 _Yn) - dn+1

Cn+2 Pn+1 =Cn+l Pn-1 t1 +dpy (Ypya —Vn)

where the last two equations can be used with n = 0 if the terms
containing cp:; are dropped.

The initial conditions are partly determined by U(x). We can eliminate

any polynomial part to y by taking U(x) = - 6, and to keep the number
of parameters to three, let us put U(x) = - [(1 + 3a)x + 3p].
3 2 + Bx + v ), we then have the initial conditions

Since Aozw3 (ax

3 3
c1 =1,90=3BF, By =2k s, vg=2V (13.9)
From (13.8) we then obtain
3 3 y 1 1+«
d :0, = — ’ = — — ,O = — ’ = = —
1 Pr=gb e 27 1 2 T+’ c y
3_
d2 P ¢1 , etc
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c and d are rational functions of o, B, V.

In general the above technique applied to the linear first order
differential equation (11.2) will yield a set of interrelations like
(13.8) from which the coefficients of ¢, and d, of (11.1) can be
derived. The process is superior to simply determining a series
solution of the equation and then converting it into a C.F by the
method indicated in (1.17) of TR.25 in that it is numerically more
stable.

The error in truncating the C.F. after n terms is still given by the

integral of (11.7)

c A 6n(t)
ooy [P ShEs dt
Dn W(t) DR (L) W(t)
:An{LW(X)ﬁ? (2n+1;3a)té+¢n at (13.10)
W(t)D2 (t) (£3-1)
where w(x) = (x-1)* (x-w)® (x-w?)® . A, we can if necessary compute,

although it is worth noting c, Cpi1 cm24>;L as we shall observe
16

later, A. very crude estimate for D,(x) would be x" , for a rather
better estimate we could use the differential equation satisfied by
D, for x large and n large

x’y' & (243c )xy' - n’y = 0
What we have tried to do and what ideally we would like to do is to
obtain asymptoticc estimates depending on n for ¢ and d, (or simple
combinations of the cs and/or ds). For unless we can do this there
seems little possibility of deriving a suitable error estimate that
depends on n in the form we obtained when W was linear or quadratic;
further such asymptotic estimates might guide us in our handling of a

much wider class of problems.



We observe that there are certain combinations of our unknowns which
remain constant as n increases. Equating coefficients in the identity
(11.28)

WS, = V2 = D.* .+ Cnsi 6 Bna

we find

v& + (2n+3a) Bn —Cpyq #n Sp_q = (v2+20p)

9
4
)2 %(BZ+20cy) (13.

B +(2n+3a) yn —cpyq [(2n+30)2 -1 =

2Bn¥Yn —Cp41 [(2n+l+30()¢n_l +(2n+1+30<)¢n]+n(n+3010(:% (2B v)

This set of equations can be used instead of the equations (13.6) and
should be regarded as a first integral of that set of finite difference
equations.

Quasi-Periodicity

To gain insight into these approximations we have computed the values
of ¢, dy ¢ Byvausing the formulae (13.8) for various values of
a ,B ,y. These formulae seem to be numerically remarkably stable,

the results tabulated in Tables A were obtained carrying ten figures.
1 e o
Table A for a = 2B= 2y’=-§cﬂearly indicates the almost periodic

nature of the partial numerator c, and of the partial denominator

x + d, of the C.F. This three term periodicity results from the
distributing of the poles and zeros of the convergents along the

three branch cuts. The distribution along the three branch cuts is
disturbed by the introduction of one extra pole and zero, is improved
by a further pole and zero and finally regains a position similar to
the first when the third pole and zero are added. For plot3 of poles
and zeros see graphs on page V7. As more and more poles and zeros

are introduced, as n is increased, so these poles and zeros etch out
the branch cuts of the function y which satisfies the differential

equation (13.1).

21.
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For other wvalues of o ,B ,y.. the C.F settles to being periodic, but

often only after an initial disturbance caused by the initial conditions
has died away. Table A for a::%, R =0, vy = %— shows a large leap in

the value of ¢, to - 1009, before c, and d, slowly settle towards their
periodic values. Usually the effect of the initial conditions is less
dramatic taking longer to be absorbed. In all cases computed, the
three term periodicity eventually dominated.

How can we take advantage of this three term quasi-periodicity in the
coefficients ¢, and d, ? For a suitable large n

e} C
R= =0 __“n#l _"n+2 g% (13.12)
x+dp x+d g x+dyo

where R* is almost the same function of x as R. Treating (13.12) as a

C.F and writing its convergents

C1__—¢n_ C2 _ “Cn(xtdny)

D; x+dyp ' Dy xZ4(dn+dp ;)% +(dpd,,y —Cpopq)

c3 _ _CH[X2'+(dn+1+dn+2)x+(dn+1dn+2_cn+2)]

P3 X3"'(dn'ern—i-l+dn—i—2)X2+(dl’ldn-lrl+dndn+2+dn—i—1dn+2_Cn-i-l_Cn—i-Z)X'Jr

o
+(dndp1dp4p —dn ' n+2 —dp4pCn47)

we can then write

*
Cy+R C
R=_3 "2 (13.13)
D3+R D2
If we replace R* lay R, R satisfies the quadratic equation
D, R”” + (D3 - C;) R = C3 =0 (13.14)

from which we can determine R. When the problem is simple one of
calculating y that satisfies the differential equation (13.1), this R

can be used to plug our C.F ,
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1 c C C._
- 2 - 3 - ___n—l-i-R(x) (13.15)
X x+d2 x+d3 x+dn_1

and will go a long way towards inserting the singularities of y(x).
The branch points of R are contained in the discriminant of (13.14), a
simple manipulation gives the discriminant.

A = [Cy + D31% = 4Cp Cpt1 Cnsz

2 4 Tx?+u] - 4C, Cps1 Crs (13.16)

= [X3 + ox
where o =dy,+ du " dpis

T = dp dnt1 + dn dniz + dns1 dniz = Cn —Cns1 — Cne2

vV = dp dns1 dnt2 —Cn dns1 —Cns1 dnsz —Cnsp dn.
To indicate how closely the branch points of y(x) are being approximated

by those of R(x), we have calculated the discriminant (13.16) using

our numerically results for o and d in Tables A.

1 1 1
For o = —, = —, y= — and taking n = 40
3 g 5 Y 6 g
o = -00010 1= [x> + .00010x% + .00007x - '50001]% - 0.24997
T= - 00007 branch points x>+ -0001 Ox* + .00007x - .50001 = + 0.49997
u = -.50001 hence x®+ .00010x 2 + .00007x - 0.99998 = 0
4C, Cps1 Crez = 0.24997 or x> + .00010x* + .00007x - 0.00004 = O

1 2 .
For o<=3—, B =0, y=§and taking n = 54

o = 0.00003 A = [x° + 0.00003x* + .00007x - .49996]% - 0.24994
T = 0.00007 branch points x° + .00003x* + .00007x - .49996 = + 0.49994
v = -.4999¢6 hence x® + .00003x® + .00007x —-. 99990 = 0

0

4C, Cpi1 Criz = 0.24994 or x° + .00003x* + .00007x - .00002



For o =3, B =2, .y =1 and taking n = 28

24.

o = 0.0153 0= [x*+ 0.015x% +

0.0066x — 0.4849]% - 0.2348

T = 0.0066 branch points x° + 0.015x°* + 0.0066x — 0. 4849 = +

-0.48489 hence x> + 0.015x°> + 0.0066x — 0.969 = 0

\%

A4C, Cpp Crip = 0.23480 or x> + 0.015x%° + 0.0066x - 0.0004

0

0-4845

In each case increasing n by multiples of three we find the branch points

of R(x) tend to those of y(x) as we would expect. In this particular
problem the branch points of y(x) are given directly by the polynomial
W=x>-1 of the differential equation. The 'artificial' triple
branch point at the origin arises because we are forcing the branch
cuts towards the origin by our approximations at infinity. Our

numerical considerations suggest that we write

[x3-+ox24—rx+—v—2Jcncn+lcn+2]—>x3—l, (13.17)

as n increases, this implies

o-20 dptdpntd ne— 0
T—> 0 dyGm +dn dog + oy dN+2- G = Cupp = Chz— 0 .

In addition, the forcing of the branch cuts towards the origin suggests

V +2,cncpniiChep =0

1
.V dndmldmz—Cndml—ledmz—szdnﬁ*E

1
4Ch Cru Crz 4 -

Now it is not a simple matter to take advantage of these conditions

as n increases in the non-linear generating relations (13.8). Instead
they more naturally line up with our linear method of generating the
C.F outlined in (1.17) of TR25, and strongly suggest fitting the series
six terms at a time once the disturbance due to the initial conditions

has died away.
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Our analysis in section 11 can be extended in various ways. First we
will look at another solution to the first order differential
equation (11 .2). Then we extend our considerations to functions
defined by second order linear differential equations. Finally we
will derive a general continued fraction matching the series in 1/s

for the Laplace transform of a function.
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14. M Fraction Solution

The particular function f satisfying the differential equation (11.2)
usually possesses a series for both x large and x small, so that besides
our J fraction for f we can also construct an M fraction for f. A set
of approximations derived from an M fraction will tend to give good
approximations near the origin, at infinity and also along particular
lines in the complex plane joining them. For a discussion of Murphy's
M fraction see McCabe (1971).

Suppose then that

ao +a1x+a2x2 + - — == for x small (14.1)

£=1by 4 by b3

+ - ——— for x large
X X2 X3 7

and that f satisfies the linear differential equation (11.2)

WE =2Vf+U (14.2)
dx

We begin by writing

f
£ = Pn 4 (14.3)
Qn On
) ) \ ) P
and choosing the polynomials P, (x), Qp (x) so that their ratio O natches
n
n terms in each of the series (14.1). We can write this ratio as the

M fraction

Ph _ P31 P2x o __PnX (14.4)

On 1+qlx+l+q2x+ + 1+ gpx

Proceeding as we did in section 11, we obtain

Wi In |_ 2Vf_n=_wi Pn |, oyPn , gy
dx | QOp On QOn
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which on differentiating gives

f £, f '
o { w% - 2\/—n{wi {—n}— 2V—n}=—W[QnPn —POp] + 2VE,0p + UQZ

Qn dx Qn Qn
= a polynomial, (14.5)
as W(x), V(x) and U(x) are polynomials. Further as
An+4>xn + 0(x n+1) X smal
fn
— A (14.06)
Qn n+12 a&_ + O[__&IEJ x large
(@192 —=an)® apgpp =" x 1

from the L.H.S we deduce that the degree of the terms in this polynomial
lie between n-1 and n-1+u where the term of largest degree in Yoiov
b

is v, v is fixed.

Thus the corresponding result to the key relation (11.7) is

-1
£ £y, A X" (x)
wd  In | _oyfn _ Snil In (14.7)
dx | On QOn Q%
where ¢,(x) is of fixed degree v, and Ay = (- 1) " Pp P, — = = = Pu .

The factor x**

is the only difference between this result and (11.7),

it removes some of the elegance of the subsequent analysis of section 11 ,
but nevertheless it does not prevent parallel results being derived.

We will not repeat the analysis but simple indicate our results.

(11.9) and (11.10) become

' W
' W
WXQn—l +|:Vx—(n—1)E+An}Qn_l+ ¢n—l Qp =0 (14.9)

and so eliminating Q',, the recurrence relation for the Qs (and fs) is

1 W
Ont1 ZE[ > *Ann +An}Qn +Pry1%0p g - (14.10)

Eliminating Q,; from (14.9) we obtain the differential equation for Q,
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Wx Q'n + [W'X+ 2Vx — (n-—1) w—¢—an ]Qn + Hp(x)0p =0 (14.11)
n
where
Hn(x):{V'x+<n_1)[ﬂ—w'j+(A'n —A—n)+sn} +
2 b24 X
_fg{ Vx——U}—l)@~+An} (14.12)
In 2

and the crucial relation corresponding to (11,28) is

2
WXSHZ[VX—(H—l)g} —A% P 1 X Pnd,_q - (14.13)

where again S, and [, are polynomials whose degree does not depend on n.

To determine the M fraction (14.4) we therefore must first find the

polynomials ¢ and [], . Now we are approximating f for both x small
and x large and both of these considerations will yield information

on the coefficients of these polynomials ¢, and [, .

Wi fL _2\]& ,
dx | On On

substituting (14.6) we find

¢, is defined by (14.7)

Apgp x"7H gnx) =03

(nW —2Vx) + other terms X small (14.14)
In(x) = - L (n +1)W—+2V + other terms x large (14.15)
Qn+1 %

where the dominant terms are contained in these expressions.

Prom the relation (14.8), the polynomial [, can be written
|l

Opn_
An:(n—l)E—Vx—WxQ—n— 4l X On n-1
2 On

On

and again we cons ider x both small and large.
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For x small, Q, ="' + ox + - — — ————————— where o, = q ; (@) + - - + (Pt
“Ap=(n-1) —— VX -WX————— P b4
n = ' l+opx+—  ntl #n 1+opx+——
=(n—1)g—\/x ~ WX oy - P X 0ot higher terms .  (14.16)
For x large, Q, = (q1 @ (x" + wyx"" + - - )
(aq +py) (dy_1 +Pn)
Where wp =—E——+ kil p2-+—— 4n-1"Pn ’
RS 0192 9n-19p
Ay =(n—l}ﬂ -Vx - W(n—Eﬂh—ngﬂiL 0.+ lower terms. (14.17)
2 X dn

These conditions, together with the relation

W
S+ 041 FAn FPn ( 14q., %)

2 (14.18)

’

will Dbe sufficient to determine @, and A, in the two simple examples
which we will now use to illustrate the theory.

Dawson's Integral

One of the neatest M fractions belongs to the function which satisfies

the differential equation

2x £' + (14+x) £ =1 £f(0) =1 (14.19)
With W = 2x, 2V = - 1+x), we find
2nx +(l+x)x+—-——-—- =Zn+1)x + ——— X small
fn =y __1 {(2(n+1) - (1+x) }+-———= ! c4+--— xlarge
An+1 An+1
consequently ¢, = (2n + 1 )x andqg, 4 =——E——.
" D+l on+1

1+x

For x small Ap =(n-—1)x-+( jx-—2x2arl—-Pn+1 Xy + ———

:(n—~%)x—+ higher terms
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W P o_
For x large Ap =(n -1)x +-[l+_xjx —ZX{H-——iL}— n—1 op + ——-—
2 X dn
2
X 1 2
:—2 +|:n—§—2n +Pn+l (4n—1):|X

But the coefficient of x is (n - %), therefore

2
X 1 2n
Ap=—+(n——)x and P, =————
2 2 & an? -1
Hence the M fraction solution of (14.19) is
2 4 6
1 —X —X —X
£(x) = 3 B 151 B 351 B _
l+x 1+=—x 1+—x 1+=x
5 7
which can be written
1 2
£(x) = ~ X ~ 4dx ~ ox o 2nx e —.(14.20)
1+x 34+ x 5+ x T4+ x (2n +1) +x —

and that the denominator polynomials Q,(x) satisfy the differential
equation

2% Q. - [x 4+ (2n-1)] Q"4 + n Q, = 0

The integral

2

2 (2 42
e7Z j et dt =z £(229)

0

is known as Dawson's Integral. The accuracy of the approximations
obtained by simply truncating the C.F after a given number of terms
is indicated below. The approximations are of course good for z <1

and z>4.
Z 1 2 3 4
Accuracy 8 terms 5D 2D 3D 5D

Accuracy 12 terms 9D 4D 4D 8D



A simple function having the correct behaviour at infinity as well

as a Taylor expansion at the origin is f = cot™'x.

3 5
I —tan_lxz I S x small
£ = 2 2 3 5
tan_lizi— l3+ 15 - 17 +—-—-—-  xlarge .
X X 3x 5x Tx

2,df _
(1+x%)==-1  £(0) _A (14.21)
Now n(l+X2)+——— n+l
giving ¢p = n——— x.
¢n _ qn+l
2
- ey EFD
In+1 X
. 1 2 2
For x snail N, = 5 n-1) (I+x" ) = (I+x" ) XA h = Pw1 X I + - = - —
1 .
= — (n-1) - (0 +n pns1 ) x + higher terms.
IS
For x large  Ap :%(n—l)(x2+l)—(x2+l)(n—w—n) - -n+l 4o
x n
P
=l(n+1)x2 + | Wp +(n+1)n—+l X + lower terms .
2 In9n+1
Hence Ap =%(n+l)+6nx—%(n+l)x2 .
Further ¢, and D are related by (14.18),
W +
- A n An—l:n_l ¢n—l (1+an) ’
and from the coefficient of x we deduce
sn dn-1 = (n-1)q, ——— . (14.22)

dn

31.
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This formula and our two expressions for o, ,

Pn+1

6n = - (O(n + NPn+1 ) ’ 6n = W, + (n+l) ’
An9n+1

are clearly sufficient to enable us to successively calculate

Oy s Pa+1 and dgny1 .;1in fact we could eliminate §,. For definitions of
o, and w, see (14.16) and (14.17). However this is by no means the

end of the story. From (14.13) besides showing that

Sy, = — (n-1) (3utnpnn) - nx (14.23)
we also find that

2 2

52=n24p (R L, 07} (14.24)
n n+1

9n+1  9n

and

P

28p =(n+1)—8=L _ _(n-1)p ;. (14.25)
An9n+41

Immediately we see that w, = oy + Pn1 ., and hence deduce

1 P
p + _ (14.26)
n+1l n

9n 9n-19n

and

Pn+l n

(n+l)—=(n_2)(pn+qn)_Pn+l - (14.27)
IAn9n41 dn

a simple pair of formulae which successively generate the coefficients
Py du1 , in the C.F. In practice we find that p, tends steadily to

—~%, while a tends steadily to 1 as n — « (which agrees with one

solution of letting p, - p and g, - g simultaneously in these formulae) .

A close examination of the computed values of p, and g, see Table B ,
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suggested that Pp +1—~O 1 and 1 —gp ~0 1 .
2 n2 n3

. 1 o T
Putting Pphp = - (——+-___+.___+._ _._J
2 n2 n3
and ap = 1+i+___
n2

in the formulae (14,26), (14.25) and (14.24) successively; we find
o = -2p

1 o
o) =+ ——+ - - -
n 2 n2

1
— and r = p.
3 p

T
Il

Hence the asymptotic forms of p, , g, and o, are

2 8n2 8n3
1
dn = 1———§+——— (14.28)
in
1 1
dpn = -t ——— ,
o 2 4n2

higher terms could be found.

As p, and g, tend steadily to limiting values we can of course plug

this C.F after n terms with R such that

Rn:_—+Rn 7

or simply with R
1

—X

2

R=—="2——
1+x+R

R + (14+4x) R + 1/2x = 0
2

(1 +x)+WV1+x
2

i.e. R=-—

The two M fractions that we have considered have both been treated
numerically by J. McCabe [p54, pl43] so we will not pursue then

further.
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15. C.F Solutions of 2nd Order Differential Equations

In the preceeding sections we have been exclusively concerned with
linear first order differential equations and with second order linear
differential equations directly related to them by advancing an

integer parameter n. The differential equation, for example,

(x* - 1)y' = -2 (15.1)
naturally leads to Legendre's differential equation

(x> - )y"s +2x y's -n(n+ 1)y, =0 (15.2)
with solutions

Yn = AP, (X) + B 05 (X)

Where Qp 1s expressibl eas the C.F, see (4.6), (15.3)
2 2
1 Ph(x)(n+1) (n+2)
=——— P - A= — -——= 15.4
On(x) =77y B () (2n+3)x — (2n+5)x _ ( )

in the complex plane of x cut from [-1, 1] along the real axis.
By truncating this C.F we obtain rational approximations to the
second kind solution of Legendre's equation.
The obvious question and the one to which we now turn our attention
is 'what happens if n is replaced by a non-integer parameter A?' The
classical answer is simply A. replaces n in the three term recurrence
relation giving

(A1) Qui = (2A+1) X QO = A Qa1 (15.5)

and hence we are able to develop a C.F for the ratio of two
successive Qs. How to develop useful rational function approximations
for Q,. is still an open question, of course simple expressions for
the coefficients are unlikely. What we are looking for is a solution
which will be generally applicable to most linear differential

equations, and perhaps other differential equations. A C.F which
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produces Pada approximants see Wall [p380] is the main contender.
Our discussion will revolve round Legendre's differential equation,
(x*-1)y" + 2 x y' - A(A+tl)y =0 (15.6)
although the techniques are applicable to a much wider class of
problems. We will consider the singular point at infinity and

the regular point at the origin.

The Singular Point at Infinity

At infinity, the series solution for the Legendre function of the

second kind of degree A is

1
r()r(A+1)

Qy (x) = 2 N 2F1(1+5,5)\+1;>\+3;L). (15.7)
oL 3, A+l 2n 2" 2 2 2

A+
2)

Consider 0 £ A < 1, and in particular take A =

1
r(?r(}‘ﬂ) 1 11 .4018 0.2260  .2814
Qo425 (X) = CREN [ = _ B ———  (15.8)
2A+1 r(A+2) X X X X X .

2
The coefficients of this C.P. with those for Qy (X) are listed in Table C;

1
1+ =
1 1 .3333 .2667 .2571
0o(x) = = log 2 | = = _ _ _ _——— (15.9)
2 1_17 X X X X
X
(15.8) is of the desired form in the sense that the coefficients are
shifted but still tend to - 0.25.
Next consider rational approximations for when A > 1 , n is an integer,
raﬁr(n+l+A)
Ont+n(x)= 2 3 - n+ll+Z\ 2F1(£(n+1\+1),£(n+A)+1;n+A+§;L2J
2n+1+Ar(n+5+Z\) x 2 2 2

the position is rather different.
The Pad method certainly starts the denominator with a polynomial

of degree (n+l), as we would expect from (15.4); the form being

1
Q(X) ~ I‘(E)P(n +1+ D) 1

2n—i—l—i—]\.r.(1,1 +£i+ZU .wapoly. of degree (n +l)—FC.F]'
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1
(3 r(5.25
0, 0 (5) £ (5.25) .
: 5.05
2 r(5.75) xi[x5—1.4266 %3 +0.45508 x— 2-00587
X

the details, the coefficients in the C.F, are listed in Table C.
Numerically these approximations for Q, .,s(xX) are quite good, at

x> = 2 the tenth approximant gives 6 significant figures. However,
the coefficients in the C.F are in no sense comparable to those in
(15.4) for Q;(x). Padé approximants do not naturally generalise the
convergents of our elementary C.F (15.4) to non-integer values of A .
We will return to this point in a later paper; for the moment we

will be content with a generalisation of the solutions about the

origin.

The Regular Point at the Origin

For Legendre's differential equation
C-1) v+ 2xy' - AQAHL)y = 0 (15.10)
the origin is a regular point, so that in terms of series its complete
solution can be written
y = Ay1 t R (15.11)

Al[l_MXz +___}+A2{X_
2! 3!

the coefficients being generated by the recurrence relation

(A—r+1) ()\+r)}A
r-

Ar+2:_{ r(r+1)

The first series y; reduces to a polynomial when A = an even integer
2 0, while the series y, terminates when A = a positive odd integer;
we shall consider A positive. Now suppose we increase A from an

integer n through non-integer values we expect that the effect will

be to modify the polynomial solution by the addition of a C.F. To

=
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investigate this hypothesis we construct the Padé approximants to
the fir3t series y; as A is increaaed from one to four. Similar

results apply to the second solution y,.

The polynomial terms together with the first three terms of the

C.F, as A varies, are indicated below.

x%  0.3333x 2 0.2667x 2 x 1+x
A=1 Y1 =1 - _ _ _ ———-=1-|—1o0g
1 1 1 2 1-x
1.875x 2 0.1875x 2  0.3542x 2
A=1.5 y;=1- _ _ R
1 1 1
2
A =2 Y1 =1 —-3x
> 1.0026x ¥ 0.3750x ¢  0.2187x °
A=2.5 y;=1-4.375x %+ _ _ -
1 1 1
> 3x?  0.2667x 2 0.2690x 2
1 1 1
> 6.3984x % 0.1417x 2 0.3271x 2
A=3.5 y;=1-7.875x %+ _ _ R
1 1 1

A=4vy, =1 - 10x* + 11.6667x"

The coefficients in the C.F part of yv;., for A =1, 1.5, 2.5, 3, 3.5 are
tabulated in Tables D, they are rational functions of A(A+1l). The
settling of these coefficents towards the value - 0.25 stands out in
each case. But also observe how, as A is increased, the C.F dies

away as it extends one polynomial solution to the next of higher degree.

In general we have, writing A = 2n + A and taking A;. = 1,
2n+2
A x A=2)(4n+N+3) x2
y1=1.+ A3x2 + ————+ A2n+lx2n + 2n+3 ( ) (4n 3) __
1 + (2n+3)(2n+4) +
(15.12)

so that as A — 2 we find y; reduces to a polynomial.

These expressions are fitting the derivatives of y; , at the origin and
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attempting to produce the branch cuts from x = £+ 1 . To obtain some
indication of the accuracy with which they are approximating vy;., we
have computed the convergents at various values of x; at x* = 0.9

with A = 2.5, 3, 3.5 some seventeen terms of the C.F are required to

produce five significant figures.



Rational functions, and therefore continued fractions, are intimately
bound to integral transfores, an aspect developed in TR/25.
Consequently some of the continued fractions that we have obtained can
usefully be interpreted as integral transforms and inverted to yield
approximations to the originals. The technique we developed in
section 11 is directly applicable to a variety of algebraic and first
order differential problems. To conclude we will derive a formal

continued fraction for the Laplace transform of a function.

16. J Fraction for the Laplace Transform of f(att).

We assume the Laplace transform ;ﬂf(a+t) exists and that the function

f(t) is such that we can use as our starting point the property

Lfr=s L f - f(a) (16.1)

where f = f(at+t). Our J fraction will match the series expansion

lf = +—= + + +.... (16.2)
S S S 52 3
o0 (e 0]
Now = et g tyar=| oSt A eyar =g,
O dt l®) dt Oa

therefore (16.1) can be written

iz—ff =slf — f(a) (16.3)
oa

which is a suitable form for applying our method.

39.
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We set (f = (16.4)

and arrange thatEﬁl matches the first 2n terms of the series (16.2),

n
We Find that
F F A
aﬁ{_n}_s{_n}: - Zndl (16.5)
albn Dn Dh

where A,y = C1 C ... Cpy1 ., the partial numerators in the C.F
being -c for n>1 see (16.9).

. . . . . C
This determines not only the error in approximating L byEfL but

n

proceeding, as in section 11, we deduce the relations satisfied by
Dy’
D’n + Cpt1 Dpor = 0 (16.6)

1

' A

Dn—l + (S_A—HJDD_:L —Dn =0 (16.7)
n

where the prime indicates differentiation with respect to a.

A
Putting d=—2 and eliminating D', we obtain the recurrence relation
n

Dhy1 = (s=d n41 ) Dn = Cpyan Dnor (16.8)

F, satisfies this same three term recurrence relation, and hence

f(a) co(a) c3(a) cp(a) Fn

s—dy(a) - s—dy(a) — s—dg(a) — " 's—dpla) - F,_3

LFa+t)=
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where the c,(a) and d, (a) can be successively generated by (16. 10).
]

A
Using (16.6) and drlzgfl we find
n

odn Cn+l
Chtl = PN +cp and dn+1::c +dp (16.10
n+1
\J
for the initial conditions we take dq = f;a) and c; = 0.
a

These relations can be used directly to generate C.F's, for example
(2.17) and (3-5) are readily obtained, but essentially the result (16.9)
is a formal one. Rutishauser [ § 4] in his investigations of the

Q.D algorithm derived (16.9) by a limiting process. With this

direct derivation our starting point is precise and more information

is available on the D, and the error term.
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Conclusion

An algebraic structure centred around the J fraction for a function
satisfying a first order differential equation has been constructed.

It generalises and extends features developed in TR/25 for some special
functions. We have concentrated on the J fraction, which approximates
the function for large x, rather than other continued fractions for

two reasons. The second order differential equations satisfied by the

f, are particularly important. Secondly the continued fractions for the
f, can often be usefully interpreted as Laplace transforms, the
convergents being inverted by first expanding them in partial fractions.
We have also shown that the analysis is applicable to other first

order problems, the most significant being the derivation of M fractions

for certain functions satisfying differential equations.

The theory presented is neat but limited. A. number of difficulties
have been indicated and only partly resolved. We did not obtain an
estimate of the error in the problem with three singularities, and we
have only indicated how rational function approximations extend to
second order differential equations in which the parameter n takes non-
integer values. However, we have shown that asymptotic formulae for

the coefficients in some continued fractions can be found; this and the

concept of quasi-periodicity generalise.

Numerically it is often sufficient to simply derive a continued fraction

for a function, or its transform, which fits derivatives of the function
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at one (or more) .regular point. In general, however, continued fractions
whose coefficients are quasi-periodic are of most interest, indicating
as they do the branch point structure of the function. It is upon these
and in developing asymptotic formulae for generating their coefficients

that we will concentrate.



TABLES A

COEFFICIENTS ¢, AND d, IN TEE C.F OF THE PARTICULAR INTEGRAL

O Joy bW P

=
[@2Ne}

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

OF

dx

(23 -1) Y o 30 (? 4 px+v) v — (1430)x — 3.

Cn

.000000

.125000
.706667
.170248
.158664
.287107
.170092
.168036
.178812
.169883
172461
.129528
.169744
.175039
.101410
.169648
176727
.083248
.169579
177917
.070555
.169527
.178802
.061185
.169487
.179486
.053985
.169455
.180030
.048280
.169428
.180473
.043648
.169407
.180841
.039813
.169388
.181151
.036585

.000000

.700000
.540209
.127784
.571167
.434432
.128807
.536492
.404657
.128283
.520536
.390739
.127784
.511385
.382694
.127397
.505456
.377455
.127099
.501304
.373774
.126865
.498235
.371047
.126678
.495874
.368945
.126525
.494001
.367276
.126398
.492480
.365918
.126291
.491220
.364792
.126200
.490159
.363843

O Joy Ul bW 3

=
[@3Ne}

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Cn

.000000

.500000
.006667
.921769
.008915
.028545
.882730
.034327
.042535
.069405
.048521
.050045
.454871
.055384
.054732
.176654
.059392
.057915
.368894
.062009
.060231
.227879
.063849
.061988
.443645
.065212
.063366
.872061
.066261
.064476
.437225
.067092
.065389
.095437
.067768
.066153
.819788
.068328
.066802

44,

.000000

.400000
.828571
. 728902
.114929
.901099
.956774
.058928
.465697
.499657
.035309
.727100
. 748690
.022319
.371630
.385283
.014109
.162954
.171094
.008452
.025828
.029920
.004319
.928886
.929881
.001167
.856744
.855293
.001316
.800975
. 797544
.003322
.756578
.751511
.004977
.720400
.713959
.006365
.690353
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TABLES A (cont)
COEFFICIENTS c, AND d, IN THE C.F OF THE PARTICULAR INTEGRAL
OF(x3—D§Z=3uu2+Bx+yoy—u+3am—3&+
X
1 1 1 2
o = 3 B = v = A o =3 B =0,y = 3
n Ce dn n Cn
40 0.169372 -0.126121 40 -13.592813
41 -0.181417 1.489254 }- 41 0.068799
42 -2.033831 -1.363033 42 -0.067360
43 0.169359 -0.126053 43 -13.402689
44 -0.181646 1.488472 44 0.069202
45 -2.031454 -1.362333 45 -0.067845
46 0.169347 -0.125992 46 -13.241130
47 -0.181847 1.487789 47 0.069549
48 -2.029381 -1.361722 48 -0.068271
49 0.169336 -0.125939 49 -13.102158
50 -0.182023 1.487189 50 0.069851
51 -2.027557 -1.361184 51 -0.068647
52 0.169327 -0.125891 52 -12.981353
53 -0.182180 1.486657 53 0.070118
54 -2.025940 ~-1.360707 54 -0.068981
55 0.169319 -0.125848 55 -12.875374
56 -0.182320 1.486182 56 0.070353
57 -2.024497 -1.360281 57 -0.069282
58 0.169311 -0.129809 58 -12.781653
59 -0.182446 1.485755 59 0.070564
60 -2.023201 -1.359898 60 -0.069552

dn

-3.682743
-0.007547
3.665003
-3.656384
-0.008564
3.643328
-3.633831
-0.009450
3.624583
-3.614315
-0.010227
3.608213
-3.597261
-0.010915
3.593793
-3.582231
-0.011529
3,580995
-3.568886
-0.012079
3.569559



TABLES A (cont)

COEFFICIENTS c, AND d, IN THE C.F OF THE PARTICULAR INTEGRAL

OF (x3—n§1=3uu2+Bx+yuw41+&m)—35
X

n Cn dn
1 1.000000 0.000000
2 -0.250000 0.769231
3 -0.226331 0.132730
4 0.046761 -2.731354
5 -0.272298 2.984785
6 -0,066225 0.086126
7 -0.024463 7.569739
8 -56.246359 -7.420071
9 0.028765 0.020952
10 -0.081550 2.620903
11 -6.565110 -2.483389
12 0.087568 -0.037118
13 -0.125498 1.864499
14 -3.238119 -1.713866
15 0.125873 -0.085528
16 -0.160432 1,562745
17 -2.208730 -1.392058
18 0.152020 -0.125579
19 -0.189027 1.403542
20 -1.727487 -1.211795
21 0.170597 -0.158948
22 -0.21 2971 1.306865
23 -1.452920 -1.095068
24 0.184247 -0.187052
25 -0.233374 1.242868
26 -1.276727 -1.012656
27 0.194564 -0.210989
28 -0.251002 1.197927
29 -1.154553 —0.951040}.
30 0.202551 -0.231595
31 -0.266407 1.164972
32 -1.065065 -0.903061
33 0.208862 -0.249505
34 -0.279996 1.139990
35 -0.996792 -0.864546
36 0.213938 -0.265210
37 -0.292081 1.120544
38 -0.943038 -0.832893
39 0.218084 -0.279088

40 -0.302905 1.105075



ZEROS OF NUMERATORS

ZEROS AND POLES OF CONVERGENTS

cg(x)
*
4
=54 “’:1‘“”“ o e
K
e
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10 ; [
X
x
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x
X
n
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Cyq(x)
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ZERO OF DENOMINATORS
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TABLE B

COEFFICIENTS p, AND g, IN THE M - FRACTION

O d U W N e P

=
[@3Ne)

11
12
13
14
15
16
17
18
19
20

FOR f

.5707963

.9341766
.5003349
.5051991
.5046930
.5036107
.5027398
.5021159
.5016723
.5013508
.5011122
.50093009
.5007902
.5006789
.5005894
.5005165
.5004562
.5004059
.5003634
.5003270

oNoNoNeoNoNoNoNoNoNoNolNolNolNolNoNoRNooRao RN

An -

.5707963

.9341766
.9793851
.9925126
.9967252
.9983113
.9990151
.9993733
.9995755
.9996987
.9997783
.9998320
.999869¢6
.9998968
.9999169
.9999321
.9999438
.9999529
.9999600
.9999649
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TABLES C

COEFFICIENTS IN THE CONTINUED FRACTION PART OF

THE LEGENDRE FUNCTION Q, (x) WHEN A = 0 , 0.25 , 4.25.

Qo (x) Qo.25 (%) Q4.25(X)
Coeffs. of S Fraction Coeffs. of S Fraction Coeffs. of S Fraction
3 P; ] = J Py
1 1.0000000 1 -0.4017857 1 -0.0058743
2 -0.3333333 2 -0.2260552 2 0.2945793
3 -0.2666667 3 -0.2814200 3 -0.6165775
4 -0.2571429 4 -0.2361369 4 0.18960098
5 -0.2539683 5 -0.26064741 5 -1.1916838
6 -0.2525253 6 -0.2403340 6 -0.1085335
7 -0.2517483 7 -0.2610090 7 0.0837972
38 -0.2512821 38 -0.2425934 8 -0.6068143
9 -0.2509804 9 -0.2582201 9 0.1274644
1 -0.2507740 10 -0.2440005 10 -0.2147691
1 -0.2506266 11 -0.2565519 11 -0.8933427
1 -0.2505176 12 -0.2449599 12 0.0493964
1 -0.2504348 13 -0.2554378 13 -1.0053992
1 -0.2503704 14 -0.24565506 14 0.6043554
1 -0.2503193 15 -0.2546445 15 -0.0062869
1 -0.2502781 16 -0.2461829 16 -0.8266352
1 -0.2502444 17 -0.2540515 17 -0.7527953
1 -0.2502165 18 -0.2465963 18 0.9312590
1 -0.2501931 19 -0.2535919 19 -0.7789507
2 -0.2501733 20 -0.2469291 20 0.0057600
2 -0.2501563 21 -0.2532254 21 0.2643442
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TABLES D
COEFFICIENTS IK THE CONTINUED FRACTION PART
OF y; FOR A =1, 1.5, 2.5, 3, 3.5
A =1 A=1.5
Coeffs. of S Fraction Coeffs. of S Fraction
] P ] Py
1 -1.0000000 1 -1.8750000
2 -0.3333333 2 -0.1875000
3 -0.2666667 3 -0.35416067
4 -0.2571429 4 -0.2162115
5 -0.2539683 5 -0.2889640
o -0.2525253 6 -0.2275208
7 -0.2517483 7 -0.2739839
8 -0.2512821 8 -0.2333907
9 -0.2509804 9 -0.2673302
10 -0.2507740 10 -0.2368559
11 -0.2506266 11 -0.2635672
12 -0.2505176 12 -0.2391312
13 -0.2504348 13 -0.2611470
14 -0.2503704 14 -0.2407372
15 -0.2503193 15 -0.2594596
16 -0.2502781 16 -0.2419306
17 -0.2502444 17 -0.2582159
18 -0.2502165 18 -0.2428520
19 -0.2501931 19 -0.2572613
A=2.5 A =3 A. = 3.5
Coeffs. of S Fraction Coeffs. of S Fraction Coeffs. of S Fraction
3 P, ) P, ) P,
1.0026042 3.0000000 6.3984375
1 -0.3750000 1 -0.2666667 1 -0.1416667
2 -0.2187500 2 -0.2690476 2 -0.3270833
3 -0.2959325 3 -0.2607459 3 -0.2239252
4 -0.2273557 4 -0.2558814 4 -0.2883854
5 -0.2760975 S -0.2534745 5 -0.2307257
6 -0.2329742 6 _-0.2522484 6 -0.2734508
7 -0.2683100 7 -0.2515702 7 -0.2347506
8 -0.2365276 8 -0.2511609 8 -0.2668644
9 -0.2641333 9 -0.2508949 9 -0.2375866
%g -0.2388859 10 -0.2507119 10 -0.2632180
15 —0.2615157 11 -0.2505802 11 -0.2395903
13 -0.2405505 12 -0.2504822 12 -0.2608863
L -0.2597187 12 —0.2504071 13 -0.2410539
1c  —0.2417847 1&  -0.2503484 %é -0.2592600
16 -0.2584080 16 -0.2503016 16 -0.2421627
18 -0.25740093 18 ~0.2502324 18 -0.2430296
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