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Abstract 

Additive manufacturing or 3D printing has spearheaded a revolution in the biomedical sector 

allowing the rapid prototyping of medical devices. The recent advancements in bioprinting 

technology are enabling the development of potential new therapeutic options with respect to 

tissue engineering and regenerative medicines. Bacterial polysaccharides have been shown to be 

a central component of the inks used in a variety of bioprinting processes influencing their key 

features such as the mechanical and thermal properties, printability, biocompatibility, and 

biodegradability. However, the implantation of any foreign structure in the body comes with an 

increased risk of bacterial infection and immunogenicity. In recent years, this risk is being 

potentiated by the rise in nosocomial multidrug-resistant bacterial infections. Inks used in 

bioprinting are being augmented with antimicrobials to mitigate this risk. The applications of 

bacterial polysaccharide-based bioinks have the potential to act as a key battlefront in the war 

against antibiotic resistance. This paper reviews the range of bacterial polysaccharides used in 

bioprinting and discusses the potential of various bioactive polysaccharides to be integrated into 

these inks. 

Keywords: Antimicrobial inks; Bacterial polysaccharides; Bioprinting; Tissue engineering; 

Biotherapeutics. 
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 1. Introduction: Emergence of bioprinting technology

Additive manufacturing or 3D printing is a rapidly emerging field that is being integrated 

into a wide variety of areas such as tissue engineering, regenerative medicines, aerospace 

engineering, and even property construction (Loh et al., 2018; Shi et al., 2019; Zhang et al., 

2019). The integration of bioscience and design has enabled the development of 3D 

biofabrication techniques that provide an assembly scaffold for tissue growth enhancement, and 

a means of incorporating cells and growth factors to encourage tissue generation (Derakhshanfar 

et al., 2018). The development of this bioprinting technology has facilitated treatments including 

wound dressings, bone repair, and the construction of responsive structures such as ear, liver, 

skin, neural tissues, and heart constructs (Aljohani et al., 2018b; Cornelissen et al., 2017). 

Several different 3D bioprinting technologies have been developed; the most popular include 

extrusion printing, droplet (inkjet) printing, laser-assisted printing, and stereolithography (Fig. 

1). Extrusion-based printing (EBB) utilizes the mechanical or pneumatic dispensing of the 

bioink. Compared to other bioprinting technologies, EBB is able to generate the most structurally 

robust constructs. The viscosity of bioink is a key determining factor in this, as high resolution 

printing can be achieved with higher viscosity. Increasing the viscosity can also increase the risk 

of extrusion pressure and shear stress-induced cell mortality, however many functional hydrogels 

can be printed without increasing the shear stress and extrusion pressure to detrimental levels 

(Hölzl et al., 2016; Yi et al., 2017). EBB has the advantage of allowing the use of multiple print 

heads or precursor cartridges to extrude different bioinks increasing the capacity to print more 

complex human tissues (Kang et al., 2018; J. Li et al., 2016; Mandrycky et al., 2016). Droplet-

based bioprinting (DBB) enables accurate ink deposition, with droplets generated by either 

thermal, piezoelectric, electrostatic, or drop techniques. The bioink droplet is generated by a 
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short electric pulse to the heating element, forming a bubble to exude the ink droplet. Similarly, a 

charge is applied to piezo crystals in piezoelectric inkjets, and the resulting vibration forces the 

ink droplet out. Though fast and low cost, using high-density inks can result in clogged print 

nozzles which affects the droplet size and precision deposition (Gudapati et al., 2016). This issue 

has largely been addressed by using acoustic ejectors such as a piezoelectric actuator (Murphy 

and Atala, 2014). DBB is still widely used to print replicating narrow complex biological 

structures; although factors such as heat, vibration, and physical stress can induce cell mortality 

(Yi et al., 2017). Droplet-based bioprinters are relatively cheap and contamination can be easier 

to manage compared to other bioprinters. The use of multiple print heads can facilitate the 

production of complex multi-cell constructs (Xu et al., 2013). Laser-assisted bioprinting (LAB) 

guides an individual cell with a laser pulse from a donor source to a given surface. As the pulse 

creates a bubble, it forces the cells to transfer. The near UV wavelengths provide the energy to 

enable nozzle-free, high-resolution precision printing of biological structures, and the use of 

more viscous bioinks (Trombetta et al., 2017). Stereolithography polymerizes photo-sensitive 

polymers using a digital mirror projector array for a uniform print. It is one of the most accurate 

of the solid freeform techniques, printing at a high resolution (100 µm) while maintaining high 

cell viability (Gou et al., 2014). Table 1 gives a comparative overview of different bioprinters in 

term of their cost, cell viability, printing speed, supported viscosities, resolution, quality of 

vertical structure, cell density, representative materials for bioinks, and the reported biomedical 

applications.. Bioprinting technologies are rapidly evolving yet; the search for suitable 

bioprinting materials remains a key limiting factor to the integration of these technologies to the 

biomedical sector.  
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One of the principle issues associated with the insertion of any foreign object such as a 

bioprinted scaffold into the human body is the increased capacity for bacteria to attach to that 

object and establish a biofilm. Bacteria growing in biofilms have been shown to be 101,000 

fold more resistant to antibiotics than their planktonic counterparts (Römling and Balsalobre, 

2012). Almost 80% of all hospitals-related bacterial infections involve biofilm formation (Pandin 

et al., 2017). A biofilm, by definition, is a structured community of bacterial cells enclosed in a 

self-produced polymeric matrix and adherent to an inert or living surface (Tshikantwa et al., 

2018). The biofilm mode of growth offers protection from various environmental challenges 

such as the innate and the adaptive immune system as well as offering an increased tolerance to 

antimicrobial and disinfection agents. The annual cost for biofilm infections in the USA is 

estimated to be $94 billion, with more than half a million deaths (Römling et al., 2014). The 

association of bacterial biofilms with non-native implanted structures is one of the leading 

concerns when it comes to the transition of bioprinting technologies from the benchtop to the 

clinic, particularly as individuals requiring bioprinted devices or organs may often already have a 

diminished immune capacity (J. Yue et al., 2015). The ability to mitigate this risk by using 

bioinks or ink-substrates that have the capacity to prevent bacterial growth or biofilm formation 

has the potential to be a viable strategy to overcome the risk of infection with device 

implantation. Hydrogels have emerged as one of the most promising bases for bioprinted inks, 

and many of the hydrogels used in bioprinting today are composed of bacterial polymers 

(Gopinathan and Noh, 2018; McCarthy et al., 2019). In this review, we will explore different 

bacterial-based polysaccharides that can be used as raw materials in bioprinting and highlight the 

range of bacterial-derived polysaccharides exhibiting antibacterial or anti-biofilm activities that 

could be used to potentially decrease the likelihood of infection on bioprinted structures. We will 
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also explore the capacity for these polysaccharides to be impregnated with bioactive compounds 

to prevent bacterial adhesion and discuss the different areas of medicine that these bacterial 

polysaccharides can potentially impact. Identifying the right polysaccharide to utilize in a bioink 

can significantly influence the ultimate success of any fabricated structures using that particular 

substrate. 

2. Bacterial polymers

Bacteria produce four primary classes of polymers: including polysaccharides, polyesters, 

polyamides, and inorganic polyanhydrides. Many of these polymers are secreted from the cell, 

with many forming the key matrix components of social structures such as biofilms. With respect 

to functionality, polysaccharides have demonstrated the highest capacity for integration into 

currently available printing technologies (Rehm, 2010) as these are stereoregular and can adopt 

an ordered conformation under given conditions. These polysaccharides can be divided into two 

groups based on the composition: homopolysaccharides composed of a single type of saccharide, 

and heteropolysaccharide consisting of multiple different saccharide species. Different sub-

groups within these classifications are defined by their chemical nature and different bonds 

linking the monomers comprising the polymer. These bacterial polymers can be further classified 

based on functionality such as sorptive (Gupta and Diwan, 2017), nutritive (Flemming and 

Wingender, 2001), immunostimulatory (McCarthy et al., 2017), redox-active (S. W. Li et al., 

2016), communicative (Irie et al., 2017, 2012), and architectural (Powell et al., 2018). These 

properties need to be considered with respect to downstream functionality particularly when 

assessing the suitability of a bacterial polysaccharide to be utilized as an ink constituent for 

bioprinting. The location of a specific polysaccharide may also impact the potential functionality 

as bacterial polysaccharides can be intracellular, stored in the cytoplasm such as glycogen and 
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bacterial starch or associated with the cell-surface such as peptidoglycan, lipopolysaccharides, 

lipooligosaccharides, teichoic acids, lipoteichoic acids, capsular polysaccharides (CPS) and 

exopolysaccharides (EPS) (Chapot-Chartier, 2014; Mistou et al., 2016; Tytgat and Lebeer, 

2014). EPSs and CPSs differ in their degree of attachment to the cell surface: EPSs are loosely 

associated with the cell surface via electrostatic interactions and often form a slime layer, while 

the CPSs are tightly linked to the cell surface and form a capsule around the cell surface. EPSs 

serve as natural adhesive and protect the cells from environmental stresses such as extreme pH, 

temperature, action of antibiotics, and desiccation. EPSs also play an essential role in the host-

pathogen interaction and biofilm formation (Limoli et al., 2015; Schmid, 2018; McCarthy et al., 

2017). The location of a polysaccharide can also have a significant impact on its purification 

strategies and cost. For instance, the different methods used for recovery of EPS from the culture 

broth depend on the characteristics of the microorganisms, the EPS type, and desired purity. A 

simple drying of culture broth yields a crude product. In contrast, the recovery of high purity 

EPS requires extensive downstream processing that involves different steps, such as the removal 

of cells by centrifugation or filtration followed by recovery of polysaccharide from the cell-free 

supernatant, usually through precipitation. The contaminants are removed through additional 

purification procedures such as through re-precipitation, deproteinization (chemically or 

enzymatically), and membrane processes (Sugumaran and V, 2017). The favourable 

characteristics conferred by bacterial polysaccharides has led to several them becoming routine 

bioink components. The following sections describe various bacterial polysaccharides routinely 

used in bioprinting (Table 2). 

2.1 Alginate 
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Alginates are one of the leading polymers used in bioprinting. These are unbranched 

polysaccharides produced by several algal genera such as Laminaria, Macrocystis, Ascophyllum, 

Ecklonia, Lessonia, and Durvillaea, and bacteria belonging to the Azotobacter and Pseudomonas 

genera (Lee and Mooney, 2012). In Azotobacter, alginate plays a key role in the formation of 

desiccation resistant cysts by being the principal component of the capsule-like layer that 

surrounds these cysts (López-Pliego et al., 2018). In Pseudomonas species, alginate is known to 

be a component of the extracellular matrix (ECM) that surrounds the bacteria in a biofilm. This 

is particularly relevant in the opportunistic pathogen, Pseudomonas aeruginosa, where alginate 

production has been shown to be a key pathogenicity determinant particularly in the infection of 

the lungs of cystic fibrosis patients (McCarthy et al., 2014; Ramsey and Wozniak, 2005). The 

structure of alginate consists of two uronic acid residues, including β-D-mannuronic acid (M) 

and its C5 epimer α-L-guluronic acid (G), linked via 1,4-glycosidic bonds. The combination and 

length of these M and G residues vary considerably in nature and can significantly impact the 

physiochemical properties of alginate, with more G residues are associated with a more rigid 

polymer (Moradali et al., 2018). Algal-derived alginates have traditionally been used in the 

biomedical and pharmaceutical sectors for a variety of different purposes including acting as 

thickeners and stabilizers. This is largely due to the low toxicity and immunogenicity and high-

level tractability. These features have put alginates at the forefront of various applications 

including drug delivery, cell encapsulation, stem cell culture, and tissue engineering scaffolds. 

Calcium alginate microspheres have been developed as controlled delivery and release systems 

(Dounighi et al., 2017; Maestrelli et al., 2017; Remminghorst and Rehm, 2006). For example, 

islets have been encapsulated in poly-L-ornithine (PLO)-coated alginate microbeads (Khanna et 

al., 2012), methacrylated glycol chitosan-coated alginate capsules (Hillberg et al., 2015), and in a 
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scalable and conveniently retractable device TRAFFIC (thread reinforced alginate fibre for islets 

encapsulation) (An et al., 2017). The majority of the bioprinting strategies using alginates thus 

far use algal-derived alginates which are printable at 2–4% (w/v) and are structurally-stable and 

solidify rapidly upon contact with a calcium-based crosslinker (CaCl2, CaSO₄ ) and maintain 

their 3D shape (Aljohani et al., 2018a; Zhang et al., 2019). These structures have been used to 

generate a range of synthetic tissue constructs comprised of amniotic fluid-derived stem cells, 

smooth muscle cells, and biliary epithelial cells (Freeman and Kelly, 2017; Hospodiuk et al., 

2017; Xu et al., 2013). The engineering of alginate to improve its capacity for utilization in 

bioprinting is an area of significant research focus (Jia et al., 2014). 

Algal alginates encounter several limitations hindering their use in bioinks, such as a lack 

of homogeneity in G/M residues and fluctuations in molecular weight in accordance with 

variable environmental conditions (Peteiro, 2018). These have downstream consequences on the 

capacity of algal-derived alginates to fulfil the specific needs necessary for their further 

successful uptake by the biomedical sector. Some of these limitations can be overcome by using 

bacterial-derived alginates, particularly if high-value applications are identified, that can help 

mitigate the increased cost associated with the bacterial alginate production. The basic 

viscoelastic properties of bacterial alginates differ from those of algal origin, with bacterial 

alginates displaying more capacity for modification such as O-acetylation, a higher level of 

monodispersity, and a higher molecular mass (Donati and Paoletti, 2009). The genetic 

tractability and functional characterization of the alginate biosynthetic pathways in both 

Azotobacter and Pseudomonas offer much greater capacity to refine and maximize the amounts 

of native alginates produced by each. These biosynthetic pathways are largely uncharacterized in 

algae (Moradali et al., 2018). Both bacterial genera also encode a wide variety of enzymes that 
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can modify the native alginates such as acetylases that can be used to alter the degree of O-

acetylation and hence viscosity. These represent tools that can be harnessed to tailor bacterial 

alginates to specific biomedical needs in a fashion that is not feasible with algal alginates. A 

greater understanding of the genetic regulatory mechanisms that control the alginate biosynthetic 

pathways in these bacteria means that they can also be modified to maximize production (Hay et 

al., 2013).  

Alginate has become a popular component of inks used for bioprinting due to its relative 

inertness, and while a lack of bioactivity is advantageous, it does count against alginate when 

compared to other bacterial polysaccharides that display dual functionality. It does not support 

cell adhesion due to its highly hydrate anionic surface and lack of cell binding receptors (Glicklis 

et al., 2000). To promote cell adhesion for cell culturing and tissue engineering applications, both 

alginate and alginate-based materials are usually chemically modified by introducing cell 

adhesive peptides such as Arg-Gly-Asp (RGD) (Llacua et al., 2018), Asp–Gly–Glu–Ala (DGEA) 

(Alsberg et al., 2001), and Tyr-Ile-Gly-Ser-Arg (YIGSR) (Dhoot et al., 2004), as side chains. 

RGD is extensively used model adhesion ligand that has complementary integrin receptors (e.g., 

αvβ3, α5β1) on various cell types (Koo et al., 2002; Llacua et al., 2018). It is chemically coupled 

to the alginate backbone using water-soluble carbodiimide chemistry (Lee et al., 2008). Alginate 

modification with YIGSR peptides via carbodiimide promoted the adhesion of neural cells 

(Dhoot et al., 2004). These modified alginate-based materials are widely used in 2D and 3D cell 

culture and as scaffolds in tissue engineering applications. The relative inertness and non-toxicity 

of alginate have been extensively evaluated in vitro and in vivo, it might still be immunogenic. 

For instance, alginates with high M content are immunogenic and approximately 10 times more 

potent to induce cytokine production as compared to the alginates with high G content (Otterlei 
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et al., 1991); however, a study has also reported no immunogenic response by alginate implants 

(Zimmermann et al., 1992). The immunogenicity of alginates could be due to the impurities 

present in it, in the form of heavy metals, endotoxins, proteins, and polyphenolic compounds, 

when obtained from different natural sources (Lee and Mooney, 2012), as studies have reported 

no immunogenic response in animals to a highly purified alginate obtained through a multi-step 

extraction procedure (Lee and Lee, 2009). Further, alginate-based inks can be impregnated with 

compounds that confer bioactivity and functionality. Indeed, several examples have been 

described where alginate-based inks or microbeads have been loaded with antimicrobials and 

shown to target Helicobacter pylori infection in the stomach (Adebisi et al., 2015; Gattani et al., 

2010). This narrow spectrum delivery window has been shown to successfully prevent the 

pathogen colonization (Alboofetileh et al., 2014; Hay et al., 2013; Osmokrovic et al., 2018; 

Russo et al., 2008). The functionality of alginate as ink for bioprinting is continuously 

developing with different crosslinking agents or polymer combinations being identified to tailor 

the properties of these inks to a given purpose (Madzovska-Malagurski et al., 2016). The 

capacity for alginate-based inks to be used as a vector for the targeted delivery of antimicrobials 

or to act as antibiofilm coatings is rapidly developing and these inks may represent a key tool in 

the efforts to prevent and treat antibiotic-resistant infections. 

2.2 Bacterial cellulose 

Another common bacterial polymer used in bioprinting is bacterial cellulose (BC). BC is 

a natural polymer produced by several bacterial genera, such as Acetobacter, Agrobacterium, 

Achromobacter, Aerobacter, Azotobacter, Sarcina ventriculi, Salmonella, Escherichia, and 

Rhizobium (Jung et al., 2007; Ullah et al., 2017) and Glucanacetobacter hansenii-based cell-free 

systems (Khan et al., 2015; Ullah et al., 2016b). It is produced within the microbial cells in the 
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form of β-1,4-glucan chains which are excreted across the terminal complexes (TCs), present at 

the outer membrane of bacterial cells, into the culture medium where these crystallize and form 

high-order structures such as protofibrils, ribbons, and bundles and ultimately form of a hydrogel 

at the air-medium interface (Endler et al., 2010; Kim et al., 2019) (Fig. 2). 

In bacteria, BC plays different functional roles, such as facilitating plant attachment and 

flocculation. Compared to plant cellulose, which is one of the most abundant polymers on earth, 

BC has several distinct advantages; including high purity, hydrophilicity, and a finer 3D fibrous 

structure (Ul-Islam et al., 2019a). Furthermore, it demonstrates a high tensile strength, shear-

thinning capacity, flexibility, and chemical stability (Gao et al., 2017, 2016). It is highly porous, 

non-toxic, and biocompatible allowing not only the attachment and proliferation of different 

mammalian cells such as pluripotent stem cells (de Oliveira, 2012; Dourado et al., 2017) and 

human keratinocytes (HaCaT) (Khan et al., 2018a) but also allows the infiltration of cells 

(osteoblasts MC3T3-E1) into its 3D matrix (Khan et al., 2018b). This has led to BC being 

explored in a diverse array of biomedical applications; the greatest success has been seen in its 

use in wound dressings with several commercial BC-based wound dressings available 

(BioFill™, XCell) and sustained drug delivery applications (Li et al., 2018). Its capacity to form 

a protective layer over a wound is due to the small pores in the nano-fibrillar network, which 

prevent bacteria from entering a wound and promote healing (Czaja et al., 2007; Fontana et al., 

1990; Sulaeva et al., 2015). Being a hydrogel, BC resembles the natural ECM. Its 3D 

nanofibrous network structure and morphological similarities with collagen (Lamboni et al., 

2019; Lee et al., 2015), make it an attractive material for cell immobilization, cell support, and 

natural ECM scaffolds (El-Hoseny et al., 2015). Natural ECM contains several signals that are 

received by cell surface receptors and contribute to cell adhesion and fate by influencing cellular 
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activities such as proliferation, migration, and differentiation. As pristine BC provides a less 

adhesive surface to the growth of cells due to the absence of adhesive ligands seen in natural 

ECM, the  immobilization of different ECMs (e.g., collagen, elastin, hyaluronan), growth factors 

such as basic fibroblast, human epidermal growth factor, and keratinocyte growth factor (Fu et 

al., 2013), RGD (Llacua et al., 2018), and its compositing with other biocompatible polymers 

such as gelatin (Khan et al., 2018a) and chitosan (Ul-Islam et al., 2019b), significantly improve 

its biocompatibility to support the adhesion, proliferation, and migration of cells within its 

interconnected porous structure (Halib et al., 2019; Martínez Ávila et al., 2016). However, 

beyond creating a physical barrier, pristine BC lacks innate antibacterial and antifungal 

properties; this has led to the development of enhancement strategies whereby it is impregnated 

with different antimicrobials or nanoparticles such as silver (Maneerung et al., 2008),  gold 

(Khan et al., 2018b), zinc oxide (Ul-Islam et al., 2014), and titanium dioxide (Ullah et al., 

2016a), as well as cationic peptides (Fürsatz et al., 2018) to improve the anti-infective capacity 

of BC-based wound dressings (Di et al., 2017; Ul-Islam et al., 2011). In bioprinting, the 

application of cellulose has been dominated by the generation of ductile films or mats produced 

through electrospinning, a technique used to produce one-dimensional (1D) fibrous materials 

(Maria Manzine Costa et al., 2012). The direct use of BC in bioprinting has been limited by its 

poor solubility in common solvents owing to the presence of regular intra- and inter-molecular 

hydrogen bonding that stabilizes its reticulate structure. Nevertheless, it is used as a component 

of bioinks, for example with alginate, where the excellent shear thinning properties of BC are 

combined with the rapid crosslinking activity of alginate, to print anatomically accurate cartilage 

structures loaded with human chondrocytes using electromagnetic jet printing technology 

(Markstedt et al., 2015). One of the most recent methods involves the incorporation of BC 
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producing strains such as A. xylinum into the already established hydrogel-based inks. These inks 

are then printed over a given surface in a defined geometry and incubated for a defined period. 

The ink constituents can then be washed out, leaving only a network of nanofibrillated BC 

(Schaffner et al., 2017). 

2.3 Hyaluronic acid 

Hyaluronic acid (HA) is a linear polysaccharide composed of β-(1→4) linked D-

glucuronic acid and N-acetyl-β-(1→3) linked D-glucosamine. It is commonly found in the ECM 

of vertebrate epithelial, neural, and connective tissues. HA possesses a wide range of features 

that make it amenable to bioprinting, such as high viscoelasticity, degradability, and low 

immunogenicity (Aljohani et al., 2018b). Owing to these features, it has been used in biomedical 

applications since the 1950s. It is; however, also produced by different bacteria including 

Streptococci spp., Pasteurella multocida, and Cryptococcus neoformans where it is believed to 

play a role in immune evasion, encapsulating the cells to allow them to escape detection from the 

host’s immune system (Sze et al., 2016). Due to the high levels of proteinaceous contamination, 

time, and cost associated with the extraction of HA from eukaryotic tissues, biotechnological 

production methods using bacterial or cell-free systems is the preferred method of production. 

Synthetic biology approaches have been used to express the Streptococci HA biosynthetic cluster 

in industrial bacterial strains such as Bacillus subtilis. This organism is capable of being grown 

in fermenters allowing large-scale production of HA (Widner et al., 2005). Currently, HA is 

widely used in a variety of biomedical applications such as wound healing, surface coatings, and 

sustained/targeted release formulations (Moscovici, 2015). Its physical properties and prior use 

in biomedical applications have led to HA becoming one of the most popular polymers used in 

bioprinting. It is typically blended with dextran to overcome stability issues that derive from its 
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high hydrophilicity (Aljohani et al., 2018b; Pescosolido et al., 2011a). Numerous examples have 

demonstrated how bioprinted scaffolds based on HA can be used to mimic the native ECM, 

allowing cellular adhesion, growth, and proliferation (Bian et al., 2016a; Ning et al., 2018). Like 

many of the bioink polymers in general use, HA does not possess any intrinsic antimicrobial 

properties other than its capacity to impede the passage of bacteria in the pericellular space of 

eukaryotic tissues. However, it has been doped with gold, silver, copper, and palladium 

nanoparticles as well as with antimicrobials to prevent bacterial attachment and the colonization 

of tissue scaffolds (Cárdenas-Triviño et al., 2017; Matsuno et al., 2006). As more HA 

crosslinking variants are discovered and explored, the capacity to have more control over 

features such as the gelation process and subsequent degradation kinetics facilitating greater 

functionality and the eventual development of smart bioinks (Bian et al., 2016a, Bian et al., 

2016b).  Various strategies to improve the functionality of HA based bioinks have been 

developed these include the introduction of hydrophobic moieties and crosslinking with various 

chemical functional groups such as with photo cross-linkable dextran derivatives, hydroxyethyl 

methacrylate derivatized dextran (Pescosolido et al., 2011b), thiolation and gelatin-modification 

(Skardal et al., 2010), functionalization of thiolated HA and gelatin (Aleksander Skardal et al., 

2010), grafting of poly(lactic-co-glycolic acid) with incorporated bone morphogenesis protein-2 

(BMP-2) (Park et al., 2011). 

18











2.4 Gellan 

Gellan gum is an anionic extracellular polysaccharide produced by the bacteria 

Sphingomonas elodea. It is composed of repeating units consisting of α-L-rhamnose, β-D-

glucose, and β-D-glucoronate. It has been used in a wide variety of applications in the food 

industry, including as a gelling/stabilizing agent. In the biomedical industry, it has been used in 

ophthalmic treatments and sustained drug release formulations (Ferris et al., 2013; Posadowska 

et al., 2016; Yu et al., 2017). It has also been explored in wound dressings; however, it has not 

enjoyed the success of other bacterial polymers such as BC due to its soft texture and low 

thermal stability. These issues are for the most part being overcome with the advent of 3D 

printing technology. Gellan gum has a number of properties that make it amenable to use in inks 

for bioprinting, including its capacity to be crosslinked by cation concentrations in the low 

millimolar range, high monodispersity, low immunogenicity, excellent rheological properties, 

and a high gelling efficiency at 37°C (Ferris et al., 2013; Silva-Correia et al., 2011; Smith et al., 

2007). These properties have allowed gellan gum to be used successfully to create scaffolds for 

bone, fibroblasts, and neural cultures (Lozano et al., 2015; Silva-Correia et al., 2011). One 

significant disadvantage hampering the further development of gellan gum-based inks, however, 

is that significant degradation of structural integrity has been observed over time in vivo. This is 

being overcome by the utilization of different crosslinking approaches such as UV photo-

crosslinking; however, this requires chemical modification of the polymer to add methyacrylates, 

but this has not been shown to impact the cytotoxicity of gellan (Silva-Correia et al., 2011). It 

has also been shown that the degradation properties of gellan gum in the synthetic body fluid can 

be altered by changing the ratio of surface area per mass, demonstrating that this must be careful 

consideration when designing scaffolds for in vivo use (Yu et al., 2017). Gellan has also been 
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assessed as part of a polymer blend with alginate where it was shown to improve several features 

such as shape fidelity, mechanical strength, and cell attachment as opposed to a pure alginate gel 

(Akkineni et al., 2016). A study reported that the addition of  glycerol significantly improved the 

mechanical properties by overcoming the brittleness caused by the rigid interconnection among 

the polymeric chains , it also improved the muco-adhesion capacity (Paolicelli et al., 2018). 

Further, the addition of TiO2 nanoparticles not only improved the mechanical strength and 

swelling, but the small shielding effect of TiO2 prevented the degradation and retained the 

stability of gellan-TiO2 film. Further, the gellan-TiO2 film generated reactive oxygen species 

(e.g., H2O2, OH•, and O2
) at low wavelength (≤ 400 nm) which possess antibacterial activity

(Ismail et al., 2019; Ullah et al., 2016a). Similarly, formulations have been blended that contain 

compounds with antibacterial activity such as zinc- and strontium-loaded glass microparticles 

(Douglas et al., 2018). This remains an area for potential exploration to improve the transition of 

3D printed structures using gellan into the clinic. 

2.5 Dextran 

Dextran is a neutral polymer with α-(1→6) and α-(1→4) glucopyranosyl linkages 

produced by several lactic acid-producing bacteria including Leuconostoc mesenteroides and 

Streptococcus mutans. It was initially discovered by Louis Pasteur as a fermentation by-product 

of wine and went on to become one of the first microbial polysaccharides to be used in a clinical 

setting when it was approved for use as a plasma volume expander in the 1950s (Moscovici, 

2015; Pasteur, 1861). It has been used as a key component of hydrogels in burn wound dressings, 

where it has been shown to promote rapid functional neovascularization and wound healing 

processes (Sun et al., 2011). Its use in bioprinting; however, has been relatively limited and 

largely confined to being used as a component of polymer blends. An oxidized form of dextran 
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has also been used in combination with gelatin to create ink for bioprinting with a tuneable 

gelation time based on the thermal sensitivity of gelatin and subsequent Schiff-base crosslinking 

of oxidized dextran (Du et al., 2017). Dextran modified with hydroxyethyl methacrylate (to be 

made photosensitive), has been used as a blend with HA to overcome its stability issues 

associated with its high hydrophilicity. By varying the concentration of modified dextran in ink, 

it was possible to alter key features such as the mechanical properties and degradation time 

(Pescosolido et al., 2011a). Dextran does not possess any antibacterial activity but has been 

modified through the addition of aldehyde groups or by blending with bioactive compounds to 

exhibit antibacterial and anti-biofilm activity, highlighting its potential as a component of 

antimicrobial inks for bioprinting (Aziz et al., 2012; De Cicco et al., 2014). 

2.6 Xanthan 

Xanthan is an exopolysaccharide (EPS) produced by the plant pathogen Xanthomonas 

campestris through the aerobic fermentation of glucose or sucrose. It is a heteropolysaccharide 

composed of glucose, mannose, glucuronic acid, acetate, and pyruvate. It has been used as a food 

additive for almost 50 years due to its ability to function as a thickener. Due to its long term use 

as a food additive and biological inertness, much of the focus of the applications of xanthan gum 

to 3D printing technology has focused on 3D food printing, where its shear-thinning capacity and 

viscosity at low concentrations are properties that allow it to act as a rheological modifier, 

improving the 3D printing properties of a given food (Azam et al., 2018; Z. Liu et al., 2018). 

These properties have also led it to be a component of some hydrogels used for tissue 

regeneration studies (Elizalde-Peña et al., 2017). Like many of biologically inert bacterial 

polysaccharides, its functionality has been improved by the incorporation of antifungals and 
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antibacterial elements allowing the targeted treatment of infections using hydrogel formulations 

(Silva Santos et al., 2016; Singh et al., 2019). 

2.7 Bioactive bacterial polysaccharides  

Bacteria are known to produce a diverse range of polysaccharides. The primary use of 

bacterial polysaccharides in bioprinting is to confer structural properties. However, many have 

been shown to also have additional bioactivities. Recently the number of bacteria identified that 

are capable of producing polysaccharides with antibiofilm activity has risen sharply, suggesting 

this is an under-identified strategy employed by bacteria to secure a favourable environment 

from the competing species (Table 3) (Bernal and Llamas, 2012; Junter et al., 2016; Rendueles et 

al., 2013). These polysaccharides typically have broad-spectrum activity against both Gram-

positive and Gram-negative pathogens without impacting their growth (Abu Sayem et al., 2014; 

Bendaoud et al., 2011; He et al., 2010; Jiang et al., 2011; Kanmani et al., 2011; Karwacki et al., 

2013; Li et al., 2014; Spanò et al., 2016; Valle et al., 2006; J. Wang et al., 2015). This suggests 

that the capacity to develop resistance to these antibiofilm polysaccharides is low as compared to 

traditional antibiotic therapies (Travier et al., 2013).  

 Several different potential mechanisms of action for these anti-biofilm polysaccharides 

have been proposed, including biomasking, the disruption of gene expression, the alteration of 

biotic/abiotic surface properties and the activation of biofilm degrading agents (Junter et al., 

2016; Rendueles et al., 2013). r-EPS obtained from Lactobacillus acidophilus A4 has been 

shown to inhibit biofilm formation by downregulating the expression of genes required for 

chemotaxis and curli formation in enterohemorrhagic Escherichia coli (Kim et al., 2009).  

Significantly, a number of these polysaccharides have been shown to be capable of dispersing 

the already established biofilms (Jiang et al., 2011; Wu et al., 2016), suggesting the biomedical 
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implication for such a polysaccharide may not be just prophylactic. Some of these antibiofilm 

polysaccharides have also been shown to exhibit further biologically relevant activities such as 

antioxidant activity and metal ion chelation activity as well as possessing features amenable to 

incorporation into bioinks such as high levels of thermostability, a pseudoplastic rheology, 

emulsifying activity, and water solubility (Abid et al., 2018; Li et al., 2014, 2015; Sardar et al., 

2015; Spanò et al., 2016; Wu et al., 2016).  

In comparison to antibiofilm polysaccharides, only a small number of bacteria-derived 

polysaccharides have been identified that display antibacterial activity (He et al., 2010; J. Liu et 

al., 2018). Of these, HS-P03, a polysaccharide composed of glucose, mannose, and galactose 

derived from Streptomyces virginia H03 has been shown to be active against both Gram-negative 

and Gram-positive bacteria. The precise mechanism of action for this polysaccharide is yet to be 

determined, although it is proposed to disrupt the cytoplasmic membrane and cell wall leading to 

cell death (He et al., 2010). The capacity for these polysaccharides to be functionally integrated 

into ink for bioprinting as either bioactive constituents or core conveyors of form is dependent on 

further investigation of their biophysical properties. This collection of bioactive bacterial 

polysaccharides is consistently expanding particularly as the likelihood of finding functionally 

active and biologically relevant polysaccharides is higher among bacteria due to the close 

proximity that exists in microbial communities and the evolution of antimicrobial and antibiofilm 

polysaccharides that may offer competitive advantages within these environmental niches. The 

amenability of many of these polysaccharides to being utilized as a bioink is yet to be 

determined, but many have the potential to form the starting blocks for bioactive inks. 
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3. Limitations to emerging methods

Many of the limitations of current bioprinting procedures are associated with the 

preparation of bioinks, which usually takes a few days to several weeks and requires complex 

preparation procedures. For instance, the preparation of multicomponent bioinks includes the 

development of appropriate materials with desired structural, shear-thinning, and cyto-

compatible properties (Ashammakhi et al., 2019). Moreover, limited shelf-life and storage 

difficulties are major challenges, which compromise the efficacy of printing procedures. For 

example, most hydrogels of heterogeneous and biomimetic structures are degraded relatively fast 

and lose their structures in two to three weeks. This issue has been addressed to some extent by 

introducing reinforcing fibres (Narayanan et al., 2016) or particles (Sawkins et al., 2015; Visser 

et al., 2015). Further, the shelf-life of bioinks is increased through lyophilization and cryomilling 

and their subsequent reconstitution before use (Yu et al., 2019). However, the reconstitution of 

bioinks or their components from the lyophilized state compromises their shelf-life and local 

working time (Hornick and Rajan, 2015; Murphy and Atala, 2014). Further, the introduction of 

new features into printers to preserve the newly printed regions, designing of advanced parallel 

printers, and refining the printing process such as through introduction of continuous liquid 

interface production (CLIP) (Tumbleston et al., 2015) can help resolve the major issues 

associated with the limited shelf-life of a bioink. Another major challenge in bioink preparation 

is defining the balance between the different components of bioink (i.e., materials, cells, and 

biomolecules). The use of materials with specialized properties, such as smart materials with 

stimuli-response abilities or shape memory, further complicates the preparation of bioinks. 

Another key limitation associated with the current bioprinting technology is the 

requirements of all hydrogels to be in liquid or semi-liquid state for printing. This indicates that 
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the viscosity of printable bioink must be controlled according to the requirements of a bioprinter 

as well as the desired features of the scaffold to be printed. Difficulties can arise when 

attempting to control the transition from a liquid to a more rigid structure.  In general, all bioinks 

should form quasi-scaffold structures supporting the adhesion and proliferation of cells after 

printing, which can be achieved by using hydrogel pre-polymer solutions which are photo- or 

chemical crosslinking polymers (Araujo et al., 2014; Bajaj et al., 2014). A simple printing 

process requires that the different printed layers remain connected and provide mechanical 

support to each other during the printing process. However, the introduction of voids in one layer 

usually results in the collapsing of subsequent layers, thus resulting in a cascade of offset 

features and deformed geometry of the printed scaffold. The incorporation of sacrificial 

materials, such as carbohydrate glass (Miller et al., 2012), Pluronic F-127 (Kolesky et al., 2016, 

2014), and gelatin microparticles (Hinton et al., 2015) overcome this discrepancy by providing 

mechanical support to the subsequent layers during the layer-by-layer printing process. This 

sacrificial material is removed as soon as the desired geometry is attained. This approach has 

been successfully used in the printing of microelectrochemical system (MEMS) devices (Luiz E 

Bertassoni et al., 2014); however, this strategy complicates the overall printing process, such as 

the requirements of using multiple nozzles as well as the post-printing processing of the printed 

scaffolds. This indicates that the any substance used as sacrificial material should not only 

provide mechanical support to the printing scaffold but should also be printable under the same 

experimental conditions as well as non-toxic to the cells. 

The limitations associated with the use of bacterial polysaccharides in bioinks are 

common with the integration of any new polysaccharide into an ink for bioprinting with the aim 

to improve its existing features such as thermostability, rheology, water solubility, 
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biocompatibility, and degradative capacity, or impart additional features. Such properties govern 

the fabrication and stability of bioprinted complex structures. While microbial polysaccharides 

are being exploited for additive manufacturing technologies, their uptake is still limited. The 

limited uptake of bacterial polysaccharides as biomaterials is at least partly due to costly 

production methods, difficulty in scalability, and the availability of cheaper synthetic or 

plant/algal alternatives. However, the emergence of antibiotic resistance has led to an increased 

interest in bacterial polysaccharides as potential biomaterials for use in a range of medical 

applications (wound dressings, tissue regeneration, and bone repair) (Moscovici, 2015; 

Rendueles et al., 2013). This has been supported by the exponentially growing field of synthetic 

biology where the polysaccharide synthesizing gene clusters can be inserted into the synthetic 

scaffolds or workhorse bacterial strains that can optimize the production, reduce the 

contaminants, and streamline the purification procedures (Widner et al., 2005). Production and 

engineering of structures composed of bacterial polysaccharide have also been hampered by a 

lack of suitable technology. This limitation is being eroded by advances in additive 

manufacturing and the diversity of 3D printing technology, allowing the high speed and high 

throughput manufacturing of prototypes to test in a biomedical setting. There is an issue, 

however, with cross-platform integration whereby the specific polysaccharides used in a bioink 

may only be compatible with specific customized printing facilities. This can hamper the general 

uptake of these prospective bioinks but also makes it more attractive as a commercial venture 

given the intellectual property that may be associated with the production procedures.  

Although the printing of various simple tissue constructs has been achieved with 

considerable success, the printing of complex tissue constructs and full-scale organs is still not 

feasible. This is due to the lack of reliable printing techniques and metabolic complexity of full-
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scale organs. A full-scale organ requires a complex and embedded vasculature and mechanically 

vigorous conduits associated with the host blood circulatory system. Further, the extended time 

required for printing of large organs risks the viability of cells within the bioink as well as in the 

first printed regions (Mandrycky et al., 2016). The less efficient and slow assembly of vascular 

features and high risk of necrosis during the early printed regions further limit the printing of 

large organs. These issues can be addressed to some extent through the development of high-

speed and advanced printers and exploring new combinations of cells and materials with better 

structural features and compatibility. In response to the limitations of core 3D printing 

technologies (inkjet/droplet, extrusion, and laser-induced transfer), refinements, modifications, 

and hybrid models are developing a greater precision and mechanical control of bioprinting 

parameters. These models include pneumatic valve actuation, drop-on-demand micro-valve 

bioprinting, and cell sedimentation. These techniques facilitate the printing of stacking cellular 

monolayers, high output precision, and focused cell seeding for directed tissue growth (Shi et al., 

2018). Scaling up is another major challenge for industrialization of 3D printing technology. 

With 3D bioprinting technologies forecast to reach a value of US$1.9 billion by 2028, more 

complex technologies such as microfluidics, 2-photon polymerization, and polymeric fibre 

electro-spinning are advancing the 3D bioprinting application markets (Colosi et al., 2016; Z. Liu 

et al., 2018; Miri et al., 2019).  

The acceptance of 3D printed material by the general public is another major issue. 

Although the 3D printed constructs are produced from the same microbial polysaccharides 

commonly used by the people, the 3D printed constructs need to go through comprehensive 

evaluation prior to their general use in clinic and routine life. Such regulatory issues have 

delayed the wide applications of bioprinted constructs in clinical applications. To date, the 
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clinical use of 3D printed constructs is only limited to few sporadic cases. Although the use of 

3D implants varies from country to country, wider acceptance and common consensus need to be 

developed by establishing appropriate regulations by the regulatory bodies to enhance their 

industrial-scale production and general applications.    

4. Future perspectives

The capacity for many bioactive polysaccharides to be incorporated into inks for 

bioprinting is dependent on further investigation of their biocompatibility and printability. Many 

of the bacterial polysaccharides that are currently used in bioprinting have been augmented by 

the addition of antimicrobials (Fürsatz et al., 2018; Matsuno et al., 2006; Sulaeva et al., 2015; K. 

Yue et al., 2015). However, the possibility of integrating next-generation antimicrobials, that do 

not actively kill bacteria, but suppress the key virulent mechanisms they use to establish 

infection, such as the capacity to form a biofilm, is an underexplored area and one that could 

have the biggest impact in the shortest time frame. Particularly, as many compounds possessing 

nonbiocidal antibiofilm activity have been identified as phytochemical components of food such 

as ajoene in garlic and coumarin in cinnamon. This means that they can be fast-tracked through 

further development as much of the pharmacokinetics are already determined (Gutiérrez-

Barranquero et al., 2015; McCarthy and O’Gara, 2015; Reen et al., 2018). They are also effective 

in doses that are not likely to significantly impact the structural integrity of a given bioink while 

also reducing the probability of developing resistance as compared to the integration of 

traditional bactericidal antibiotics. 

The key to developing the use of bacterial polysaccharides is identifying high-value 

applications that can necessitate the further development of bacterial polymers as bioinks and 

highlight their use in the biomedical sector. Using 3D printing with bacterial polysaccharides, 
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particularly those with bioactivity, to tackle the emergent threat of antibiotic resistance may be 

the high-value application needed to drive their development. This is being helped by the 

discovery of more and more polysaccharides that display antimicrobial properties but could be 

improved as the potential applications of bacterial polysaccharide-based bioinks has the capacity 

to act as a key battlefront in the war against antibiotic resistance. 
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Fig. 1. Bioprinting Technologies: Extrusion-based bioprinting uses pneumatic and mechanical 

force to dispense the bioink. The bioink is extruded as a continuous filament by one of three 

techniques, (a) pneumatic pressure, (b) mechanical piston, and (c) rotating screw. Droplet/inkjet 

bioprinting enables accurate ink deposition with droplets generated by thermal (d), or 

piezoelectric (e) techniques. The bioink is generated by a short electric pulse to the heating 

element, forming a bubble, which exudes the ink droplet onto the substrate. Similarly, a droplet 

is formed when a charge is applied to piezo crystals in the piezoelectric inkjets, the resulting 

vibration forces out the ink droplet. Laser-assisted bioprinting deposits an individual cell with a 

laser pulse from a donor bioink coated source layer. The laser pulse creates a bubble in the 

energy-absorbing layer, forcing the cells in the donor layer to be deposited to the substrate 

enabling nozzle-free, high-resolution precision printing with more viscous bioinks. 

Stereolithography polymerizes photosensitive polymers (resin). An XY digital scanner and 

mirror array focuses UV light onto the platform. As each surface layer is polymerized, the 

platform drops allowing the resin to wash over the print. The UV light then polymerizes this new 

layer. This cycle continues until the object is printed. 
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Fig. 2. Cellulose Hydrogels: Schematic illustration of (A) synthesis of β-1,4-glucan chains and 

their excretion from the bacterial cells across the cell wall through TCs, involving the (B) 

synthesis and aggregation of fibrils, (C) formation of pellicles, (D) movement of pellicle towards 

the air-medium interface due to density gradient (cell-free system), and (E) and formation of BC 

sheet at air-medium interface in the form of a (F) hydrogel, which is seen as a (G) reticulated 

fibrous structure forming a network of cellulose fibres. The figure has been adapted from (Ul-

Islam et al., 2015; Kim et al., 2019). 
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