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Abstract

Despite the complexity of the visual world, humans rarely confuse variations in illumination,

for example shadows, from variations in material properties, such as paint or stain. This abil-

ity to distinguish illumination from material edges is crucial for determining the spatial layout

of objects and surfaces in natural scenes. In this study, we explore the role that color (chro-

matic) cues play in edge classification. We conducted a psychophysical experiment that

required subjects to classify edges into illumination and material, in patches taken from

images of natural scenes that either contained or did not contain color information. The

edge images were of various sizes and were pre-classified into illumination and material,

based on inspection of the edge in the context of the whole image from which the edge was

extracted. Edge classification performance was found to be superior for the color compared

to grayscale images, in keeping with color acting as a cue for edge classification. We defined

machine observers sensitive to simple image properties and found that they too classified

the edges better with color information, although they failed to capture the effect of image

size observed in the psychophysical experiment. Our findings are consistent with previous

work suggesting that color information facilitates the identification of material properties,

transparency, shadows and the perception of shape-from-shading.

Author summary

Our visual environment contains both luminance and color (chromatic) information.

Understanding the role that each plays in our visual perception of natural scenes is a con-

tinuing topic of investigation. In this study, we explore the role that color cues play in a

specific task: edge classification. We conducted a psychophysical experiment that required

subjects to classify edges as « shadow » or « other », depending on whether or not the

images contained color information. We found edge classification performance to be

superior for the color compared to grayscale images. We also defined machine observers

sensitive to simple image properties and found that they too classified the edges better
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with color information. Our results show that color acts as a cue for edge classification in

images of natural scenes.

Introduction

Edges are pervasive features of natural scenes. They can result from a number of causes: object

occlusions, reflectance changes, texture changes, shading, cast shadows and highlights, to men-

tion the main varieties. The first three of these constitute changes in material properties, while

the last three, namely shading, cast shadows and highlights, constitute changes in the intensity

of illumination.

Gilchrist and colleagues were one of the first research groups to point out the importance of

classifying edges into material and illumination, in their case to estimate the lightnesses (per-

ceived reflectances) of surfaces [1,2]. There are multiple cues to help distinguish material from

illumination [3], one of which, color, would on a priori grounds be expected to be useful. In

the natural visual world color variations tend to be material in origin, whereas luminance vari-

ations tend to be either material or illumination, thereby privileging color over luminance as a

potential cue for edge classification [4]. As a result the “color-is-material” assumption has been

exploited by computer algorithms tasked with segmenting images of natural scenes into their

material and illumination layers [5–7]. Using artificial laboratory stimuli, color information

has been shown to facilitate shadow identification [8] and shape-from-shading [9], in ways

that are in keeping with the color-is-material assumption. However with natural scenes, while

there is evidence that human vision benefits from color in identifying edges [10], there is to

date no psychophysical evidence that humans similarly benefit from color when classifying
edges.

We hypothesized that if color acts as a cue for edge classification in natural scenes, observer

performance should be better for color compared to grayscale images. Another prediction is

that the superiority of color over grayscale will decrease with stimulus size, since larger stimuli

contain more contextual cues to help the task thus marginalizing any benefit of color. To test

our predictions, we measured the ability of human observers to categorize edges into shadow

or material in both color and grayscale images, using three sizes of image patch. To evaluate if

simple features related to color are sufficient to account for human performance in the task,

we defined a variety of machine observers in the form of Fisher linear classifiers sensitive to

simple image properties, and measured their performance when classifying the same edge

images.

Results

Psychophysical experiment

10 participants (2 females, age 20–40), having normal or corrected visual acuity and normal

color vision, took part in the edge categorization task. They were asked to classify briefly pre-

sented edges located at the center of each image as “shadow” or “other”. Hence, this was a sin-

gle-interval forced-choice task. We compared their performance for color and grayscale

versions of three different sizes of edge images extracted from the images of natural scenes.

Stimuli. Stimuli were images from the publicly available McGill Calibrated Color Image

database [11]. Edges that were either ‘pure’ shadows or ‘pure’ material were selected by visual

inspection of the whole image. Pure shadow edges were defined as changes only in illumina-

tion, while pure material edges were defined as changes without change in illumination. Square
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images of different sizes (small: 72 x 72, medium: 144 x 144 and large: 288 x 288 pixels, corre-

sponding approximately to 2.5 x 2.5, 5 x 5 and 10 x 10 degrees of visual angle in the viewing

conditions of the experiment) each centered on an edge were extracted using a custom soft-

ware tool with a cursor. Representative patches of images from our database are illustrated in

Figs 1 and 2. The outside-edge of each stimulus was smoothed by applying a circular mask of

the same diameter as the stimulus convolved by a Gaussian filter of size 12 x 12 pixels and stan-

dard deviation 30 pixels.

Color space. To determine if color improves observer classification performance, we

compared images containing both luminance and color information with images containing

only luminance information. For simplicity we will refer to the former as “color” images and

the latter as “luminance-only” images. For the color images we used the untransformed camera

images. To create the luminance-only images the following procedure was employed. After a

gamma-correction of the monitor’s RGB outputs, the RGB values of the original camera

images were first transformed into L (long-wavelength-sensitive), M (medium-wavelength-

sensitive) and S (short-wavelength-sensitive) retinal cone-receptor responses, using the mea-

sured spectral emission values of the monitor RGB phosphors and the LMS cone sensitivities

of human vision established by Smith & Pokorny (1975) [12]. LMS responses were then trans-

formed in a three-dimensional color-opponent space constituted of a luminance axis (Lum),

which sums the outputs of the L and M cones, and two chromatic axes (L/M and S/(L+M)),

along which the relative excitations of the three cone types vary while the luminance remains

constant. Formally, the following transformations of the LMS cone excitations were used [13–

15]:

Lum ¼ LþM ð1Þ

L=M ¼
L � aM
LþM

ð2Þ

S= LþMð Þ ¼
2S � bðLþMÞ
2Sþ bðLþMÞ

ð3Þ

where α and β are monitor-specific parameters (α = 1.33, β = 0.14).

The projection of a pixel in this color space onto the luminance axis preserves the lumi-

nance properties of the pixel while removing its chromatic content. Note that this method

removes the color content of the image rather than converts it into luminance. A schematic

view of the processing chain of the original color image to obtain a color or a luminance-only

stimulus is given in Fig 3.

Procedure. Observers were seated 57 cm in front of the monitor screen. Head position

was stabilized by the use of a chin rest. On each trial a stimulus was briefly presented for 500

ms in the center of the screen. We employed a single-interval forced-choice task in which

observers were asked to classify each edge as “shadow” or “other”, by pressing a key on a com-

puter keyboard. The label “other” was deliberately chosen to minimise the semantic difficulty

participants might experience in selecting the non-shadow category from the range of possible

material edges. For example, we did not use the label “material” because participants might

not consider objects to be materials and we did not use “object” because texture edges, paint

and stain might not be considered to be objects.

The experiment was divided into 12 blocks of 50 trials, each block containing stimuli of just

one of the three sizes, and either color or luminance-only. For each size and each edge cate-

gory, the observer was presented with 50 color and 50 luminance-only stimuli. The stimuli
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from our database were randomly assigned as color or luminance-only for each participant, in

other words no stimulus was used for both color and luminance-only conditions. Following a

training session of 8 trials with feedback, no feedback was given to participants during the test

sessions.

Data analysis. Single-interval forced-choice tasks tend to be susceptible to response bias,

for example in our task there might be an overall tendency for the observer to respond “other”.

To take into account the effects of any response bias we converted the data into the signal-

detection-theory measure of sensitivity d’ (“d-prime”) [16]. Responses of participants were

converted into proportions of Hits (pH) and False Alarms (pFA), where a Hit was defined as

an “other” response when a material edge was present and a False Alarm an “other” response

when a shadow was present. d’ was then calculated by converting pH and pF into z scores and

then taking the difference, thus:

d0 ¼ zðpHÞ � zðpFAÞ ð4Þ

Measures of the observers’ response bias towards responding to “other” Or “shadow” are given

in S1 Fig.

Fig 1. Sample edge stimuli in their original context. Left column: edges from the material category. Right column:

edges from the shadow category. Rows top-to-bottom: sample edges of sizes small, medium and large.

https://doi.org/10.1371/journal.pcbi.1007398.g001
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Color improves performance. Fig 4 shows the d’ values for individual observers and Fig

5 the across-observer average performance (mean d’) for both the color (Col) and the lumi-

nance-only (Lum) conditions (red and blue curves), as a function of image size. As can be seen

edge classification performance improves with image size and is superior for the color com-

pared to luminance-only condition.

Fig 5 illustrates the effect of both stimulus size and color vs. luminance-only information

averaged across observers. As one can see performance significantly improves with size and is

Fig 2. Sample edge stimuli. Left: edges from the material category. Right: edges from the shadow category. Rows top-

to-bottom: sample edges of sizes small, medium and large.

https://doi.org/10.1371/journal.pcbi.1007398.g002

Fig 3. Schematic view of the conversion of the original color image to a luminance-only image and the conversion

of both types of image to circular images with a gaussian edge blur. Top right, color condition (Col); bottom right,

luminance condition (Lum).

https://doi.org/10.1371/journal.pcbi.1007398.g003
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superior when color information is present. This suggests that color is an informative percep-

tual cue for helping disambiguate shadows from material changes. The difference in perfor-

mance between the color and luminance-only conditions appears to be more-or-less constant,

i.e. independent of image size.

Fig 4. Performance for each of the 10 observers in the classification task, for both color (Col) and luminance-only

(Lum) conditions. Results are expressed in terms of d’ values and are show for the different sizes of stimuli.

https://doi.org/10.1371/journal.pcbi.1007398.g004

Fig 5. Mean across-observer performance in the classification task for the color (Col) and luminance-only (Lum)

conditions, for the three size of stimuli. Results are expressed in terms of d’ values. Error bars are standard errors of

the mean d’ values across observers.

https://doi.org/10.1371/journal.pcbi.1007398.g005
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Machine observers

Classifiers. We consider here a model binary classification task in which the edge cate-

gory can assume one of two values, which we represent with the nominal variable e 2 {shadow,

other}. To make a decision regarding the value of e, the classifier takes into account certain

image properties, s. We assume a classifier [17,18] that performs the task optimally using the

available information. Assuming the stimulus is a shadow edge, the probability of answering

correctly is given by P(μ>0), where m ¼
Pðsje¼shadowÞ
Pðsje¼otherÞ is a decision variable.

We assume that the decision is based on a linear combination of image properties and we

use a Fisher’s linear discriminant analysis to test whether including color properties in the

model predicts better classification performance.

Image properties.

Image pre-processing and region labeling. We used the same images as those employed in

the psychophysical experiment. For each image we hand-marked the position of the edge and

then rotated the image so that the edge was approximately centered and horizontally oriented.

Each image was then partitioned into 3 regions: L1, L2 and R, where R was defined as the 10

central pixel rows, L1 the region above R, and L2 the region below R.

Luminance measurements. We first defined the luminance of each pixel as L+M and then

normalized the pixel values, such that each image spanned the range from 0 to 1. We then cal-

culated three measures taken from the computational vision literature and employed in several

previous studies on surface segmentation [19–21]. The first is based on Michelson contrast,

calculated as follows:

CLum ¼
jLum1 � Lum2j

Lum1 þ Lum2

ð5Þ

where Lum1 and Lum2 are the mean values of luminance of pixels of regions L1 and L2 respec-

tively. Each patch was oriented so that Lum1>Lum2 (this assignment rule is arbitrary and has

no effect on the results). The second measure is based on mean luminance:

mLum ¼
Lum1 þ Lum2

2
ð6Þ

The third is based on contrast difference:

sLum ¼ jsðL1Þ � sðL2Þj ð7Þ

where σ(L1) and σ(L2) are the standard deviation of values of luminance of pixels of regions L1

and L2. Finally, to quantify the blur of the edge, we computed a fourth measure corresponding

to the slope of the luminance transition at the edge. We followed the method proposed by

Vilankar et al. (2014) [22] to convert the two-dimensional edge patches to one-dimensional

edge profiles and then extracted a measure of slope. The slope (ρLum) was computed as the

mean change from the mean value of luminance of two extreme rows of pixels of the region R:

rLum ¼
LumðRð10Þ; :Þ � LumðRð1Þ; :Þ

9
ð8Þ

where R(1) is the first row of the region R and R(10) the last row of region R. An illustration of

the method of image partition and the corresponding luminance edge profile is given in Fig 6.

The average one-dimensional profiles of edges from each size and category are given in S2

Fig. The average slope of the material edges was slightly different from the average slope of the

shadow edges.
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Color measurements. For this analysis we went further than that used in the psychophysics

experiment where only edges with- and without color information were compared. Here we

wanted to compare the contribution to edge classification of the modelled three post-receptoral

color-opponent mechanisms of the human visual system. These mechanisms comprise a lumi-

nance mechanism and two color mechanisms, one that compares the activity in the L and M

cones, often termed the ‘red-green’ mechanism, the other that compares the activity of the S with

the sum of the L and M cones, often termed the ‘blue-yellow’ mechanism. To model the responses

of these mechanisms to natural-scene image information, we used the pixel-based definitions of

color-opponent responses given in the previous section (Eqs 2 and 3). As pointed out by Olmos

and Kingdom (2004) [7], these definitions are arguably superior to those based on cone contrasts

such as the DKL color space [23] when applied to natural scene stimuli. The reason is that the

normalization operates on a pixel-by-pixel, i.e. local basis rather than via the image as a whole, in

keeping with the idea that cone adaptation is a spatially local rather than global process [7].

As in DiMattina et al. (2012) [21], we employed two measures of the difference in color

content across the edge. First, the ‘red-green’ difference, ΔL/M:

DL=M ¼ jL=M1 � L=M2j ð9Þ

where L/M1 and L/M2 are the mean L/M pixel opponency values in regions L1 and L2 respec-

tively. Second, and correspondingly, the ‘blue-yellow’ difference, ΔS/(L+M):

DS=ðLþMÞ ¼ jS=ðLþMÞ
1
� S=ðLþMÞ

2
j ð10Þ

To quantify the potential usefulness of the above luminance and color information in the

categorization task, we determined the performance of various classifiers. Each classifier was

defined by its use of a specific combination of image properties (with or without color). We

especially wanted to test if the addition of color information improved classifier performance.

Fisher linear discriminant analysis (LDA). We used a Fisher Linear Discriminant Analy-

sis (LDA) [24] to find a linear combination of image properties that best separates our two

edge classes across both image size and color content. LDA is based on linear transformations

that maximize a ratio of “between-class variance” to “within-class variance” with the goal of

reducing data variation in the same class and increasing the separation between classes.

Consider a set of n images and observations s = {s1,. . ., sk} for each image. The classification

problem is to find a good predictor for the class e of any sample of the same distribution (not

necessarily from the training set) given only the n observations s. To use this approach, we

assume that the conditional probability density functions P(s|e = shadow) and P(s|e = other)

are both normally distributed with mean and covariance parameters (μ0,S0) and (μ1,S1).

Fig 6. A: An edge image partitioned. For each pixel of the image localized at the row i and the column j we can

compute a value of luminance, Lum(i,j). B: One-dimensional profile of the edge image obtained by computing the

mean normalized luminance value of each patch row i, Lumði; :Þ.

https://doi.org/10.1371/journal.pcbi.1007398.g006
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Then, the Bayes optimal solution is to predict edges that are shadows if the decision

criterion μ>1, or equivalently if log(μ)>0 where

logðmÞ ¼ log
Pðsje ¼ shadowÞ
Pðsje ¼ otherÞ

� �

¼ log
detðS1Þ

1=2

detðS0Þ
1=2

 !

¼
1

2
ðs � m1Þ

T
S� 1

1
ðs � m1Þ � ðs � m0Þ

T
S� 1

0
ðs � m0Þ

� �
ð11Þ

An additional assumption required to use LDA is that the class covariances are equal (S0 =

S1 = S). As a consequence, several terms cancel:

sS� 1

1
s ¼ sS� 1

0
s ð12Þ

and sS� 1

i mi ¼ miS
� 1

i s because Si is symmetric. The decision criterion log(μ) simplifies as

logðmÞ ¼ sS� 1 m1 � m0ð Þ �
1

2
m0S

� 1m0 � m1S
� 1m1

� �
ð13Þ

If we denote w = ∑−1(μ1−μ0) and c ¼ 1

2
m0S

� 1m0 � m1S
� 1m1

� �
, a simpler expression of deci-

sion criterion becomes w.s>c, where w.s is simply the dot product of vector w and observa-

tions s. This means that the criterion of an input s being in a class e is purely a function of this

linear combination of the known observations.

If we find that humans outperform our linear classifiers, we can conclude that humans are

either using information that we have not considered or that they combine the information

differently. Such an outcome would suggest that classifier performance could be improved by

including more stimulus information, or by using a possibly non-linear classifier.

Classifier performance. We evaluated a large set of classifiers, each of them defined by a sub-

set of the four luminance images properties (CLum, mLum, σLum and ρLum) with or without adding

color properties (ΔL/M and ΔS/(L+M)). The performance of classifiers were measured for both the

entire images set and for each size independently. A summary of all the results is given in S3 Fig.

We estimated classifier performance using a confusion matrix and computed d’ values to

compare classifier to human observer performance.

As illustrated in Fig 7, all our classifiers performed better with color information. This

shows that there is a sound physical basis for the improved human observer classification

performance we observed for the color compared to luminance edges. The results of the

classifiers which include both color properties, ΔL/M and ΔS/(L+M), are quite similar to those

of the ones including only ΔL/M. Moreover, as illustrated on Fig 7, the inclusion of ΔS/(L+M)

measure only improves classifier performance when just considering CLum or CLum+mLum,

suggesting that, contrary to the ΔL/M measure, the ΔS/(L+M) measure is not really helpful for

the classification.

Comparison of human and classifier performance

Fig 8 compares the performance of the classifiers with that of the human observers. In the case

of the luminance-only condition (Lum) the classifier is referenced as CLum+mLum+σLum+ρLum

whereas in the color condition (Col) it is CLum+mLum+σLum+ρLum+ ΔL/M(+ ΔS/(L+M)), as it

includes the ΔL/M measure (and ΔS/(L+M)).

We see that the classifier correctly captures the experimentally observed improvement of

performance with color information. However, it fails to account for the effect of stimulus size

that we observed with humans, especially for the larger stimuli. This suggests that subjects

must be making use of spatial cues not considered here. The image properties we selected for
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our classifier are relatively simple visual features, yet interestingly, are able to predict the

improvement of performance with color.

Fig 7. Classifier performance as a function of number of image properties. Image properties were first ranked by their

individual d’ measures and then adding in order from highest to lowest. The reference classifier (in grey) only integrates

luminance properties, while +ΔL/M adds the ΔL/M measures, +ΔS/(L+M) adds the ΔS/(L+M) measures and +ΔL/M+ΔS/(L+M)

adds both color measures. Intervals correspond to lower and upper 95th percentile confidence interval based on

parametric bootstrap simulations (n = 1000).

https://doi.org/10.1371/journal.pcbi.1007398.g007

Fig 8. Comparison of human observers and classifiers for color and luminance-only conditions.

https://doi.org/10.1371/journal.pcbi.1007398.g008
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Discussion

To our knowledge no psychophysical studies have directly considered the usefulness of color

cues for classifying natural-scene edges. In the present study we conducted a psychophysical

experiment to evaluate the role of color information in material-vs.-illumination edge catego-

rization in part-images of natural scenes. Our results show a consistent improvement in classi-

fication performance when the color information in the images was available. This suggests

that the visual system does indeed use color information for edge classification, presumably at

a relatively early stage of visual processing. We expected that the difference between color and

luminance would decrease as the images became larger because with more context the visual

system might rely less on color to perform the task. However, Fig 5 suggests that, for human

observers, color is no less useful for large than for small stimuli.

Cue combination for edge classification has been mainly considered in the computer vision

literature, but the models that have emerged have not been directly compared with human

data in a controlled psychophysical experiment. We therefore tested a classifier sensitive to

various basic image properties to see if model performance paralleled that of our human

observers. All the tested classifiers worked well and performed significantly better with color

information. However, as illustrated in Fig 8, the improvement of classifier performance with

added color information was not as large as for human observers and our classifiers failed to

capture the effect of image size observed with our human observers. Indeed, while the perfor-

mance of human observers was improved by size and color, that of classifiers decreases with

size, and the difference between color and pure-luminance conditions is less constant. The

classifiers we employed used relatively basic properties such as the difference in mean lumi-

nance either side of the edge, whereas our human observers were presumably also sensitive to

more complex and information-rich color and luminance image properties, such as informa-

tion about the texture [25–30], shape and spatial orientation of the edge [31–35], as well as

higher order contextual information. Indeed, edges rarely occur in isolation, instead in a rich,

structured context of other visual information. Although context is an overloaded source of

information, it has been shown that contextual information can be extracted quickly [36,37],

and is potentially based on low-level feature statistics [38]. Contextual information can

enhance object detection and recognition performance [39,40], help disambiguate visual dis-

plays [41], and provide prior information on the likely positions of objects and constrain the

range of possible objects likely to occur within that context [42]. Natural scenes contain rich

contextual information, affecting a variety of recognition-related processes and improving

visual performance [43]. In our experiment, contextual information would be most prominent

in the larger images and is likely the reason why the performance of the human observers but

not classifiers improved with stimulus size.

Moreover, the properties used by classifiers are computed on the whole stimulus, so when

the size increases we no longer really capture edge-specific properties as there is more context.

Thus we assume that the classifiers performance could be significantly improved by refining

the image properties, using more local measures [44–47], which really capture edge-specific

properties, and adding other cues useful for edge classification.

Interestingly, our classifiers revealed a different role of ΔL/M and ΔS/(L+M) color information:

while the L/M measures were helpful for the task, addition of the S/(L+M) measures did not

improve classifier performance. This is consistent with previous studies that the S/(L+M)

opponent channel varies with changes in illumination, such as at shadow borders [48], while

the L/M system is more robust to illumination changes, thus providing a more reliable cue to

material borders [7,13,14,48,49]. Therefore, an interesting direction for future work is to test
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whether for human observers L/M information is more useful than S/(L+M) information for

performing the classification task, as predicted by our classifier model.

In conclusion, for both human and model observers color information facilitates the classi-

fication of edges in natural scenes into material versus illumination. For both types of observer,

the improvement with color is robust to variations in image size. Our findings highlight the

importance of color in the visual analysis of the structural properties of natural scenes.

Methods

Ethics statement

The experiment conformed to the Declaration of Helsinki and all participants gave their

informed oral consent before participating in the study.

Apparatus

Visual stimuli were displayed on a 21-inch CRT monitor with a spatial resolution of 1024 x

768 pixels and a refresh rate of 100Hz. The background was set to a neutral gray (RGB =

[127,127,127] on a 256 level-scale). Spectro-radiometric calibration was performed on the

three phosphors of the monitor using a CS 2000 Konica Minolta spectro-radiometer. Spectra

of the three RGB primaries were first measured at their maximum intensity setting and then

multiplied with the Judd-revised CIE color matching functions [50] to derive the CIE xyY

coordinates of the monitor phosphors which were then used to convert between RGB and

color-opponent space. The xyY coordinates of the monitor primaries measured at maximum

intensity were 0.6207, 0.3380 and 15.0485 (red); 0.2822, 0.6068 and 57.0515 (green); 0.1495,

0.0683 and 6.9209 (blue).
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