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Abstract

Dynamic thermography is a promising new non-invasive diagnostic technique

for skin cancer, not just to identify the skin tumour in its early stage but also to

evaluate some of tumour parameters showing the stage and invasiveness. This pa-

per covers the solution of inverse bioheat problems of simultaneous identification of

tumour diameter, thickness, blood perfusion rate and thermoregulation coefficient

based on the surface temperature difference between healthy skin and lesion during

the rewarming period of dynamic thermography. The problem has been treated

using numerically generated measurement data for Clark II and Clark IV tumours

by adding noise to mimic real measurement data. The solution is based on a more

realistic 3D numerical model, composed of different layers including the thermoreg-

ulation response of the skin, tumour and surrounding tissue using a deterministic

Levenberg-Marquardt optimisation algorithm that is robust and fast. The paper

covers the analysis of the starting point of the solution, randomness and level of

added noise, as well as the effect of numerical model error on the inverse solution.

Tumour diameter and thermoregulation response can be estimated accurately re-

gardless of noise and stage, while blood perfusion and tumour thickness can only

be estimated accurately for low noise level or later tumour stage. The solution

sensitivity to metabolic heat generation, thickness, blood perfusion rate and ther-

moregulation coefficient of skin and fat was low, while heat capacity and thermal

conductivity of skin and tumour should be determined precisely in the numerical

model to be able to evaluate all four tumour parameters as accurately as possible.

Keywords: Bioheat, skin tumour, dynamic thermography, inverse problem, temperature-

dependent properties, Levenberg-Marquardt algorithm, noise analysis.

1 Introduction

In recent years thermography or infrared thermal (IRT) imaging has developed drastically
due to the development of infrared (IR) cameras, electronics, technology, computers and
numerical modeling, and therefore became a very valuable tool for many applications in
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different fields of science. Thermography is usually used for non-invasive surface temper-
ature measurement based on the emitted thermal radiation from the surface, which is
captured by the IR camera. Therefore, it has an advantage over the classical thermocou-
ple measurement when a contactless method over a large area of interest is needed, which
is especially useful for monitoring purposes. Elevated temperatures of the human body
or changes of the temperature have been connected with diseases for which thermography
found its way in medicine for various applications like breast cancer diagnostics, derma-
tological applications, blood perfusion monitoring, diagnosis of vascular disorder, fever
screening, dental diagnostics, diagnosis of thyroid gland disease, eye disease, as well as
for therapeutic assessment [1–16]. Thermography in medicine can be done in two ways,
passively or actively. Passive or static thermography measures the skin temperature or
investigated tissue under a steady-state condition, which is time consuming because the
patient has to acclimatise to the conditions in a temperature controlled room [17]. Ac-
tive or dynamic thermography induces thermal stress by heating or cooling the observed
tissue and then measuring the thermal response during the recovery phase, which does
not need patient acclimatisation and can reveal more information about the tissue under
investigation [5, 6, 8, 12, 15–19].

In this paper, we will focus on dynamic thermography for skin tumour detection, as
shown by Çetingül and Herman [12]. They carried out a clinical study on 35 patients
to show the advantage of dynamic thermography by cooling the skin and observing the
recovery phase. By observing the temperature difference between the lesion and healthy
skin, they managed to distinguish a malignant melanoma or squamous cell carcinoma
from pigmented moles in their early stage. Among all types of skin tumours, malignant
melanoma is the most fatal because it metastases rapidly and can quickly spread to soft
tissues like lungs and liver [20]. According to Clark et al. [21] and Breslow [22], there is
a direct correlation between the survival rate and invasiveness or depth of the tumour.
Clark classified skin tumours into five levels from I to V, which is still used nowadays.
Clark I represents melanoma in situ, which means that the cells are only in the epidermis
or outer layer of the skin. Clark II is located in the papillary dermis layer of the skin,
while Clark III is touching the reticular dermis. Clark IV means that the tumour already
spread into the reticular or deep dermis, while Clark V means that it has grown into
the fat layer under the skin. For Clark II, the survival rate for malignant melanoma was
72.2%, while for Clark III, IV and V they were 46.5%, 31.6%, 12.0%, respectively [21]. For
this reason, it is important to detect malignant skin tumour in its early stage [12,21–25].

The most frequently used diagnostic technique is visual inspection based on the
ABCDE (Asymmetry, Border, Colour, Diameter, Evolution) criteria and dermatoscopes.
As it is known, the ABCDE criteria uses only qualitative guidelines for melanoma iden-
tification and can therefore produce high rates of false positive or false negative identi-
fication. To avoid the risk of missing an early stage melanoma, excisional biopsies are
performed for further pathological investigation [25–28]. Therefore, new techniques for
skin tumour detection are being developed, which involve a compromise between certain
aspects like effectiveness, accuracy, cost and invasiveness, like digital photography, mul-
tispectral imaging systems, confocal scanning laser microscopy (CSLM), laser Doppler
perfusion imaging (LDPI) optical coherence tomography (OCT), ultrasound and mag-
netic resonance imaging (MRI) [24, 29–37].

As showed by many authors, dynamic thermography can be a promising diagnostic
technique in dermatology for early skin tumour detection [1–3,5,6,8,12,13,18,35,38]. Skin
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tumour has higher blood perfusion rate as well as metabolic heat generation [12,37,39,40]
from the healthy surrounding tissue, and because the heat transfer in tissue is mostly
governed by these two parameters, the tumour will leave a temperature signature, which
can be detected using an IR camera. The temperature difference between the lesion
and healthy skin is very small and hard to detect using static thermography. Dy-
namic thermography, on the other hand, by cooling the investigated tissue, will induce
higher temperature differences during the rewarming period, which can be more easily
observed [12, 41]. However, dynamic thermography cannot be used just for detection,
the taken measurement of temperature during rewarming can be used to evaluate several
tumour parameters like size, position, blood perfusion rate, etc., using an inverse problem
approach.

There have been many papers on solving inverse bioheat problems of estimating lo-
cation and size of the tumour [42–45], as well as more specific studies for breast cancer
detection [16, 46, 47], skin tumour [48–51] and blood perfusion estimation [44, 52–54].
However, many of them still use simplified 2D or 3D numerical models composed only of
tumour and surrounding tissue [42, 43, 45, 48]. Luna et al. [48] used a simplified 2D nu-
merical model to identify thickness and blood perfusion rate of the skin tumour based on
a steady-state surface temperature using Simulated Annealing (SA) algorithm. Bhowmik
and Repaka [49] upgraded the problem by using a 3D multilayer model of the skin to es-
timate four tumour parameters; thickness, diameter, blood perfusion rate and metabolic
heat generation, by Genetic Algorithm (GA) and SA using steady-state temperature in-
formation. Bhowmik et al. [55, 56] also made some studies about how difficult it is to
estimate the position and size of the tumour around thermally significant blood vessels us-
ing static and dynamic thermography or FMTWI (Frequency Modulated Thermal Wave
Imaging). Like Bhowmik and Repaka [49], we successfully estimated four tumour param-
eters using temperature information from dynamic thermography using DOE (Design of
Experiment) [38] where we also investigate the difference between static and dynamic
thermography and why dynamic thermography can give us more information about the
investigated tissue.

The solution of the inverse problem strongly depends on the measurement noise and
the accuracy of the numerical model based upon the estimation of unknown parameters is
made. Simplified numerical models cannot give a realistic estimation of searched variables
because the simulated data do not follow the measurement data accurately. Therefore,
a great effort should be put in making the numerical model as realistic as possible by
including the thermoregulation response of the skin, tumour and muscle during dynamic
thermography, as described in our previous work [41]. Therefore, this paper present the
possibility to estimate four tumour parameters; diameter, thickness, blood perfusion rate
and thermoregulation coefficient (response), using non-invasive dynamic thermography
based on a more realistic 3D numerical model. For now, the inverse bioheat problem is
investigated and solved numerically, representing a base for further research and experi-
mental work. To solve the inverse problem we used the Levenberg-Marquardt algorithm,
as optimisation, combined with direct numerical simulation using a 3D multilayer model
including the thermoregulation response of blood perfusion and metabolic heat generation
as described in [41]. The problem is solved based on the surface temperature information
or temperature difference between the tumour and healthy skin during the rewarming
period, that has been generated numerically. We tested the inverse analysis algorithm
for two different test cases; Clark II and Clark IV tumours, to evaluate how the tumour
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stage affects the evaluation of the parameters. However, to mimic real measurement data,
noise has been added to the generated temperature response, to analyse how the inverse
solution is affected by noise. The paper also covers how the model error or uncertainty
of some parameters affects the solution, and which of them should be determined more
accurately for a precise parameter estimation.

Therefore, the novelty of this paper can be found in using a more realistic 3D multi-
layer tissue model including the thermoregulation response to identify four skin tumour
parameters based on dynamic thermography measurements, especially the feasibility of
estimating the thermoregulation coefficient of the skin tumour, which has not been esti-
mated before. The novelty can be also found in a more detailed analysis of the inverse
problem for the estimation of four skin tumour parameters, regarding the measurement
noise and model error.

The paper is organized as follows: Section 2 presents the inverse bioheat problem
with the numerical model described by the governing equation, thermoregulation model
and boundary conditions, and the Levenberg-Marquardt optimization algorithm. Section
3 discusses the test examples for Clark II and IV tumours, material properties, compu-
tational mesh, etc., to simulate dynamic thermography together with a description of
measurement data and model error. Section 4 discusses the solution of the inverse prob-
lem using different starting points and level of measurement noise. The paper closes with
Section 5 that summarizes this work and emphasizes the importance of its results.

2 Inverse bioheat problem

Direct problems are used when the numerical simulation of certain process or phenomena
is needed. However, when unknown variables, material properties, shape or mathematical
model are needed and cannot be determined using direct measurement or observation, we
are dealing with inverse problems, which are solved based on the proposed mathematical
and numerical model and indirect measurement data. The difference between direct
and inverse problems is that, for direct problems, the numerical model composed from
governing equations, computational domain, boundary conditions, material properties,
etc., is well defined and known, while for inverse problems we are trying to identify
or estimate the missing model parameters which are not exactly determined. Here, the
accuracy of estimated parameters strongly depends on the proposed model that describes
the observed phenomena or process, its error and the measurement noise.

Because the inverse solution depends on the mathematical and numerical models
adopted, the most common approach is to initially solve a direct problem with guessed
unknown parameters and then comparing the solution of the direct problem with the
measurement data. To minimize the number of guesses, optimisation techniques are used,
minimizing the difference between the direct problem solution and measurement data, and
the optimum represents the solution of the inverse problem [38,44,46,48,49,54]. Therefore,
inverse problems are difficult to solve and usually ill-posed, which means that the solution
of the inverse problem will not converge when there is noise in the measurement data or
the numerical model does not follow the observed process. Usually, for ill-conditioned,
problems we have to impose a regularization or damping technique to stabilize the solution
[52,54].

Inverse problems can be practically applied everywhere and therefore, they found
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their way in medical diagnostic as well. The idea of detecting location, size and stage
of the tumour, cancerous tissue or other vascular diseases using information of abnormal
temperature or heat flux on the skin surface is not new [4,14,45,50]. The tissue tempera-
ture is mainly controlled by the blood perfusion rate, metabolic heat generation and heat
transfer with the surrounding environment. If the tissue temperature changes, this can
indicate an abnormal pathological or physiological state of the tissue under the same en-
vironmental conditions. It is known that cancerous tissue or tumours have elevated blood
perfusion rate and metabolic heat generation [12,37,40], which reflects in elevated tissue
temperature on the skin surface, depending on the location and its stage [45, 46, 49–51].
To estimate the position, size and stage of the tumour, a non-invasive technique based
on the skin surface temperature is very appealing and promising nowadays due to the
development of IR cameras, numerical methods and computers. A very popular problem
using this technique is breast cancer detection, which is still under development by many
researchers [1, 3, 14–16, 46]. As already described, in this paper we will apply an inverse
bioheat problem to skin tumour identification using dynamic thermography, that showed
many advantages over the static one [8, 12, 13, 38,41].

The size of the tumour and its blood perfusion rate can be easily obtained using the
dynamic approach, even for an early stage tumour and noisy data, while the tumour
metabolic heat generation would be hard to estimate due to its low sensitivity [12,38,41,
49]. In our previous paper [41], we introduced a new numerical model for skin tumour
tissue including the local thermoregulation response of the skin and tumour, imposing the
blood perfusion rate and metabolic heat generation as temperature-dependent variables.
The thermoregulation response plays its role in dynamic thermography and has an effect
on the temperature difference between the tumour and healthy skin during the recovery
phase. Because there is so little information about the blood perfusion thermoregulation
for the tumour, especially for cooling, we assumed the value of the thermoregulation
coefficients Q10,b and Q10,m and modeled an almost linear response. However, dynamic
thermography can help us not only to estimate the size and blood perfusion rate of the
tumour but also to get information about the thermoregulation response.

This paper tries to estimate four skin tumour parameters that are important from the
diagnostic point of view, to identify the stage and invasiveness of the tumour, using only
non-invasive measurements of skin surface temperature by dynamic thermography. These
parameters are diameter and thickness of the tumour, tumour blood perfusion rate and
thermoregulation response coefficient, which represents the novelty of this paper. Tumour
shape is mostly irregular as well as due to the vascularity they are non-homogeneous, for
which the geometrical parameters represent the approximated shape of the tumour with
the cylinder, while physiological parameters represents the mean values for the investi-
gated lesion that are important in diagnostic. In our previous work [38], we discussed
the difference between using static and dynamic thermography for tumour parameter
estimation, but now we replace the metabolic heat generation by the thermoregulation
coefficient due to its low sensitivity. From the diagnostic point of view, the most impor-
tant parameters are blood perfusion rate and thickness of the tumour, which reflect its
invasiveness, however the information about the thermoregulation response of the tumour
or its thermoregulation coefficient can help us in understanding its physiology and also
the potential of monitoring the effectiveness of new drugs.

This paper presents the numerical background for solving inverse bioheat problems
and the feasibility of making dynamic thermography as a skin tumour screening technique,
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covering the numerical model based on which the estimation of four unknown parameters
can be made. Therefore, the problem is solved using numerically generated measurement
data with known values of the searched parameters, to be able to evaluate how the
model uncertainty and measurement noise affect the inverse solution, which is also a
novelty of this paper. By adding different levels of noise to the measurement data, we
are able to estimate the sensitivity of the inverse problem solution which is needed to
evaluate the errors when real measurement data are used, as well as by changing different
model parameters due to uncertainty or data noise, we are able to analyze which model
parameters are the most important for an accurate estimation of the searched parameters.

2.1 Numerical model

This paper adopts a non-homogeneous 3D model of the skin, composed of epidermis,
papillary dermis, reticular dermis, fat, muscle and a tumour in the skin layers, as shown
in Figure 1. The model also includes the thermoregulation response of the skin, tumour
and other tissues to predict the skin temperature during the recovery phase of dynamic
thermography as accurately as possible. The base for the non-homogeneous model has
been taken from Çetingül and Herman [12, 39], Cheng and Herman [18] and Bhowmik
and Repaka [49], while the base for the tissue thermoregulation response has been taken
from Silva et al. [57] and Fiala et al. [58, 59]. A more detailed description of the model
can be found in our previous work [41], however, we will present only the most important
aspects of the model in this paper.

Çetingül and Herman [39] concluded that the actual shape of the lesion does not affect
the temperature response on the skin surface during the rewarming period and that the
most important tumour parameters are average volume and thickness. Therefore, in
this model, we use a cylindrical representation of the tumour, described by diameter
and thickness. Even if the actual shape of the tumour is not cylindrical, diameter and

a) b)
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skin tumour epidermis

papillary
     dermis

fat

muscle

reticular
     dermis

Figure 1: Computational domain of the numerical model including skin tumour: a)
isometric view and b) cross-sectional view with notation.
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thickness represents the average value of the non-symmetrical tumour approximated with
the cylinder, which is still important to evaluate the stage or invasiveness of the skin
tumour. To make the modelling easier and to reduce the computational time the whole
computational domain has been modelled using a cylindrical shape, as can be seen in
Figure 1.

To describe heat transfer in a biological tissue, we use Pennes’ bioheat model [60],
which is widely accepted [15,18,19,39,46,49,50,57] and is written as:

ρcp
∂T

∂t
= ~∇ ·

(

λ~∇T
)

+ ωbρbcp,b (Ta − T ) + qm, (1)

where T = T (~r, t) represents tissue temperature, ρ, λ and cp are the effective tissue
density, thermal conductivity and specific heat, respectively, ωb is blood perfusion rate, ρb
blood density, cp,b is specific heat of the blood, Ta is arterial blood temperature, t time and
qm metabolic heat source. The blood perfusion rate is a scalar representing the volumetric
blood flow rate per volume of the tissue through small arterioles and capillary bed. Pennes
assumed that heat transfer between the blood flow and surrounding tissue happens on
the capillary level due to the large interfacial area, therefore, the blood perfusion term
acts like a heat source or sink depending on the temperature difference between tissue
and arterial blood flow. During the cooling process in dynamic thermography, blood
perfusion acts like a heat source, heating up the tissue during thermal recovery, similar
to the metabolic heat source which depends on cell activity. Between these two effects,
blood perfusion plays a major role in reheating the tissue.

Material properties and other parameters in equation (1) are usually treated as con-
stant due to the lack of an accurate mathematical model to describe the changing mech-
anism. These parameters are also estimated because of the lack of measurement data or
because of the large deviation from various authors [39, 61, 62]. However, because it is
known that blood perfusion rate and metabolic heat generation of skin, muscle and other
tissues are regulated by central and local thermoregulation [58, 59], we include a local
thermoregulation model to simulate the cooling effect of dynamic thermography more
accurately. Therefore, metabolic heat generation and blood perfusion rate for each tissue
have been modelled using the van’t Hoff effect [57–59,62–64] as:

qm (T ) = qm,basQ
(T−T0

10
)

10,m , (2)

where qm,bas represents the basal metabolic rate at rest, Q10,m the metabolic rate coeffi-
cient and T0 is the equilibrium temperature of the body, and:

ωb (T ) = ωb,basQ
(T−T0

10
)

10,b , (3)

where now Q10,b represents the blood perfusion rate coefficient, which is usually the same
as Q10,m [57], and ωb,bas represents the basal blood perfusion rate. All other parameters
and material properties in Pennes equation (1) such as density, specific heat, thermal
conductivity, etc., have been treated as constant for each layer.

To simulate dynamic thermography or the cooling/rewarming process of the skin,
we have to prescribe appropriate initial and boundary conditions for the computational
domain. Due to the cylindrical shape of the domain, we introduce a cylindrical coordinate
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system ~r = ~r(r, ϕ, z) to simplify the notation. For the bottom part, we prescribe the
constant body core temperature T0, assuming that the muscle tissue is thick enough, as:

T (r, ϕ, z, t) = T0, 0 ≤ r ≤ D/2, z = 0, 0 ≤ t ≤ τ, (4)

whereD is the diameter of the computational domain and τ represents the simulation time
including the cooling process of dynamic thermography. On the sides of the computational
domain, we prescribe adiabatic boundary conditions assuming that the diameter D of the
computational domain is large enough not to affect the computational solution:

∂T (r, ϕ, z, t)

∂r
= 0, r = D/2, 0 ≤ z ≤ H, 0 ≤ t ≤ τ, (5)

where H represents the total height of the computational domain. At the skin surface,
we have to prescribe the cooling and rewarming processes. For the cooling process, a
constant temperature has been chosen due to the deep penetration and high temperature
contrast during the rewarming period [18], while for the rewarming period the heat trans-
fer between the surrounding environment and the skin has been modeled using a Robin
boundary condition. Therefore, for the skin surface, the following boundary condition
has been prescribed:

T (r, ϕ, z, t) = Tc, 0 ≤ t ≤ tc,

λ
∂T (r, ϕ, z, t)

∂z
= α [T (r, ϕ, z, t)− T∞] , tc < t ≤ τ,

0 ≤ r ≤ D/2, z = H, (6)

where Tc represents the cooling temperature, tc the cooling time period, α represents
the heat transfer coefficient and T∞ the surrounding temperature. The heat transfer
coefficient can include many effects such as heat convection, thermal radiation and water
evaporation [49, 57, 59]. However, thermal radiation is negligible in this case due to the
small temperature difference between the skin and surrounding environment, as well as
water evaporation by sweating because the cooling-rewarming process does not induce
sweating. The main contribution during the rewarming period is heat convection with
the surrounding air, that is not intense as the skin rewarms mostly because of the blood
perfusion rate or internally generated heat. For all described boundary conditions the
angle ϕ varies from 0 ≤ ϕ ≤ 2π and was omitted in the above description for a clearer
presentation. For the initial temperature condition T (r, ϕ, z, t = 0), we prescribe the
steady-state solution of the bioheat problem determined with the boundary conditions
(4), (5) and the rewarming part of condition (6). To solve the transient bioheat problem,
simulating the dynamic thermography defined by equation (1), corresponding models
(2) and (3) and boundary conditions (4)-(6), we also have to impose equilibrium and
compatibility conditions on the interface between two layers. The compatibility condition
is Tl = Tl+1 and equilibrium condition λl∂Tl/∂nl = λl+1∂Tl+1/∂nl+1, where n represents
the normal on the interface and indices l and l+1 represent adjoining tissues. These two
conditions across interfaces impose continuity of the temperature and heat flux.

To solve the inverse bioheat problem a fast and numerically accurate solver is needed,
especially when solving an inverse problem identifying several parameters, because the
number of model evaluations rapidly increases with the number of parameters and the
computational time can go into days and months. Because of the shape of the com-
putational domain and adiabatic boundary conditions on the sides, the solution of the
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transient bioheat transfer is 3D-axisymmetrical, which means that the solution does not
depend on the angle ϕ, therefore T = T (r, z, t). For this reason, we can reduce the
problem size by using only a 2D cross-sectional mesh. To solve the direct bioheat prob-
lem using described numerical model, a subdomain BEM (Boundary Element Method)
approach using a 3D-axisymmetrical elliptic fundamental solution has been used, as de-
scribed in our previous work [41]. The solver is fast, accurate and adequate to tackle the
inverse problem presented in this paper.

2.2 Optimisation algorithm

The inverse bioheat problem tackled in this paper is to estimate four tumour parameters
(diameter, thickness, blood perfusion rate and thermoregulation coefficient) based on
the skin temperature response during the rewarming period of dynamic thermography.
The observation variables upon which the estimation is made is surface temperature
difference between the tumour and the healthy skin during the recovery phase. Therefore,
during the cooling process it is needed to cool down the lesion and a surrounding healthy
skin upon which the temperature difference is evaluated. The advantage of using the
temperature difference and not the absolute temperature is to avoid the error of absolute
temperature measurements, as well as to reduce the error made by prescribed model
boundary conditions. As we already suggest in our previous paper [41], observing the
temperature difference during dynamic thermography is more appropriate than observing
the absolute temperature, because the temperature difference carries the information
about the underlying tumour, as observed by many authors [12, 46, 48–50].

We used an optimisation approach to solve the inverse problem by introducing an
objective function, which is minimized during the optimisation process. The objective
function for this inverse problem is defined as:

F (~y) =
nt
∑

t=1

np
∑

p=1

(∆Ts,p,t (~y)−∆Tm,p,t)
2 = ~f tr (~y) · ~f (~y) , (7)

where F (·) represents the value of the objective function, ~y is the vector of unknown
parameters, ∆Ts and ∆Tm stand for the simulated and measured skin surface temperature
difference during the rewarming period, respectively, t and p stand for time and location
of the temperature measurement or simulated response, nt and np are the number of

observed data in time and the number of measurement points, respectively, ~f(·) represents

the residual vector; ~f(~y) = ∆Ts (~y) − ∆Tm = {fi; i = 1,m}, where m = ntnp, and tr
stands for transpose. Vector ~y is defined as ~y = ~y (d, h, ωb, Q10) = {yj, j = 1, n}, where
n = 4, d represents the diameter of the tumour, h its thickness, ωb the blood perfusion
rate and Q10 = Q10,m = Q10,b the thermoregulation coefficient of the tumour, while yj
represents the parameter j in general. As can be seen, the objective function reflects
the difference between the direct problem solution for a given set of searched parameters
and the measurement data. When the minimum of the objective function is found, the
solution to a given inverse problem is obtained. For the inverse problem, the objective
function has to have only one global minimum, otherwise the solution is not unique
and the evaluation of parameters is not possible [38, 49]. The skin surface temperature
response of dynamic thermography is enough to give us a unique solution for four different
parameters even for noisy measurement data, while using static thermography is not [38].
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We use a deterministic optimisation algorithm, because the objective function for
dynamic thermography is smooth [38], as well as they are faster from stochastic opti-
mization techniques like GA (Genetic Algorithm), PSO (Particle Swarm Optimisation)
or SA (Simulated Annealing) due to the lower number of direct problem evaluations. The
optimisation technique used in this paper is the Levenberg-Marquardt (LM) algorithm,
which is a combination of steepest descent and Gauss-Newton optimisation. In our previ-
ous paper [52] where space dependent blood perfusion estimation has been done, the LM
algorithm proves to work better than BFGS (Broyden-Fletcher-Goldfarb-Shanno) algo-
rithm, was faster and not sensitive to the initial guess, which is the reason for choosing it.
We could also use more basic deterministic optimisation like SD (Steppes Descent) or CG
(Conjugate Gradient) method which are of first-order and have linear convergence rate,
however the convergence rate of LM algorithm is superlinear near the solution making
the optimisation process faster. In general, optimisation can be written as:

find ~y∗ = argmin~y [F (~y)] , (8)

where ~y∗ represents the minimum of the objective function or solution of the inverse
problem, while for a deterministic approach a better solution is found as:

~yk+1 = ~yk + βv~sk ⇒ F (~yk+1) < F (~yk) , (9)

where ~s represents the search direction, β a step size and indices k and v stand for iteration
and trial step, respectively. Each approach defines the search direction and step size in
its unique way. LM algorithm uses the linear Taylor expansion of the residual vector
~f (~yk + ~sk), that gives a search direction as the solution to the equation system [52]:

(

[J ]trk · [J ]k + µk [I]
)

~sk = − [J ]trk · ~f (~yk) , (10)

where [J ] represents the Jacobian matrix, µ is a damping parameter and [I] the identity
matrix. As seen from equation (10) the search direction is evaluated at each iteration
step, together with the Jacobian matrix and damping parameter. The Jacobian matrix
is evaluated numerically using first-order finite difference scheme as:

Ji,j =
∂fi
∂yj

≈
fi (~y +∆yj)− fi (~y)

∆yj
, (11)

where indices i and j represent the row and column of matrix [J ], respectively, or residual
data i and parameter j, and ∆yj represents the change of parameter j, which has been
taken as 1% of its value; ∆yj = 0.01yj . To evaluate the Jacobian matrix and to calculate
the new search direction at each iteration step k, we have to make four evaluations of the
direct problem, changing the value of the unknown parameters separately. This is the
cost of using this approach, because the search direction is based on the gradient of the
objective function that we need to evaluate.

Once the search direction is obtained from equation (10), we can update the solution
by using equation (9) and check the descent criteria; F (~yk+1) < F (~yk). For the first trial
the step size is taken as β0 = 1.0, because the search direction is also controlled by the
damping parameter µ. If the descent criteria is not met, the step size is then reduced by
βv+1 = βv/2.
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The damping parameter is calculated at each iteration as [52]:

µk+1 = µk max

[

1

3
, 1− (2θk − 1)3

]

, (12)

where θ represents the gain ratio defined as:

θk =
F (~yk)− F (~yk+1)

Z (0)− Z (βv~sk)
, (13)

where Z (·) represents a linear Taylor expansion of the objective function. For the first
iteration step the damping parameter has been chosen as µ0 = 10−5 max

[

[J ]tr · [J ]
]

. If
the damping parameter is high, the LM method will calculate the search direction close
to the steepest descent where the absolute value of the search direction will be small,
therefore there is no need to apply optimum step size searching. However, if the damping
parameter is low, the search direction will be close to the Gauss-Newton direction and
convergence will be much faster.

To stop the optimisation algorithm, we used three stopping criteria where only one
of them has to be fulfilled [52];

k > kmax, (14)
∥

∥

∥
[J ]trk · ~f (~yk)

∥

∥

∥

∞

≤ ε1, (15)

‖~yk+1 − ~yk‖ ≤ ε2 (‖~yk‖+ ε2) , (16)

where kmax represents the maximum number of iterative steps and ε1 and ε2 the tolerance
for the gradient and step size, respectively. The first stopping criteria is met when the
number of iterative steps is greater than allowed, while the second one represents the
minimum value of gradient and is met when we are in the proximity of the optimum, and
the third one the minimum step size. The tolerance for the second and third criteria has
been taken as ε1 = ε2 = 10−7.

3 Computational examples

The solution of inverse bioheat problems is based on the non-homogeneous numerical
model of the skin tissue including the thermoregulation response of blood perfusion and
metabolic heat generation of different layers, using LM optimisation technique. However,
to test the inverse solution, we need measurement data, which have been generated nu-
merically for Clark II and Clark IV tumours, solving a direct problem using a numerical
model described in [38] and by adding different levels of noise to mimic realistic temper-
ature measurements on the skin surface. The reason to test the inverse problem solution
on numerically generated data is to be able to analyse the effect of measurement noise or
model error on the solution, because the exact value of the searched parameters is known.
Therefore, the inverse problem will be tested for two cases, Clark II and Clark IV, pre-
senting the early and later stage of the skin tumour [12,21,22], to show the feasibility of
estimating all four parameters of the tumour simultaneously.

Material properties and dimensions for each layer and different tumour sizes used in
the numerical model are presented in Table 1. Clark II size (d = 2.0mm, h = 0.44mm)
presents a tumour embedded in the papillary dermis, while Clark IV (d = 2.5mm, h =
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1.1mm) protrudes into the reticular dermis layer. The material properties, layer thickness
and tumour sizes have been chosen based on a literature review [12,18,21,22,39,49] and
found to be appropriate to test our inverse problem. Regarding the thermoregulation
response of the different layers, the thermoregulation coefficient Q10,m = Q10,b = 2.0 has
been chosen for skin layers and muscle [57–59], representing exponential behavior of the
metabolic heat generation and blood perfusion rate, while for the tumour a more linear
behavior is expected and the value of Q10,m = Q10,b = 1.1 has been prescribed [41]. The
mean body core temperature for a healthy person in resting position is in the range of
36.5◦C − 37.5◦C, therefore the arterial blood temperature Ta, as well as the body core
temperature at equilibrium T0 has been set to Ta = T0 = 37.0◦C [12, 39, 49].

To simulate dynamic thermography we have to prescribe the cooling/rewarming pro-
cedure, defined by boundary condition (6) prescribing cooling time, temperature and
rewarming stage. Different authors prescribed different cooling times and tempera-
tures [12, 18, 19, 39, 49]. For this paper, the cooling temperature and duration have been
taken from Bhowmik and Repaka [49] and Çetingül and Herman [12], due to a good
penetration depth and thermal response, and are tc = 60s and Tc = 13◦C. As for the sur-
rounding conditions, the ambient temperature has been chosen to be T∞ = 22.4◦C [12,49]
and the heat transfer coefficient α = 10W/m2K [12, 18]. We simulate 10min = 600s of
rewarming period which is long enough. The biggest temperature difference between the
tumour and surrounding tissue appears up to 60s after the end of cooling process and
then decline towards a steady-state condition [18]. Therefore, the total time to simulate
the whole dynamic thermography test has been set to τ = 660s. To solve the inverse
bioheat problem we only need information about the skin surface temperature during
the rewarming period, nevertheless we have to simulate the whole process to accurately
determine the tissue response.

In our work [38,41,65], we used a structured mesh with a representative element size of
∆r = 0.5mm and constant time step ∆t = 1s. However, for this paper, we upgraded the
computational mesh using different mesh density for tumour and surrounding tissue, as
well as the time discretization using an adaptive time step. During the fast temperature
change a small time step is used to capture the transient change (at the beginning of
the cooling and rewarming process), while for slow temperature change the time step has
been increased. To assure numerical accuracy of the direct problem, we carried out a
mesh and time discretization analysis. The aim is to reduce the computational time of

Material d[mm] h[mm] ρ[kg/m3] cp[J/kgk] λ[W/mK] ωb,bas[1/s] qm,bas[W/m3]

epidermis – 0.1 1200 3589 0.235 0.0 0.0
papillary dermis – 0.7 1200 3300 0.445 0.0002 368.1
reticular dermis – 0.8 1200 3300 0.445 0.0013 368.1

fat – 2.0 1000 2674 0.185 0.0001 368.3
muscle – 8.0 1085 3800 0.510 0.0027 684.2

tumour Clark II 2.0 0.44 1030 3852 0.558 0.0063 3680
tumour Clark IV 2.5 1.1 1030 3852 0.558 0.0063 3680

blood – – 1060 3770 – – –

Table 1: Material properties and tissue dimensions [12, 18, 39,49].
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Figure 2: Representative computational mesh for Clark II tumour and adaptive time step
selection.

the direct problem, which is very important for inverse or optimisation problems. The
final 2D computational mesh of the revolving cross section and selection of the adaptive
time step for the direct problem is shown in Figure 2. While for the domain size, we
decided to used a domain size of D = 25mm, to assure the solution is not affected by the
adiabatic boundary condition (5).

3.1 Measurement data

To evaluate geometric and physiological parameters of the tumour, the temperature dif-
ference on the skin surface between the lesion and surrounding healthy skin during the
rewarming process is needed. The measurement data at dynamic thermography is ob-
tained by the IR camera recording of the absolute surface temperature at the lesion
region together with the surrounding healthy skin. Therefore, to obtain the data needed
for solving presented inverse problem the simultaneous cooling of the lesion and sur-
rounding healthy skin is needed, as well as the data processing to obtain the temperature
difference.

Measurement data in this paper have been generated numerically by solving direct
bio-heat problems for Clark II and Clark IV to evaluate the exact solution of the inverse
bioheat problem. Figure 3 shows the simulated temperature response or temperature
difference between the tumour and surrounding skin during the rewarming period for the
Clark IV test example, while Figure 4 shows the comparison between Clark II and Clark
IV tumours. As can be seen, the temperature difference obtained by applying cold stress
is higher than for the steady-state case, even for the early stage tumour, and therefore
much easier to observe with the IR camera, which is for position p and time t defined as:

∆Tp,t = T (rp, H, tt)− T (D/2, H, tt), (17)

where rp represent the radial position of the measurement point and tt the time of the
measurement. The measurement data have not been taken for the whole skin surface
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but just for points above the skin tumour at np = 16 equally spaced positions in the
radial range of rp ∈ [0, 6mm] due to the 3D-axisymmetrical solution, and at each second
during the rewarming phase, which means that the number of measurements in time has
been nt = 600. We found that this measurement resolution is fine enough to capture the
dynamic change of temperature difference and to be able to evaluate the four tumour
parameters.
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Figure 3: Contours of simulated temperature difference at skin surface for Clark IV during
the dynamic thermography procedure at different times.

During the dynamic thermography IR camera captures the absolute surface temper-
ature response of the underlying lesion and healthy skin for the recovery phase in the
planar area. To use the proposed model or approach the temperature difference compared
to the healthy surrounding skin in the radial direction from the lesion centre is needed,
which can be from a practical point of view sometimes difficult to obtain, especially when
the lesion is not symmetrical or convex, due to the non-circular isotherms. Shape of the
lesion and with this positioning of the centre can present the main concern. To overcome
this we can find the position of the center by finding the maximum temperature during
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Figure 4: Response for Clark II and Clark IV tumours showing the maximum temperature
difference and profile through time.

the recovery phase or the region of the maximum temperature approximated with a cir-
cle, where centre of the circle represents the lesion centre. After finding the centre the
temperature measurement can be averaged by the angle to obtain the circular isotherms
and the temperature difference compared to the isotherm away from the lesion. The
processed data are then used in the proposed numerical model to obtain the searched
tumour parameters. This way the obtained parameters for the observed irregular tumour
represent not the actual values but the averaged values for the lesion approximated by
the cylindrical shape that is still valuable for the diagnostic. However, if the lesion shape
deviates to much from the circular one, the obtain values will not be realistic and the nu-
merical model should be improved changing the lesion geometry to describe the observed
lesion more accurately.

To mimic the real measurement data in this paper, we add white noise to the simulated
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temperature difference response as:

∆Tm,p,t = ∆Ts,p,t + ξ∆Terr, (18)

where ξ represents a random number; ξ ∈ [−1, 1], and ∆Terr a level of temperature
uncertainty, while the second term on the right hand side represents the temperature
deviation or noise. Different authors used different levels of uncertainty from 10mK
up to 100mK [15, 42, 48, 49]. Çetingül and Herman [39] used equipment that had an
uncertainty of 25mK, while Stra̧kowska et al. [19] used an IR camera with 20mK, which
is possible to obtain using laboratory equipment. Modern IR cameras can obtain the
NETD (Noise Equivalent Temperature Difference) value of less than 30mK. Thus, we
investigate both test cases under three different levels; 0mK, 25mK and 50mK. The first
one represents exact measurement data, while the last two represent low and high levels
of noise. In the last two cases, the measurement data do not follow the numerical model
anymore. Because the noisy measurement data are generated randomly we generated five
different measurement sets for each noise level, not just one. In this way, it is possible to
test how the randomness of the white noise affects the inverse solution.

For a clearer presentation, Figure 5 shows the exact and noisy measurement data for
Clark II and Clark IV tumours during the rewarming period, while Figure 6 shows the
randomness of the generated data (different sets) for the uncertainty level of 50mK. As
can be seen from Figure 5, the level can affect the temperature response for the Clark II
tumour more than for Clark IV, which makes solving inverse problems more difficult and
poor accuracy to be expected for early stage tumours.

3.2 Numerical model error

In reality the numerical model is never an identical representation of the examined tissue,
due to the uncertainty of model parameters, mathematical model, boundary conditions,
geometry, etc. and therefore, does not describe the bioheat transfer exactly or realistically.
In the literature we can find a large deviation of material properties, layer thicknesses
[39,61,62] and other model parameters, and for this reason they are usually taken at an
average value or estimated. Because the solution of the inverse problem depends on the
numerical model, we should also test how the uncertainty of model parameters or error
in the numerical model used in this paper affects the solution.

Therefore, this paper also covers how the uncertainty of material properties for skin,
tumour, fat and some boundary conditions affect the inverse solution, which is the novelty
of this paper. We carried out a study in [41] on the sensitivity of the model parameters
that showed a higher sensitivity for specific heat and thermal conductivity of the skin
layer and tumour, tumour size, its blood perfusion rate and thermoregulation coefficient,
as well as higher sensitivity for blood properties and arterial blood temperature. Because
of the higher sensitivity of the tumour blood perfusion rate, its size and thermoregulation
coefficient, we decided to search for these variables in this inverse analysis study. However,
we would also like to test how the change of value of other model parameters affects the
inverse solution, and which of them should be determined as accurately as possible in the
numerical model to reflect the real experimental data and to obtain an accurate inverse
solution. The chosen parameters are shown in Table 2, where we omit the analysis
for the epidermis because of the relative small thickness as shown in Table 1 and low
sensitivity, as well as the muscle tissue, which does not affect the tumour temperature
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Figure 5: Exact and noisy measurement data for Clark II and Clark IV test example.

response [41]. The parameters that can be easily or accurately obtained have also been
omitted in this analysis, like cooling temperature and time, density and heat capacity of
the blood, etc. However, to be able to compare the inverse solution and model error, the
model parameters have been changed by the same relative value; ±1% and ±5%, while
we should have in mind that uncertainty for some parameters can go up to ±50%.

4 Results and discussion

The solution of the inverse problem has been tested on numerically generated data with
and without noise, prescribing unknown parameters. In this way, the exact solution of
the problem is known and the analysis of the inverse problem can be verified. The exact
solution for Clark II is d = 2.0mm, h = 0.44mm, ωb = 0.0063s−1 and Q10 = 1.1, while
for Clark IV only the diameter and thickness are changed to d = 2.5mm and h = 1.1mm.
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Figure 6: Comparison of different sets of 50mK noisy measurement data at t = 200s for
Clark II and Clark IV test example.

To test the optimisation algorithm, stability of results and uniqueness of the solu-
tion, we run the algorithm using five different starting points y0. Starting points have
been chosen randomly, some in close proximity to the exact solution and some far away.
Starting points for Clark II and Clark IV test examples are shown in Table 3.

The results are presented using tables, which is the most appropriate to show the
evaluated parameters of the inverse bioheat problem. This section covers the analysis of
the starting point, measurement noise, randomness of the measurement data and model
error on the inverse solution, as well as a discussion of the results. First, the results are
presented for the exact model, which means that all the model parameters like specific
heat, layer thickness, thermal conductivity of the tissue, etc., have been prescribed exactly
the same as when the measurement data have been generated. This means that the
numerical model follows the measurement data or that the model describes the examined
tissue exactly. In the second part, the results for non-exact models are shown, by changing

material \ parameter ρ cp k qm,bas ωb,bas h Q10

epidermis
papillary dermis X X X X X X

reticular dermis X X X X X X

fat X X X X X X

muscle
tumour X X X

blood
bound. cond. parameter α T∞ T0 = Ta Tc tc

X X

Table 2: Chosen model parameters for model error analysis.
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one of the model parameters to observe how this change affects the inverse solution. The
change is made for several model parameters to investigate which of them is the most
crucial one and have to be determined precisely to make the estimation of the searched
parameters more accurate. The model error imposes an additional error to the inverse
problem, which makes parameter estimation more difficult.

4.1 Exact model

4.1.1 Starting point

The analysis of the starting point has been carried out first. This shows if the optimisation
process is stable and if a unique solution is obtained. If the solution of the inverse problem
changes drastically with the change of the starting point, then the problem does not have
a unique solution and is therefore not solvable. Table 4 shows the results for Clark II
tumour for all three levels of measurement noise using a fourth set of measurement data,
together with the exact solution in bold for comparison.

As can be seen, the solution of the inverse problem does not depend on the initial
starting point, which shows that the solution is unique, however there is a small but neg-
ligible variation in the inverse solution regarding the starting point when measurement
noise is introduced. Similar observations have been made using different sets of measure-
ment data, as well as for Clark IV and are therefore omitted. Regarding the solution, we
can observe that under zero noise condition the exact solution can be retrieved, however
an error is made with noisy measurement data. Usually the error of the estimated pa-
rameter increases with increasing noise, which depends on the randomness of the noise
or generated measurement data as it will be presented in the next subsection.

Figure 7 shows the convergence of the optimisation algorithm through iteration steps
for Clark II under no-noise and noisy measurement data for three different starting points,
where we can observe a steady descent of the objective function for zero noise data,
while for noisy data convergence is fast at the beginning and then is progressing slowly
towards the end of the process, which is typical. Normally the optimisation process
completes within around 15 iterations, which is fast, and the starting point does not have
a huge effect on the convergence speed, especially when noise is present. The value of the

Example y0 ωb[1/s] h[mm] d[mm] Q10[1]

1 0.0080 0.60 2.30 1.40
2 0.0060 0.50 1.90 1.00

Clark II 3 0.0050 0.30 1.70 1.30
4 0.0040 0.40 1.20 1.40
5 0.0060 0.50 1.50 1.40
1 0.0090 0.90 2.40 1.30
2 0.0060 1.20 2.60 1.00

Clark IV 3 0.0090 1.40 3.00 0.80
4 0.0050 0.70 1.80 0.80
5 0.0060 1.20 2.00 1.20

Table 3: Different starting points for optimisation process.
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objective function is of course different for zero noise and noisy measurement data, where
for no noise it goes towards zero, while for the noisy data it goes towards a certain value,
as can be seen in Figure 7 and Table 4. A similar behavior has been observed for Clark
IV, as well as for temperature uncertainty of 50mK compared to 25mK and is therefore
omitted here.
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Figure 7: Convergence of LM optimisation for Clark II test example using different
starting points for 0mK and 25mK measurement uncertainty.

At this point, we can conclude that the inverse solution obtained with the LM opti-

∆Terr y0 ωb[1/s] h[mm] d[mm] Q10[1] F [K2]

exact 0.006300 0.4400 2.000 1.100

1 0.006300 0.4400 2.000 1.100 0.163E-09
2 0.006300 0.4400 2.000 1.100 0.347E-08

0 mK 3 0.006300 0.4400 2.000 1.100 0.739E-09
4 0.006300 0.4400 2.000 1.100 0.118E-07
5 0.006300 0.4400 2.000 1.100 0.297E-07
1 0.006647 0.4166 2.000 1.102 0.198E+01
2 0.006649 0.4165 2.000 1.102 0.198E+01

25 mK 3 0.006650 0.4164 2.000 1.102 0.198E+01
4 0.006648 0.4165 2.000 1.102 0.198E+01
5 0.006649 0.4165 2.000 1.102 0.198E+01
1 0.006796 0.4064 1.996 1.102 0.798E+01
2 0.006795 0.4065 1.996 1.102 0.798E+01

50 mK 3 0.006804 0.4059 1.996 1.102 0.798E+01
4 0.006790 0.4068 1.996 1.102 0.798E+01
5 0.006798 0.4063 1.996 1.102 0.798E+01

Table 4: Solution of inverse problem for Clark II test example using different starting
points and exact numerical model.
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misation method does not depend on the initial starting point, convergence is fast and
that a unique solution of the problem is obtained. For zero noise measurement data
and exact numerical model, the exact solution can be obtained, while for noisy data an
error is made, as can bee seen from Table 4. However, a good approximation to the
exact solution can still be obtained using low noise measurement data, while the diame-
ter and thermoregulation coefficient could be evaluated more precisely regardless of the
measurement noise.

4.1.2 Measurement data

As discussed in subsection 3.1, we would like to test the sensitivity of the inverse solution
regarding the randomness of the noise. Therefore, five different measurement data sets
have been prepared to test both inverse examples, as shown in Figure 6. Because the
solution does not depend on the starting point, the starting point has been taken randomly
from the set. For Clark II we choose starting point 1 while for Clark IV point 5, which
have been kept fixed for all our further calculations.

∆Terr Set ωb[1/s] h[mm] d[mm] Q10[1] ωb[%] h[%] d[%] Q10[%] F [K2]

exact 0.006300 0.4400 2.000 1.100

1 0.005670 0.5058 1.974 1.098 9.99 14.95 1.31 0.20 0.204E+01
2 0.006296 0.4310 2.027 1.100 0.06 2.05 1.33 0.01 0.199E+01

25 mK 3 0.005845 0.4867 1.970 1.094 7.23 10.61 1.51 0.50 0.203E+01
4 0.006647 0.4166 2.000 1.102 5.51 5.32 0.02 0.19 0.198E+01
5 0.005323 0.5317 1.985 1.089 15.51 20.84 0.73 1.04 0.201E+01
1 0.006396 0.4394 1.999 1.115 1.52 0.13 0.03 1.32 0.808E+01
2 0.005399 0.5432 1.946 1.093 14.34 23.46 2.72 0.60 0.801E+01

50 mK 3 0.008347 0.3321 1.999 1.128 32.50 24.53 0.03 2.54 0.803E+01
4 0.006796 0.4064 1.996 1.102 7.88 7.64 0.20 0.19 0.798E+01
5 0.006987 0.3854 2.016 1.101 10.91 12.41 0.82 0.11 0.795E+01

Table 5: Solution of inverse problem and relative error for Clark II test example using
different sets of measurement data and exact numerical model.

Table 5 shows the results for the Clark II test using different sets of measurement data
for temperature uncertainty of 25mK and 50mK, together with the relative error com-
pared to the exact solution. As can be observed, the randomness of the noise is affecting
the inverse solution and for certain data sets the error can be quite high, especially for
the estimation of blood perfusion and thickness of the tumour.

Convergence of the LM optimisation algorithm for different sets of noisy measuring
data is displayed in Figure 8, which shows fast convergence at the first five steps and slow
at the end, as observed when testing different starting points. The number of iteration
steps used to find the solution was around 15. There is a slight difference between different
measurement sets, achieving lower value of the objective function, as can be seen from
Table 5. Similar observation has also been made for the Clark IV test and is therefore
omitted here. However, the LM method proved to be stable and appropriate to solve the
inverse bioheat problem.
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Figure 8: Convergence of LM optimisation for Clark II test example using different
measurement data set for 25mK and 50mK measurement uncertainty.

From this analysis, we can conclude that the solution of the inverse problem depends
on the level and randomness of the noise. Therefore, when testing the inverse problem
numerically, it is needed to test the problem on different randomly generated measurement
data. In this paper, we generated five different sets for each noise level and we statistically
analyse the results from each set to make a conclusion on how the noise level affects the
inverse solution as shown in the next subsection.

4.1.3 Solution for Clark II and Clark IV

As seen from Table 5, the inverse analysis solution depends on the measurement data
set, where in some cases the error for some parameters can be quite large. To be able
to discuss the inverse solution and how it is affected by measurement noise, we used a
statistical approach to analyse the solution. We are aware that five different solutions is
a small sample size, which makes statistical analysis not accurate, however it still gives
an insight on how the measurement noise affects the inverse solution.

Because of the variation of evaluated parameters for each measurement set the average
value and standard deviation of each parameter has been calculated, together with the

∆Terr ωb ± σω[1/s] h± σh[mm] d± σd[mm] Q10 ± σQ[1] ωb[%] h[%] d[%] Q10[%]

exact 0.006300 0.4400 2.000 1.100

25 mK
0.005956 ±
0.000522

0.4743 ±
0.0491

1.991 ±
0.023

1.097 ±
0.005

7.66 10.75 0.98 0.39

50 mK
0.006785 ±
0.001067

0.4213 ±
0.0785

1.991 ±
0.027

1.108 ±
0.014

13.42 13.63 0.76 0.95

Table 6: Solution of inverse problem for Clark II test example showing the average value
of evaluated parameters, standard deviation and average error.
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average error. Therefore, Tables 6 and 7 show the results for Clark II and Clark IV,
respectively, using only noisy measurement data. In the previous subsection, we can see
from Table 4 that an exact estimation of parameters is obtained using zero noise data,
regardless of starting point, however this is only interesting from the numerical point of
view and is not feasible in practical problems. As can be observed from Table 6 for Clark
II, the parameters can be estimated with relatively good accuracy for low noise level,
while for high level the evaluation of blood perfusion rate and thickness of the tumour
exceeds 10% error. However, the diameter and thermoregulation coefficient are estimated
within 1% regardless of the noise. We can also observe that the standard deviation of
each parameter is increased with noise, which is reasonable. However, for Clark IV, the
estimation of all four parameters is much more accurate than for Clark II as shown in
Table 7. The error for low level of noise is below 3% and similar to the Clark II test
example, and the error for diameter and thermoregulation coefficient of the tumour is
very low. Also, the standard deviation of parameters is smaller for Clark IV than for
Clark II, showing that the measurement noise does not influence the thermal signature of
the later stage tumour as much as for early stage, as can be seen from Figures 5 or 6. Here,
we should mention that the error of blood perfusion rate and thickness of the tumour are
connected, because these two parameters are interdependent. If the blood perfusion rate
is evaluated higher than the exact one, then the thickness will be underestimated and
vice versa, which can be observed from Tables 6 and 7.

We can conclude that all four parameters can be estimated, especially the diameter
and thermoregulation coefficient, regardless of the noise and tumour stage. While the
estimation error for blood perfusion rate and thickness is low for later tumour stage, the
parameters can still be evaluated for skin tumour at an early stage for low measurement
noise.

4.2 Model error

The uncertainty of material properties, mathematical model or boundary conditions of the
numerical model can influence the accuracy of the inverse solution. Therefore, parameters
shown in Table 2 have been chosen to analyse the inverse solution sensitivity to ±1% and
±5% relative change, where parameters for papillary dermis and reticular dermis (skin)
have been changed simultaneously due to having the same value as can be seen in Table
1.

Table 8 shows the solutions for uncertainty of skin heat capacity under exact mea-

∆Terr ωb ± σω[1/s] h± σh[mm] d± σd[mm] Q10 ± σQ[1] ωb[%] h[%] d[%] Q10[%]

exact 0.006300 1.100 2.500 1.100

25 mK
0.006260 ±
0.000117

1.1135 ±
0.0364

2.498 ±
0.010

1.102 ±
0.002

1.46 2.63 0.29 0.21

50 mK
0.006326 ±
0.000274

1.1046 ±
0.1025

2.499 ±
0.038

1.102 ±
0.010

3.05 7.20 1.25 0.74

Table 7: Solution of inverse problem for Clark IV test example showing the average value
of evaluated parameters, standard deviation and average error.
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surement data for Clark II and Clark IV tumours, where the solution error increases
with the specific heat change. If the skin heat capacity is underestimated, the estimation
of blood perfusion rate, tumour diameter and thermoregulation coefficient will be also
underestimated, while thickness will be overestimated due to the lower estimated blood
perfusion rate, and vice versa. As already described, the blood perfusion rate and tu-
mour thickness are interdependent and also the error for these two parameters will be
connected and can be looked as one. The 5% change of skin heat capacity will affect the
estimation of tumour thickness and blood perfusion rate the most, where the error will
be around 10% for thickness and 6% for blood perfusion rate for the Clark II example.
The uncertainty will also affect the estimation of the thermoregulation coefficient, while
the diameter will still be determined accurately. For Clark IV, the uncertainty in skin
heat capacity affects the blood perfusion rate the most, while other parameters can be
determined accurately with an error lower than 2%. From the results shown in Table 8,
we can conclude that uncertainty of skin heat capacity will have the largest effect on the
estimation of blood perfusion rate and tumour thickness and for accurate estimation of
these parameters, heat capacity of the skin should be determined in the numerical model
as accurately as possible, especially when the estimation of searched parameters is needed
for an early stage tumour.

From Table 8, we analyse the effect of skin specific heat uncertainty on inverse solu-
tion under zero noise measurement data, while Table 9 shows the effect of measurement
noise, showing only the average estimation error. The average error of the estimated
parameters is even larger under noisy measurement, especially for Clark II. The error for
blood perfusion rate and tumour thickness becomes higher than 13% for 50mK of mea-
surement uncertainty, regardless of the level of skin specific heat change, which means
that measurement noise in Clark II is prevailing, and similar conclusion can be made for
temperature uncertainty of 25mK. However, for Clark IV the parameter estimation error
does not change so significantly and the inverse solution is still controlled by model error
or uncertainty.

The error of the inverse solution under noisy measurement data and model error can be
roughly estimated as the sum of separated errors made by the measurement noise under
an exact model and error for model uncertainty under zero noise measurement data.

Example cp[J/kgK] ωb[1/s] h[mm] d[mm] Q10[1] ωb[%] h[%] d[%] Q10[%]

exact 0.006300 1.100 2.500 1.100

3135.0 (-5%) 0.005979 0.4836 1.980 1.062 5.09 9.90 0.98 3.50
Clark II 3267.0 (-1%) 0.006223 0.4494 1.996 1.092 1.23 2.14 0.21 0.72

3333.0 (+1%) 0.006377 0.4311 2.004 1.107 1.22 2.02 0.20 0.67
3465.0 (+5%) 0.006738 0.3948 2.020 1.135 6.95 10.27 1.00 3.21
3135.0 (-5%) 0.005999 1.1183 2.506 1.121 4.78 1.66 0.26 1.91

Clark IV 3267.0 (-1%) 0.006236 1.1048 2.501 1.104 1.02 0.44 0.04 0.38
3333.0 (+1%) 0.006366 1.0948 2.499 1.096 1.05 0.47 0.03 0.38
3465.0 (+5%) 0.006643 1.0713 2.497 1.079 5.44 2.61 0.13 1.91

Table 8: Inverse solution for Clark II and Clark IV test example under skin specific heat
uncertainty.
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Therefore, to present more clearly the effect of model uncertainty, only the estimated
parameter error for zero noise measurement data will be shown. Tables 10 and 11 show
the average parameter error estimation for 1% and 5% uncertainty, respectively. As can
be observed, the metabolic heat generation does not affect the inverse solution, regardless
of the tumour stage, as well as blood perfusion rate and thermoregulation coefficient due
to low sensitivity [41]. The error is below 0.5% for 5% while the highest effect among

Clark II Clark IV

∆Terr cp[%] ωb[%] h[%] d[%] Q10[%] ωb[%] h[%] d[%] Q10[%]

-5% 9.61 17.26 1.56 3.87 5.79 4.82 0.44 2.14
25 mK -1% 8.17 11.31 1.10 1.06 2.08 2.97 0.30 0.53

+1% 7.57 10.23 0.93 0.50 1.31 2.45 0.28 0.26
+5% 7.11 8.16 0.85 3.04 4.93 2.39 0.27 1.81
-5% 10.83 13.19 1.40 2.62 4.79 7.40 1.27 2.05

50 mK -1% 12.43 13.37 0.88 1.00 2.73 6.12 1.06 0.78
+1% 14.41 14.64 0.77 1.35 2.78 5.67 1.02 0.63
+5% 19.02 18.78 1.22 3.75 6.22 5.20 0.95 0.77

Table 9: Average error of the inverse solution for Clark II and Clark IV test example for
skin specific heat uncertainty under noisy measurement data.

Clark II Clark IV

Parameter Material ωb[%] h[%] d[%] Q10[%] ωb[%] h[%] d[%] Q10[%]

cp

skin 1.22 2.08 0.20 0.70 1.03 0.45 0.04 0.38
fat 0.20 0.48 0.04 0.13 0.15 0.19 0.05 0.20

tumour 2.20 2.30 0.19 1.15 0.04 0.09 0.05 0.85

λ
skin 1.58 0.85 0.43 0.79 3.95 3.98 0.09 0.41
fat 0.23 0.14 0.11 0.19 0.00 0.85 0.03 0.27

tumour 0.20 1.30 0.21 0.49 1.50 1.65 0.09 0.30

qm,bas

skin 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
fat 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

tumour 0.00 0.04 0.00 0.01 0.02 0.05 0.01 0.02

ωm,bas
skin 0.00 0.11 0.00 0.04 0.00 0.00 0.00 0.00
fat 0.00 0.01 0.00 0.00 0.02 0.05 0.01 0.01

Q10

skin 0.05 0.02 0.01 0.03 0.08 0.09 0.01 0.02
fat 0.00 0.00 0.00 0.00 0.02 0.05 0.01 0.01

h
pap. dermis 0.06 0.15 0.04 0.12 0.16 0.21 0.04 0.19
ret. dermis 0.10 0.09 0.05 0.11 0.09 0.12 0.05 0.14

fat 0.24 0.28 0.01 0.26 0.28 0.52 0.01 0.35

Bound. cond.
Ta 2.74 0.19 0.26 0.49 3.40 1.56 0.07 0.24
α 0.04 0.57 0.10 0.23 0.50 0.20 0.04 0.22

Table 10: Average error of the inverse solution for Clark II and Clark IV test example
for 1% change of model parameters under zero noise measurement data.
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Clark II Clark IV

Parameter Material ωb[%] h[%] d[%] Q10[%] ωb[%] h[%] d[%] Q10[%]

cp

skin 6.02 10.08 0.99 3.35 5.11 2.14 0.19 1.91
fat 1.01 2.37 0.22 0.67 0.77 0.94 0.24 0.99

tumour 11.29 11.62 0.96 5.72 0.23 0.12 0.27 4.28

λ
skin 8.81 8.86 1.89 3.82 20.86 24.91 1.05 1.70
fat 1.15 0.72 0.54 0.93 0.09 4.23 0.14 1.36

tumour 3.95 5.22 0.95 2.42 7.80 9.06 0.63 1.44

qm,bas

skin 0.01 0.03 0.00 0.01 0.02 0.05 0.01 0.01
fat 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00

tumour 0.00 0.19 0.01 0.07 0.18 0.09 0.01 0.08

ωm,bas
skin 0.00 0.55 0.02 0.22 0.00 0.00 0.00 0.00
fat 0.01 0.06 0.00 0.02 0.05 0.09 0.01 0.02

Q10

skin 0.24 0.10 0.03 0.12 0.17 0.46 0.01 0.12
fat 0.00 0.02 0.00 0.01 0.05 0.09 0.01 0.02

h
pap. dermis 0.32 0.76 0.20 0.60 0.80 1.04 0.22 0.94
ret. dermis 0.50 0.45 0.24 0.55 0.46 0.60 0.23 0.69

fat 1.19 1.41 0.04 1.30 1.39 2.58 0.04 1.73

Bound. cond.
Ta 14.10 1.06 1.28 2.48 17.23 8.01 0.28 1.21
α 0.19 2.87 0.49 1.13 2.49 0.96 0.20 1.08

Table 11: Average error of the inverse solution for Clark II and Clark IV test example
for 5% change of model parameters under zero noise measurement data.

these parameters will be on the skin blood perfusion rate and, consequently, also the
skin thermoregulation coefficient Q10. Small errors can also be expected for skin and
fat thickness, where fat has the strongest effect [41]. The solution error in this case is
in the same range of the blood perfusion rate, tumour thickness and thermoregulation
coefficient regardless of tumour size, while usually the highest error has been made for
blood perfusion rate and tumour thickness for early stage tumours as already described.
However, the error made because of the thickness is small compared to the error in skin
and tumour heat capacity and thermal conductivity. Model sensitivity of the tumour and
skin thermal conductivity is especially visible for the Clark IV example, which is 2− 2.5
times higher than for Clark II, while for the Clark II example, tumour heat capacity has
the strongest effect. The 5% error in these model parameters will produce solution errors
in the range of 5− 25% and should, therefore, be determined as accurately as possible to
reduce the estimation error as shown in Table 10. Regarding boundary conditions, the
heat transfer coefficient α does not have a high impact on the inverse solution, however, a
large error can be made if the estimation error is high. Uncertainty in the arterial blood
temperature has a much stronger effect on the inverse solution than the heat transfer
coefficient, especially on blood perfusion rate, however the relative error made by the
guess of Ta = 37◦C is below 1%, which means that solution error will be small.

To conclude, model error in fat thickness and material properties, as well as metabolic
heat generation, blood perfusion rate, thermoregulation coefficient and layer thickness for
skin does not drastically affect the inverse solution, and the solution error will be mostly
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controlled by measurement noise. However, specific heat and thermal conductivity of skin
and tumour will have to be evaluated more precisely to estimate four tumour parameters
successfully. Some of these parameters affect the inverse solution more for later stage
tumour than earlier ones. The reason for this behavior can be found in tumour size,
possibility to accumulate cold and rewarming speed, as well as the cold penetration
depth around the lesion, which shifts the thermal response during the rewarming period
and influences the accuracy of parameter estimation.

5 Conclusion

This paper covers the solution of inverse bioheat problems of simultaneous estimation of
four different skin tumour parameters based on surface temperature differences between
the lesion and health skin during the rewarming period of dynamic thermography. These
four parameters are tumour thickness, diameter, blood perfusion rate and thermoregula-
tion coefficient, which are important for diagnostic to estimate stage and invasiveness of
the skin tumour. The problem in this paper is solved numerically and presents the base
for further developments of non-invasive diagnostic techniques using IRT imaging.

The estimation of all four parameters is carried out on a more realistic non-homogeneous
3D numerical skin model containing a skin tumour that includes the thermoregulation
response of the skin, lesion and surrounding tissue, which is important to simulate dy-
namic heat transfer during the cooling/rewarming process of dynamic thermography as
accurately as possible, and the surface temperature response of the tumour during the
rewarming period. The inverse problem is solved using an optimisation approach with
deterministic LM method, which proved to be efficient for this inverse problem. The op-
timisation has been made based on the objective function that compared the simulated
surface temperature difference between the healthy skin and lesion with the measurement
data. The temperature difference between the skin and lesion reduces the error that can
be made by adopting a non-exact numerical model and the difficulties in measuring the
absolute temperature. In this paper, measurement data have been generated numerically
for Clark II and Clark IV examples. To mimic the measurement error a 25mK and 50mK
white noise has been added, based on the accuracy of modern IR cameras. Because the
measurement data have been generated numerically with predetermined searched values,
which were taken as exact, it has been possible to evaluate the error of the inverse solution
and the success of dynamic thermography for early skin tumour detection.

The paper covers the analysis of measurement noise and model uncertainty on the
inverse solution that presents a novelty in this field, especially as the additional ther-
moregulation coefficient can be estimated accurately under different levels of noise and
tumour stage.

The optimisation algorithm and uniqueness of the inverse solution have been tested
using different starting points. The solution does not depend on the starting point, and
the exact solution has been obtained using zero noise measurement data and the exact
model. The starting point analysis also shows the robustness of the optimisation LM
algorithm, which converged in around 15 iterations steps. However, the randomness of
measurement noise has a high effect on the solution. Therefore, the solution has been
tested and statistically analysed for five different measurement sets to establish how the
noise and randomness affect the accuracy of the inverse solution. The accuracy is affected
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by the level of noise and stage of tumour and is better for low noise level and later tumour
stages, however, diameter and thermoregulation coefficient could also be determined for
early stage tumours and high levels of noise. The accuracy of the blood perfusion rate and
tumour thickness is most affected by noise and are correlated because of interdependency.
A higher blood perfusion rate leads to thinner tumour estimation and vice versa.

The paper also covers the error analysis induced by the numerical model error. Sev-
eral model parameters have been varied by ±1% and ±5% to evaluate which of them
affects the inverse solution the most. As shown, the most important parameters are ther-
mal conductivity and specific heat of skin and tumour, as well as arterial temperature,
while metabolic heat generation, blood perfusion rate, thermoregulation coefficient and
thickness of the skin and fat, together with thermal conductivity and heat capacity of
the fat layer, are not so important. Because the uncertainty of arterial temperature is
smaller than 1%, it does not impose a problem, and therefore only the heat capacity and
thermal conductivity need to be determined precisely in the numerical model to evaluate
skin tumour parameters as accurately as possible, while keeping the noise level low.

As shown in the paper, dynamic thermography is a promising non-invasive approach
to detect and evaluate stage and invasiveness of the skin tumour, which can improve the
survival rate if detected in its early stage, as well as to evaluate some of the parameters
that are not well researched as thermoregulation coefficient or response of the tumour
to cold stress. Lesion parameters are evaluated based on the numerical model using
cylindrical shape of the lesion, however it can be also used for the non-symmetrical
lesions that can be approximated by the cylinder, for which the measurement data has
to be averaged by the angle regards to the lesion centre. The accuracy of the evaluated
parameters in this case depends on the shape deviation from the cylindrical one, which
will be the focus of our future work.
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