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Abstract 

 

While vast individual differences in face recognition have been observed in adults, very little 

work has explored when these differences come online during development, their domain-

specificity, and their consistency across different aspects of face-processing. These issues do 

not only have important theoretical implications for the cognitive and developmental 

psychological literatures, but may reveal critical windows of neuroplasticity for optimal 

remediation of face recognition impairments. Here, we describe the first formal remedial face 

training programme that is suitable for children, modifying the popular game Guess Who. 

Eighty-one typical children aged 4-11 years were randomly allocated to an experimental or 

active control training condition. Over 10 training sessions, experimental participants were 

required to discriminate between faces that differed in feature size or spacing across 10 levels 

of difficulty, whereas control participants continuously played the standard version of Guess 

Who within the same timeframe. Improvements in face memory but not face matching were 

observed in the experimental compared to the control group, but there were no gains on tests 

of object matching or memory. Face memory gains were maintained in a one-month follow-

up, consistent across age, and larger for poorer perceivers. Thus, this study not only presents 

a promising means of improving face recognition skills in children, but also indicates a 

consistent period of plasticity that spans early childhood to pre-adolescence, implying early 

segregation of face versus object processing.  

 

Keywords: Face recognition; face perception; development; training; individual differences; 

prosopagnosia. 
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Guess Who? Facial Identity Discrimination Training Improves Face Memory  

in Typically Developing Children 

 

It is becoming increasingly clear that there are vast individual differences in the face 

recognition skills of adults, suggesting a broad continuum of ability (e.g. Bruce, Bindemann 

& Lander, 2018; Wilmer, 2017). At the bottom end of this distribution are people with a 

condition known as “developmental prosopagnosia”, who experience profound difficulties 

with facial identity recognition (for an overview see Bate & Tree, 2017). Much less work has 

investigated whether the same individual differences occur in childhood, although there are 

case reports of children as young as four years with the developmental form of prosopagnosia 

(Dalrymple, Garrido & Duchaine, 2014). Despite widespread theoretical and clinical interest 

in prosopagnosia across the lifespan, and evidence that large numbers of people may be 

affected (Bowles et al., 2009), very little work has examined its remediation (Bate & 

Bennetts, 2014). The work that has been carried out to date has mostly attempted to improve 

face recognition skills in adults, with little-to-moderate levels of success (Davies-Thompson 

et al., 2017; DeGutis, Bentin, Robertson & D’Esposito, 2007; DeGutis, Cohan & Nakayama, 

2014). Critically, gains in adults may be curtailed by limited neuroplasticity within the 

mature face recognition system – a viewpoint shared by the general neurorehabilitation 

literature, which posits greater gains from cognitive training following early intervention (e.g. 

Elbert et al., 2001; Huttenlocher, 2002). Yet, no study to date has carried out a remediatory 

face training programme in children, despite its ability to address important theoretical 

questions within the cognitive, developmental, individual differences and rehabilitation 

literatures. 

Instead, there are isolated attempts to improve face recognition skills in single-cases 

of childhood prosopagnosia. For instance, Ellis and Young (1988) administered four training 
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programmes to a child with acquired prosopagnosia between the ages of 8 and 11 years. 

These programmes involved simultaneous matching of photographs of familiar and 

unfamiliar faces, paired discriminations of computer-generated schematic faces, paired 

discriminations of digitized images of real faces, and learning face–name associations. 

Unfortunately, none of these programmes yielded any improvement with practice. Two 

studies successfully trained an 8 year-old and a 4-year old with developmental prosopagnosia 

to recognise distinctive features of familiar faces (Brunsdon, Coltheart, Nickels & Joy, 2006; 

Schmalzl, Palermo, Green, Brunsdon & Coltheart, 2008; but see Dalrymple, Corrow, Yonas 

& Duchaine, 2010, for a child who did not gain from this intervention). However, this 

technique did not attempt to improve underlying deficits in processing strategy, but simply 

taught the child to compensate and circumvent recognition difficulties. Such compensatory 

approaches are not only laboured and challenging to implement, but also require intensive 

support from a carer (DeGutis et al., 2014). 

The only existing remedial training study in a child was recently reported by our 

group (Bate et al., 2015): we described the case of EM, a 14 year-old female who acquired 

prosopagnosia following encephalitis at the age of eight years. EM underwent 14 weeks of 

perceptual training via an online face perception programme that attempted to improve her 

ability to make fine-grained discriminations between faces, progressing across 10 levels of 

difficulty. EM’s face perception skills improved post-training, and she spent more time 

viewing the inner facial features. The gains transferred to new faces, and laboratory 

assessments also indicated improvements in her recognition of personally-known faces, 

although this did not transfer to everyday life. Importantly, this study raises the possibility 

that more formal perceptual face training programmes can have at least some success, 

particularly given the participant’s age (intervention of this kind could readily be applied to 
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much younger children when packaged in an appropriate format) and widespread brain 

damage. 

Encouragingly, modest gains have also been observed in similar programmes that 

used adult participants. DeGutis and colleagues (2014; see also DeGutis et al., 2007) trained 

24 adults with developmental prosopagnosia via a 3-week online programme that targeted 

relational processing – the ability to process spatial relationships between different facial 

features (Piepers & Robbins, 2012). Specifically, participants were required to make rapid 

category judgements about large numbers of faces (~30-40 minutes per day), by integrating 

the distance between the eyes and eyebrows with the distance between the mouth and nose. 

Compared with performance in a no-training waiting condition, participants showed 

moderate improvements on measures of front-view face discrimination, tests of holistic 

processing, and in self-reported diaries of everyday face recognition experiences. Pertinently, 

the largest improvements were observed in those who dedicated more time to training. 

Davies-Thompson et al. (2017) applied a similar training programme to 10 adults with 

acquired prosopagnosia, over an 11-week period. These participants were required to 

discriminate whole-face differences over a variety of views and expressions for 30-40 

minutes per session, three times a week, and a staircase design controlled the difficulty levels 

of subsequent trials. Gains generalized to new viewpoints and expressions of the trained faces 

and to untrained faces, and persisted for at least three months post-training. While there were 

minimal gains on standard tests of face-processing and in transfer to everyday life, gains were 

greater for individuals who had initially presented with more severe deficits in face 

perception. 

The studies reviewed above suggest that adult cases of prosopagnosia can benefit to 

some degree from training, with both the severity of face-processing deficits at baseline and 

level of engagement influencing training outcome. Yet, no study to date has considered the 



FACIAL IDENTITY TRAINING 6 
 

influence of participant age on training outcomes, despite this being a renowned factor in the 

outcome of neurorehabilitation (Elbert et al., 2001; Huttenlocher, 2002). Therefore, 

identifying an age at which the face processing system is most responsive to training – i.e. is 

at its most plastic – is a key step in developing effective interventions for individuals with 

face processing deficits.  

Despite some evidence of very early limits in plasticity (e.g. Geldart, Mondloch, 

Maurer, de Schonen & Brent, 2002; Pascalis et al., 2002), further evidence suggests that the 

face recognition system does not fully mature until later in development – offering a potential 

window for maximizing the gains of intervention during childhood. However, the age at 

which maturation occurs is theoretically contentious. To date, two conflicting viewpoints 

have been offered: one advocating slow maturation of face versus object recognition over the 

first 10+ years of life (Carey, 1992), and the other suggesting that the mechanisms 

underpinning face recognition are fully developed at an early stage (McKone, Crookes, 

Jeffery & Dilks, 2012). Weigelt et al. (2014) offer an intriguing attempt to reconcile these 

theories, reporting early adult-like processing of both face and object (cars, scenes and 

bodies) perception, but steeper developmental slopes for the memory of faces compared to 

objects. However, another study found that faces and bikes showed similar developmental 

trajectories for both memory and matching (Bennetts et al., 2017). Thus, while the proposed 

independence of face perception and face memory has long been investigated in the adult 

neuropsychological literature and is reflected in dominant theories of face-processing (e.g. 

Bruce & Young, 1986), it is much less clear how, or when, these two processes unfold in 

development, nor when adult-like individual differences in performance come online. 

Further, the issue of domain-specificity has been debated in the adult cognitive 

neuropsychological literature for more than 50 years, but is far from resolved (Geskin & 

Behrmann, 2018). While many researchers support modular accounts of functionally distinct 
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cortical face and object representations (e.g. Kanwisher, 2017), others advocate domain-

general hypotheses of distributed cortical function (e.g. Behrmann & Plaut, 2015) and/or 

common underlying mechanisms for different object categories (e.g. Richler, Palmeri & 

Gauthier, 2012). Research on acquired and developmental prosopagnosia suggests that face 

and object processing deficits can dissociate (Bate, Bennetts, Tree, Adams & Murray, in 

press; Duchaine & Nakayama, 2005; Garrido et al., 2009; Rezlescu, Pitcher, & Duchaine, 

2012; although see Geskin & Behrmann, 2017, for discussion), which supports the theory that 

at least some aspects of face processing are domain specific. Notably, these dissociations can 

even be observed in children (Bennetts et al., 2017, Dalrymple, Elison, & Duchaine, 2017), 

suggesting that domain specificity emerges relatively early in life. However, the point at 

which this occurs remains unclear. While it is possible that faces and objects rely on separate 

mechanisms from birth, it is also feasible that face and object recognition rely on shared 

mechanisms during early life (e.g. processing of individual parts), but segregate or become 

specialized at some point during development. 

The current study aimed to address the substantive issues reviewed above by 

examining the efficacy of a facial identity discrimination programme in a large sample of 

typical children aged between four and 11 years. Investigating whether a face training 

programme brings about domain-specific gains in children in some/all aspects of face-

processing offers a novel means to inform several key theoretical debates about the 

development of face processing, particularly if there is a critical age where gains for memory 

or matching can be maximised or become domain-specific. Our face training programme 

built upon the principles of existing remediatory programmes described above. To encourage 

engagement with the programme, we framed it within the traditional childhood game Guess 

Who (Hasbro Gaming) – a commercially available family game that is enjoyed by children 

worldwide. 
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Our rationale for using typical children was primarily motivated by sample size, given 

(a) relatively few children with face-processing deficits are currently known to researchers, 

and (b) a larger sample would allow us to address specific research questions regarding age 

(i.e. is the programme more successful in younger compared to older children?), individual 

differences in face-processing ability at baseline (i.e. are gains greater in poorer perceivers?), 

and the specificity of the developing face recognition system (i.e. are gains restricted to face 

perception and/or memory in comparison to other classes of objects?). Further, proof-of-

concept of a new training programme could more convincingly be obtained from typical 

children, as extraneous factors that often complicate acquired and developmental disorders 

(e.g. accompanying cognitive and social deficits) could more readily be controlled.  

  

Method 

 

Participants 

We set out to recruit a total of 80 typically developing children, equally split between the 

experimental and control training conditions. This sample size was calculated to give 80% 

power to detect moderate-to-large interaction effects (d = 0.70) and small (d = 0.30) within-

subject main effects in the primary analysis (comparing performance on pre- and post-test 

measures), both of which are smaller than the training effects found by DeGutis et al. (2014) 

(power calculations carried out in G*Power 3.1). Because we selected a memory paradigm 

for pre- and post-assessment that differed in memory load (see below) for older (aged 7-11 

years) and younger (aged 4-6 years) children, and we specifically set out to examine any age-

related differences in training between these two age groups, we ensured equal numbers of 

children were recruited for each age group in each training condition. Thus, participants were 

allocated to the experimental and control training groups via pseudo random allocation. 
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Exclusion criteria were any history of face-processing deficits, uncorrected vision, or 

developmental, psychiatric or neurological disorder. 

Recruitment paused when a minimum of 40 participants in each training condition 

had successfully completed the study through to the post-assessment phase. Due to a high 

drop-out rate (33%), 123 children were recruited in total. Forty-one participants dropped out 

at various phases: prior to the pre-assessments (N = 8; two from the experimental condition), 

during the pre-assessment tests (N = 17; six from the experimental condition), or during 

training or the post-test phase (N = 16; 10 from the experimental condition). Eighteen of the 

41 participants who dropped out were from the younger age-group. 

The final sample contained 82 participants (42 female), who were reported by their 

parents or guardians to have completed the training as requested. Forty-one were allocated to 

the experimental (M age = 7.2 years, SD = 2.3) condition, and 41 (M age = 6.9 years, SD = 

2.2) to the training condition. Within the experimental condition, there were 21 younger (14 

female; M age = 5.3 years, SD = 0.8, range = 4-6 years) and 20 older (nine female; M age = 

9.4 years, SD = 1.3, range = 7-11 years) children; in the control condition there were 20 

younger (seven female; M age = 5.0 years, SD = 0.8, range = 4-6 years) and 21 older (15 

female; M age = 8.7 years; SD = 1.4, range = 7-11 years) children. Participants received a 

small financial incentive in exchange for their time, and were gifted their Guess Who game 

set. Ethical approval was granted by the institutional Ethics Committee. 

 

Materials 

 Training: The training procedure adopted the format of the popular two-player 

children’s game Guess Who (Hasbro Gaming). In the commercial version, the two players sit 

opposite each other, viewing the same set of 24 cartoon faces that are encased within a plastic 

frame, each behind a closable window (see Figure 1). Each image displays the entire face in 
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colour from the neck upwards, and measures approximately 2.0 x 1.8 cm. A name is 

presented immediately below each image. Each player selects one face to be their chosen 

character, and ensures all the windows are open. They then take turns to ask yes/no questions 

that will help to reveal the identity of their opponent’s character. For instance, if a player asks 

“Is your character female?” and receives an affirmative response, they would then shut all the 

windows covering male faces. The game proceeds until one player has only one window left 

open, and are able to guess the identity of their opponent’s character. If they are correct, they 

win the game. Variation in characters’ appearance are largely due to gender, ethnicity, the 

wearing of accessories (e.g. hats or spectacles), eye colour, facial hair, and hairstyle/colour 

(see Figure 1). These differences form the basis of the players’ yes/no questions. 

< Insert Figure 1 > 

To create a perceptual face training programme within this game, we developed new 

insert cards that slot into the plastic frame, replacing the cartoon faces that are provided with 

the original game-set. Two new versions were created: one displaying male faces and the 

other displaying female faces (see Figure 2A and 2B). Each version was created by obtaining 

two colour photographic images of a model. In one image the model displayed a neutral 

facial expression, and in the other image the model displayed a happy facial expression. 

These base images were cropped around the neck and hair, adjusted to a size of 

approximately 1.7 x 2.3 cm, and presented on a white background. Twelve manipulated 

images were then created from each base image, using different combinations of four 

adjustments (see Figure 2A and 2B): two affecting the spacing of facial features (the distance 

between the eyes, or the distance between the eyes and mouth), and two affected the size of 

specific facial features (the eyes and nose). These manipulations were taken from the design 

of existing training programmes that have experienced at least some success: expression was 

manipulated by Davies-Thompson et al. (2017), spacing by DeGutis et al. (2007, 2014), and 
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feature size by Bate et al. (2015). Together, a total of 24 new character images were created 

for each of the male and female insert cards. Each image was paired with a name taken from 

the annual UK list of popular baby names. Note that the external features of each character 

were identical and could not be used as cues to identity. Thus, the only questions that players 

could ask to discriminate identity refer directly to the expression, spacing and feature size 

manipulations described above. 

< Insert Figure 2 > 

The images displayed in each version were then adjusted to become increasingly fine-

grained in their differences over 10 levels of difficulty (see Figure 2C and 2D). That is, nine 

further image cards were prepared for each gender, where the manipulations became 

progressively less extreme (i.e. expressions became more ambiguous, or the differences in 

spacing or feature size became increasingly smaller). This resulted in 20 different image 

cards (10 male, 10 female; with 10 levels of difficulties for each gender). We then created a 

second set of the 20 cards where the character positions were dispersed across different 

locations. This provided two versions of the identical stimulus set: one for each opponent, in 

order to prevent location-based cueing to the correct answer during play.  

 Assessment tasks: Four existing tasks with high reliability (Bennetts et al., 2017) 

were used to assess the efficacy of training, assessing face and object (bike) processing, for 

memory and matching. Face memory was assessed with the Cambridge Face Memory Test – 

Kids (CFKT-K; Dalrymple et al., 2014; see Figure 3). The CFMT-K is adapted from the 

Cambridge Face Memory Test (CFMT; Duchaine & Nakayama, 2006), which is commonly 

used to measure individual differences and identify cases of prosopagnosia in the adult 

population (e.g., Bowles et al., 2009; Dalrymple & Palermo, 2016). The CFMT-K requires 

children to learn and then identify a number of target faces. The task has three stages. In the 

first (learning) stage, the face of a Caucasian male child is presented three times, from three 
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different viewpoints (left, frontal, right; for three seconds per image). Faces are presented in 

greyscale, and cropped to remove hair or other identifying features. Subsequently, children 

are presented with three trials which assess their learning of the face. In each trial, children 

view three faces simultaneously, one of which is identical to the learning images, and two 

which show a different male Caucasian child from the same viewing angle. Children are 

asked to select which face they saw in the learning phase by pressing the 1, 2, or 3 key on 

their keyboard. Stimuli remain onscreen until a response is made, and this procedure is 

repeated for each of the target faces. The learning stage is preceded by a practice session 

which adopts the same format but uses cartoon faces instead of real images of children. 

< Insert Figure 3 > 

Following the learning stage, children review the target faces for 20 seconds (all faces 

are presented on screen simultaneously, from a frontal view), before proceeding to the second 

stage. The procedure for the second stage is identical to the test trials from the first stage: 

three faces are presented simultaneously, and children are asked to choose which identity is 

one of the target faces. However, in this stage the target images are presented from a 

previously unseen viewpoint, and participants are not aware which of the target faces will 

appear in each trial. After the second stage, participants review the faces once more for 20 

seconds (identical to the post-learning review), before proceeding to the final stage. In the 

final stage, the procedure for each trial is identical to the second stage, except the faces are 

overlaid with visual noise. 

The bike memory test (Bennetts et al., 2017) follows an identical structure to the 

CFMT-K, except all of the stimuli are bicycle images, extracted from an online store. All 

bicycle images were converted to greyscale and edited to remove any distinctive branding or 

design elements (e.g. logos; see Figure 3). 
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The authors of the CFMT-K produced two versions of the test. Following their 

recommendations, the number of target faces and bicycles and trials differed for younger 

children (under seven years of age at beginning of testing) and older children (those aged 

seven years or older). Younger children learnt four target faces/bicycles, and completed 48 

trials in total (12 in the learning stage; 20 in the test stage with novel images; and 16 in the 

test stage with noise). Older children learnt 6 target faces/bicycles, and completed 72 trials in 

total (18 in the learning stage; 30 in the test stage with novel images; and 26 in the test stage 

with noise). This change was implemented because younger children are likely to perform 

worse than older children at memory-based tests due to differences in general cognitive 

factors (e.g., concentration) as well as any potential differences in face-specific processing. 

Using identical tests can result in restriction-of-range effects (i.e. ceiling or floor performance 

in some groups), which limit comparisons between groups and hinder interpretation of 

results, especially when the measure of interest is a difference between conditions (e.g. pre- 

and post-training scores; see Crookes & McKone, 2009, for a discussion of restriction of 

range effects in developmental studies of face recognition). Thus, one way to minimise these 

effects is to match tasks according to difficulty by varying the number of faces to be 

memorised for different age groups (e.g. Crookes & Robbins, 2014) - the approach adopted 

in the CFMT-K and the bike memory test1.  

 
1The choice to change the number of target faces at seven years of age was also supported by 

previous work using the CFMT-K and the bike memory test (Bennetts et al., 2017). That 

study administered the easier (four-item) versions to children in UK Year 3 (roughly aged 

7.5-8.5 years), who showed a reasonably high level of performance in both the face and 

bicycle versions of the tests. However, we chose to use the six-item versions with this age 

group since (a) we were not aiming to identify children with significant deficits in this study; 
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The face and bicycle matching tasks were previously validated by Bennetts et al. 

(2017), adopting a 3AFC simultaneous matching design (see Figure 4). A single target image 

is presented at the top of the screen, and three test images are presented below. The target 

image is always a frontal face or side-view of a bike; test images differ from targets in 

viewpoint and/or lighting conditions, to prevent matching based on low-level image 

characteristics. Participants are asked to pick which of the test images is the same identity as 

the target image, and respond using the 1, 2, and 3 keys on their keyboard. Images remain 

onscreen until the participant responds. All of the images used in the face and bicycle 

matching tasks were extracted from the memory tasks. There were 30 trials in total for all 

participants, regardless of age. Both accuracy and reaction time were recorded for this task. 

< Insert Figure 4 > 

As these tasks are known to be highly reliable (Bennetts et al., 2017) and are the best 

available resources for measuring face memory/perception in children, they were selected for 

this study. However, multiple versions are not currently available, so we re-administered the 

identical tasks at each assessment stage of the study (see below). While test-retest effects 

were expected, the use of a control training condition, and object as well as face tasks, 

allowed us to examine whether performance on the face tests improved in the experimental 

group over and above the control group, and in faces over and above objects. 

 

 
(b) we planned on administering the tests multiple times (and hence wanted to leave adequate 

room for practice effects as well as training effects); and (c) pilot testing (12 children, not 

included in the training study) indicated that 7- and 8-year olds were capable of completing 

the six-item versions with accuracy substantially above chance levels (mean accuracy 65-

69%). 
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Procedure 

Participants received a new unboxed version of the Guess Who game, alongside detailed 

instructions summarising the training and assessment procedure. Those in the experimental 

condition additionally received the pack of 40 new stimulus cards. Parents and guardians 

initially discussed the study protocols with an experimenter, and could contact a member of 

the research team with additional questions at any point during the process. 

All participants initially completed the four assessment tasks (face and bike memory 

and matching) online. The two memory tasks were always completed first, with the order of 

the face and bike tests counterbalanced for both memory and matching. Parents and guardians 

were asked to ensure that their child understood the instructions of each task and maintained 

attention, but not to cue them to correct answers. Participants then immediately entered a 14 

day training period, in which they were required to play the relevant version of Guess Who 

for at least half an hour per day, on any 10 of the 14 days. Most children played against their 

parents or guardians, and some played with appropriately-aged siblings. 

Children in the control condition simply played the commercial version of the game, 

repeatedly using the same cartoon stimuli cards throughout the entire period (i.e. they did not 

progress to any further levels of difficulty). Implementing an active control condition which 

involved similar social interactions to the training (i.e. it required children to discuss and 

discriminate between faces in the context of the game) ensured that any differences in 

outcome were attributable to the training materials, rather than the game format causing 

increased attention to faces. 

Children in the experimental condition used the set of 40 new stimuli cards. They 

began with the male version of Level 1, and followed the standard instructions of the game 
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(i.e. selecting their character, and then taking turns to ask yes/no questions about their 

opponent’s character until only one window remained open). The participant was deemed to 

have correctly performed the task whenever a successful guess was made by either of the two 

players (the participating child would need to answer the questions of their opponent 

correctly in order for them to win). When the game was successfully completed on two 

consecutive occasions, the players switched their cards to the Level 1 female version. When 

that level had been won successfully on two consecutive occasions they proceeded to Level 

2, and so on, alternating between the male and female versions at each level. 

Following the 14 day training period, participants in both conditions immediately 

completed the four face and bike memory and matching assessment tasks a second time (the 

same protocols were used for order and counterbalancing as in the pre-assessment). Both 

experimental and control participants were then asked to refrain from playing any version of 

Guess Who for the next four weeks, after which they completed the face (but not the bike) 

memory and matching tasks a final time (memory test first), to see if any face-processing 

gains were maintained. The entire procedure is summarised in Figure 5. 

< Insert Figure 5 > 

 

Statistical analyses 

All accuracy scores were converted to percentage correct, allowing us to directly compare 

performance across the two age-appropriate versions (aimed at 4-6 or 7-11 year-olds) of the 

memory tasks. Because we adopted a pseudo random allocation procedure at recruitment, 

approximately equal numbers of children took part in these two age-versions across the 

control and experimental training conditions. Initial analyses explored whether the change in 

age-version was appropriate. Next, a MANOVA was carried out on face and bike memory 

and matching scores (entering age version as a fixed factor), across pre- and post- assessment 
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results. This allowed us to assess whether post-training gains in performance were greater in 

the experimental compared to the control condition, and whether they were greater for faces 

than for bikes.  

Because accuracy can obscure more fine-grained differences in performance in face 

perception tasks (e.g. Rossion & Michel, 2018), we also considered reaction times in the 

matching tasks in a separate ANCOVA (controlling for age). For each participant, average 

response latency was calculated for correct trials, excluding those that differed from the 

participant’s mean response latency by more than three standard deviations, or were less than 

150 ms in duration.  

To assess whether any gains in face-processing performance were maintained, 

planned linear and quadratic contrasts, with appropriate follow-up analyses, were performed 

on the accuracy and reaction time face memory/matching measures across the three time-

points (pre-training, post-training and one-month follow-up). Finally, we examined whether 

age or individual differences in face-processing ability at entry (i.e. performance on the pre-

assessment tasks) influenced training gains in the experimental group. All data are available 

for public download (https://osf.io/2gjbr/). 

 

Results 

 

Engagement and progression 

All participants in both conditions were reported by their parents or guardians to have 

completed the training as instructed (i.e. 30 minutes per day, on any 10 days within the 14 

day period). Most children in the experimental condition progressed to the highest levels 

within this time period. Thus engagement with training, either via time spent training or the 

highest level achieved, could not be reliably analysed in relation to gains. 
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One child in the control group did not complete the pre-training face or bike memory 

assessments, and one participant in the experimental group did not complete the post-training 

face matching assessment. Eight children (five in the experimental condition) did not 

complete the follow-up assessment tasks. All other data were retained from these participants 

to protect sample size. One participant from the experimental group achieved very low 

accuracy scores (more than three SDs from the mean) on most assessment tests, and was 

excluded from all analyses. 

Before carrying out further analysis, we examined whether the change in version of 

the memory test (i.e. the increase of two further target stimuli for children aged seven years 

and older) would adversely influence data interpretation. Figure 6 displays performance on 

the two memory tasks at the first assessment stage by age (i.e. before any training had 

begun), indicating that there is no obvious difference in face memory between the two ages 

where the version switch occurred (i.e. between six and seven years). This was supported by 

a non-significant independent samples t-test (t(23) = 0.479, p = .636), bolstering our decision 

to increase memory load at this age. However, there was a sharp increase in accuracy for the 

bike task, t(23) = 7.035, p = .001, d = 2.44, indicating that seven year old children found the 

task easier than younger children, even when task demands increased. In support, a 

significant correlation with age was only observed for bike memory (r = .751, p = .001), and 

not for any of the other tests (all rs < .245; sequential Bonferroni correction applied). To 

further explore this effect, age group was entered as a fixed effect in all subsequent analyses. 

< Insert Figure 6 > 

 

Accuracy scores: pre- versus post-training 

A 2 (condition: experimental, control) x 2 (age group: younger, older) x 2 (stimulus: faces, 

bikes) x 2 (assessment: pre-training, post-training) MANOVA, with repeated measurements 
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on the “assessment” and “stimulus” factors, was carried out on memory and matching 

accuracy scores. The four-way interaction was not significant, F(2,74) = 0.122, p = .885; 

however, the predicted three-way interaction between condition, stimulus and time emerged, 

F(2,74) = 5.676, p = .005, ηρ2 = .133. This interaction superseded a significant interaction 

between stimulus and time, F(2,74) = 44.310, p = .001, ηρ2 = .545, and the main effects of 

stimulus and time: F(2,74) = 35.254, p = .001, ηρ2 = .488 and F(2,74) = 94.215, p = .001, 

ηρ2 = .718, respectively. There was also a significant interaction between stimulus and age 

group, F(2,74) = 40.739, p = .001, ηρ2 = .524, and a main effect of age group, F(2,74) = 

63.539, p = .001, ηρ2 = .632. All other interactions, and the main effect of condition, were 

non-significant (all ps > .05). 

 

Memory performance 

Univariate analyses indicated that the multivariate three-way interaction between condition, 

stimulus and time was upheld for memory: F(1,75) = 8.424, p = .005, ηρ2 = .101 (see Figure 

7A). The memory interaction was followed up with two 2 (condition) x 2 (time) ANOVAs, 

each considering the face or bike memory data. For face memory, there was a significant 

interaction between time and condition, F(1,78) = 6.561, p = .011, ηρ2 = .078, superseding a 

main effect of time but not condition: F(1,78) = 171.176, p = .001, ηρ2 = .687 and F(1,78) = 

1.660, p = .201 (see Figure 7A). A follow-up t-test confirmed that the gain in face memory 

performance was greater in the experimental compared to the control group: t(78) = 2.561, p 

= .012, d = 0.57. The same ANOVA for bike memory revealed a significant main effect of 

time, F(1,78) = 20.365, p = .001, ηρ2 = .207, but no main effect of condition nor interaction 

between the two: F(1,78) = 0.049, p = .825 and F(1,78) = 1.543, p = .218, respectively. 

< Insert Figure 7 > 
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The multivariate interaction between stimulus and time was supported by univariate 

memory data: F(1,75) = 79.380, p = .001, ηρ2 = .514. A follow-up ANOVA confirmed that 

the difference between pre- and post-assessment scores was larger for faces (M = 19.79, SE = 

1.52) than bikes (M = 4.42, SE = 0.91): F(1,76) = 78.007, p = .001, ηρ2 = .507. This finding 

superseded a main effect of time that indicated higher accuracy scores for post- (M = 73.99, 

SE = 1.24) compared to pre- (M = 61.98, SE = 1.27) assessments: F(1,75) = 174.927, p = 

.001, ηρ2 = .70; and a main effect of stimulus that indicated higher scores for faces (M = 

74.44, SE = 1.69) than bikes (M = 61.53, SE = 1.06: F(1,75) = 66.015, p = .001, ηρ2 = .468. 

 The significant multivariate interaction between stimulus and age group was also 

upheld by memory data: F(1,75) = 82.078, p = .001, ηρ2 = .523. Younger children scored 

significantly lower on bikes (M = 44.11, SE = 0.52) than faces (M = 71.41, SE = 2.58), but 

there was no difference between bike (M = 78.95, SE = 2.09) and face (M = 77.46, SE = 

2.18) scores for older children, F(1,38) = 139.023, p = .001, ηρ2 = .785 and F(1,37) = 0.468, 

p = .498, ηρ2 = .012, respectively. This finding superseded the univariate main effect of age, 

F(1,75) = 76.513, p = .001, ηρ2 = .505; whereby older children (M = 78.21, SE = 1.67) 

achieved higher scores on the memory tests than younger children (M = 57.76, SE = 1.64). 

 

Matching performance 

Univariate analyses indicated that the multivariate three-way interaction between condition, 

stimulus and time was not upheld for matching: F(1,75) = 2.037, p = .158 (see Figure 7B). 

While the multivariate interaction between stimulus and time was supported by matching 

data: F(1,75) = 4.999, p = .028, ηρ2 = .062, a follow-up ANOVA did not find that the critical 

difference was between pre- and post-assessment scores for bike (M = 7.39, SE = 1.34) 

versus face (M = 4.36, SE = 1.22) matching, F(1,76) = 3.563, p = .063. However, a main 

effect of time indicated higher accuracy scores for post- (matching: M = 84.99, SE = 1.32) 
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compared to pre- (M = 79.17, SE = 1.33) assessments: F(1,75) = 33.290, p = .001, ηρ2 = 

.307; and a main effect of stimulus indicated higher scores for faces (M = 85.01, SE = 1.47) 

than bikes (M = 79.15, SE = 1.31): F(1,75) = 19.344, p = .001, ηρ2 = .205. 

 The significant multivariate interaction between stimulus and age group was upheld 

by matching data: F(1,75) = 9.474, p = .003, ηρ2 = .112. While younger children scored 

significantly lower on bikes (M = 76.03, SE = 1.95) than faces (M = 85.99, SE = 2.16), there 

was no difference between bike (M = 82.28, SE = 1.75) and face (M = 84.03, SE = 1.98) 

scores in older children, F(1,38) = 30.334, p = .001, ηρ2 = .444, and F(1,37) = 0.805, p = 

.375, respectively. Finally, there was no main effect of age: F(1,75) = 0.772, p = .382. 

To assess whether reaction times provide more sensitive insights into face matching 

performance, a 2 (stimulus) x 2 (time) x 2 (condition) ANCOVA was performed on the pre- 

versus post-training reaction time data, controlling for participant age. The three-way 

interaction was non-significant, F(1,77) = 1.202, p = .276 (see Figure 7C), as were all three 

two-way interactions (ps > .23).  

A significant main effect of stimulus indicated that faces (M = 5059.16 ms, SE = 

226.30) were matched more rapidly than bikes (M = 6159.45 ms, SE = 277.34), F(1,77) = 

21.242, p = .001, ηρ2 = .216. Unsurprisingly, a main effect of time demonstrated that reaction 

times were more rapid in the post- (M = 5021.46 ms, SE = 210.96) compared to pre- (M = 

6197.12 ms, SE = 319.86) assessment, F(1,77) = 11.830, p = .001, ηρ2 = .133. There was no 

main effect of condition, F(1,77) = 1.295, p = .259. 

 

Face memory gains: follow-up 

To assess whether gains in face memory were maintained over time, data from the three time 

points were entered into a 3 (time: pre-assessment, post-assessment, one-month follow-up) x 

2 (condition: experimental, control) x 2 (age group: younger, older) ANOVA. The three-way 
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interaction was non-significant, nor was the critical time*condition interaction, F(2,136) = 

0.735, p = .481 and F(2,136) = 2.926, p = .057. Other than a main effect of time, F(1,68) = 

150.833, p = .001, ηρ2 = .689, all other interactions and main effects were not significant (all 

ps > .112). Likewise, planned linear and quadratic contrasts revealed no effect of age in the 

three-way interactions, F(1,68) = 0.881, p = .351 and F(1,68) = 0.435, p = .512, respectively. 

For the two-way condition*time analysis, both the linear and quadratic contrasts were again 

non-significant: F(1,68) = 2.474, p = .120 and F(1,68) = 3.850, p = .054, respectively (see 

Figure 8). A t-test on the difference between post-training and follow-up scores indicated no 

difference between the experimental and control groups: t(71) = 0.634, p = .528. That is, the 

slight further improvement in face accuracy scores in both conditions likely results from test-

retest effects, and no drop-off in gains were observed in the experimental group. 

< Insert Figure 8 > 

 

Influences on gains 

Our initial literature review identified two factors that may influence training outcome: 

participant age and individual differences in face recognition ability at entry. Thus, a multiple 

regression was performed to investigate whether participant age or score on the face memory 

pre-assessment task predicted memory improvement scores (i.e. the difference between post- 

and pre-training performance) for participants in the experimental training condition (N = 

40). The model explained 43.4% of the variance, and was a significant predictor of training 

gains, F(2,37) = 15.967, p = .001. While individual differences in performance at entry 

significantly predicted training gains (β = .696, p = .001; see Figure 9), age did not contribute 

to the model, nor did it correlate with gains (β = .109, p = .381; r = -.045, p = .785).  

< Insert Figure 9 > 
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Discussion 

 

This study investigated the efficacy of a face training programme in improving face versus 

object memory and matching skills in typical children aged between four and 11 years. 

Compared to an active control condition, domain-specific gains in face memory but not face 

matching were observed post-training, and were maintained at a one-month follow-up. 

Further analyses revealed that the gains in face memory were consistent across age in the 

experimental condition, but were greater in the poorest perceivers. 

 This study makes a number of novel contributions to the literature on face recognition 

and rehabilitory training. First, this investigation provides a novel face training programme 

that is attractive to children, adapting a renowned game that encourages off-screen family 

interaction. Critically, this training programme resulted in an average 7.6% improvement in 

face memory performance over and above the active control condition (i.e. when the practice 

effect on the assessment task and/or gains from the control training procedure were 

eliminated; note that these cannot be dissociated from the available data). Given a significant 

improvement of this magnitude in typical children, coupled with the finding that gains were 

greater in the poorest perceivers at baseline, the programme presents a promising, family-

friendly means of improving face memory in children with prosopagnosia. 

 Notably, all aspects of this research programme were completed within the child’s 

home environment, unaccompanied by a member of the research team. Instead, parents and 

guardians were asked to monitor compliance, to participate in or supervise training (e.g. when 

the child played with a sibling or friend), and to ensure understanding during the assessment 

tasks. There are clearly benefits of this model, particularly in terms of resourcing roll-out of 

the programme on a wider scale, and in overcoming geographical restraints. This is a 

particularly important point given increasing numbers of individuals are self-reporting with 
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prosopagnosia (Bate et al., 2019; Bennetts et al., 2017), and some children experience severe 

socio-emotional consequences of the condition (Adams et al., in press; Dalrymple et al., 

2014; Murray et al., 2018). However, it is also inevitable that this approach introduced some 

inaccuracies to the data, with parental feedback on participant engagement and level of 

assistance being particularly vulnerable to error. Yet, the reasonably generous sample size 

used here, the use of random allocation to training conditions, and the size of the 

improvement following training give us confidence in our data. 

 Indeed, the size of the improvement in face memory is particularly encouraging in 

relation to comparable findings reported by previous work. Davies-Thompson et al. (2017) 

reported an average ~10% improvement in CFMT scores in 10 adults with acquired 

prosopagnosia, but this was not significant in a group-level analysis. Although CFMT gains 

were not available in the studies reported by DeGutis and colleagues (2007, 2014), Bate et al. 

(2015) did not detect an improvement on this test for their adolescent case with acquired 

prosopagnosia. Whether the larger gains reported here result from the training strategy itself 

(i.e. the combination of strategies that have been somewhat successful in previous work), 

participant age (see discussion below), the inclusion of typical rather than impaired 

participants, the larger sample size, or a combination of some or all of these factors, is 

unknown. Further, one challenge that has not been addressed here is the transfer of gains into 

real-world everyday face recognition performance – a skill that is hard to tap in children, 

particularly those without impairments. 

Second, we found evidence that the gains in face memory did not generalise to non-

face objects (in this case, bicycles). Any increases in bike memory and matching did not 

significantly differ between the experimental and control training conditions, and were 

particularly small for the memory test. This finding indicates that training was targeting the 

actual visuocognitive processing strategies that underpin unfamiliar face memory, supporting 
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domain-specific hypotheses of face-processing (e.g. Kanwisher, 2017). In support of the idea 

that visual experience or expertise in one category of objects does not necessarily have a 

domain-general effect on all visual discrimination abilities, a recent study found that 

extensive childhood visual experience with relatively homogenous object categories 

(Pokemon characters) can shape responses in the ventral temporal cortex during adulthood, 

while responses to face stimuli in face-selective areas were not affected by Pokemon 

expertise (Gomez, Barnett, & Grill-Spector, 2019). However, we only included one 

comparison object in the current study, and it cannot be ruled out that other categories of 

object may have also gained from training. Research into the development of the human 

visual cortex has proposed that certain visual qualities, such as eccentricity bias, 

rectilinearity, and animacy may determine the distribution of responses to different objects in 

the ventral temporal cortex (e.g. see Gomez et al., 2019). We did not attempt to match our 

non-face object on these qualities – instead, we focused on using stimuli that would be 

familiar and engaging to children in the age range we examined, that are clearly 

discriminable on an individual (as opposed to category) level, and that were reasonable well-

matched in difficulty to the face tasks. However, future studies may consider using non-face 

comparison objects which vary parametrically on the properties identified above when 

examining the effects of face training programmes, as this has the capacity to shed further 

light on the question of domain specificity, as well as the development and organisation of 

the visual cortex. 

Third, it is pertinent that both performance at entry and training-gains in face memory 

were consistent across all ages, yet performance on the bike memory task improved with age. 

This finding indicates consistent plasticity for face memory across the target age range, and 

argues against evidence suggesting a limited window of plasticity in early infancy (e.g. 

Geldart et al., 2002; Pascalis et al., 2002). Instead, it is conceivable that the face-processing 
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system is fully developed by the age of our youngest participants, supporting existing 

hypotheses of early maturation (e.g. McKone et al., 2012), yet still open to modification. 

Indeed, when examining face memory performance at entry to the programme (i.e. at the pre-

training assessment), there was consistency in performance from the age of five years. This 

finding also bolsters claims of domain-specificity, at least in comparison to our target object 

category: neither face memory per se, nor gains in face memory, were assisted by age-related 

developments in more generalised processes, whereas this was the case for bike memory. 

Thus, face and object processing may at least begin to segregate before the age of five years, 

with early maturation for faces but continued development for objects as more generalized 

processes continue to come online. 

In terms of neurorehabilitation, this finding suggests consistent levels of plasticity 

from early childhood through to pre-adolescence, with no benefits of earlier intervention. 

This suggests that the face recognition system remains open to modification during the target 

age range, and there is no critical window for younger children. However, it is possible that 

greater gains may be experienced in even younger children than those tested here. Having 

said this, we do not believe that this training strategy would be suitable for younger children, 

and alternative intervention techniques for pre-schoolers sorely need to be examined (e.g. by 

encouraging attention to faces). Further, it remains to be seen whether similar gains are 

experienced by adolescents and even adults, or whether some drop-off may occur at a 

particular age.  

Pertinently, the greatest gains were observed in the poorest perceivers at entry, akin to 

the work with adults with acquired prosopagnosia reported by Davies-Thompson et al. 

(2018). While this finding is particularly encouraging for use of the training programme in 

clinical participants, it remains unknown whether greater engagement with training may have 

led to even larger gains. Indeed, we opted for experimental rigour by controlling participant 
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engagement with training via our strict instructions, although admittedly we were dependent 

on parental feedback concerning adherence. As previous work has found a positive 

correlation between time spent training and post-training gains in adults with prosopagnosia 

(DeGutis et al., 2014), investigation of this factor in future work with atypical children may 

be particularly fruitful.    

 Fourth, the gains observed following training were specific to face memory, and did 

not extend to improvements in face matching tasks. It is unclear why we did not observe 

gains in face matching from the training, particularly as this process is arguably more 

targeted by the training task itself. It is possible that the face matching task lacks some 

sensitivity in detecting individual differences in performance in typical, or at least more 

proficient, children. While performance did begin to approach ceiling post-training in the 

experimental group, we would expect the analysis of reaction time to be sensitive to 

improvement even under conditions of high accuracy.  

Instead, there are theoretical interpretations of the finding. Weigelt et al. (2014) 

posited that face perception is fully developed by a young age, but face memory continues to 

develop throughout childhood. While conflicting data suggests early maturation of both 

processes (i.e. in the current study and previous work, e.g. Bennetts et al., 2017), it is possible 

that early individual differences in face perception are either less varied, or more fixed and 

resilient to change, than those in face memory. Alternatively, it may be that each of these 

tasks depends on different processes, and training targeted one of these more than the other. 

Indeed, the manipulations applied to the training stimuli included both featural (i.e. changes 

to the size of specific facial features) and holistic (affecting the spacing of features) 

components. Some authors have claimed that face memory tasks (i.e. those using familiar or 

familiarized faces, including variants of the CFMT) tap holistic processes, whereas matching 

tasks depend more on image-level characteristics or featural processing (Hancock, Bruce, & 
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Burton, 2000; Megreya & Burton, 2006). While the training tasks varied both the spacing 

between features and the size of the features themselves, it is important to note that both of 

these manipulations affect the relationship between features – an important element of 

holistic or configural processing. It is possible that this focus on relational information in the 

training task strengthened holistic or configural processing to a greater extent than featural 

processing, resulting in the facilitation only in the memory task. Alternatively, it may be that 

featural processing or face perception is already fairly well-developed in children, but 

holistic/configural processing or face memory is still developing and more amenable to 

modification (de Heering, Rossion, & Maurer, 2012; Mondloch, Le Greand, & Maurer, 

2002). 

In sum, this study presents a new face training programme that is engaging for 

children, and can improve face memory by ~7% in typical children aged 4-11 years, with 

larger effects for poorer perceivers. Training outcomes advocate early independence of both 

face perception versus face memory, and face versus object processing. 

 

Context of the Research 

 

This investigation follows an ongoing line of research within our laboratory that has 

investigated the remediation of face recognition deficits. Our previous work has focused on 

adults and adolescents with acquired or developmental forms of prosopagnosia, and has 

resulted in mild-to-moderate gains in performance. Here, we were motivated to investigate 

whether greater gains could be made in children, inspired by neurorehabilitation theories of 

early plasticity. We also wished to develop a novel innovative face training programme that 

can be enjoyed within social off-screen contexts. The results reported here are promising, 

indicating that a relatively large gain in face memory can be observed in typical children 
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following just ten 30-minute training sessions. Given the greatest gains were also observed in 

the weakest perceivers, it is possible that larger effects may be observed in children with 

prosopagnosia. Our ongoing work is now evaluating this possibility, together with the effects 

of extended training time. We hope that this work will deliver a novel, more successful 

training possibility that can be made available to children irrespective of their geographical 

location. 
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Figure Captions 

 

Figure 1: Image A shows an alternative version of the commercial Guess Who game, using 

cartoon faces (note that the facial images shown are very similar to those presented in the 

game itself, but the latter cannot be presented due to issues with permissions). The facial 

stimuli are printed on cards which slot into the accompanying plastic frame: players select 

their own character from the array at the top (their opponent’s task is to guess the identity of 

this character by asking yes/no questions about their facial appearance), and see the same 

characters dispersed behind the windows below (windows are closed by the player following 

their opponent’s yes/no responses to the player’s yes/no enquiries, until only one window 

remains open). Image B displays how the plastic frame is positioned on a table, with each 

opponent viewing their stimuli set on opposite sides of the frame. 

Figure 2: The new stimuli set developed for the experimental training condition. Images A 

and B display the initial set of manipulated male and female characters, respectively (these 

were designated to be the easiest level of difficulty, i.e. Level 1). Images C and D display the 

female characters at Levels 5 and 10 of difficulty, respectively. 

Figure 3: Examples of the Cambridge Face Memory Test–Kids (CFMT-K) and bicycle 

memory tasks. CFMT-K images are adapted from Dalrymple, Garrido, et al. (2014). 

Figure 4: Example trials from the face and bicycle matching task. Face images are adapted 

from Dalrymple, Garrido, et al. (2014). 

Figure 5: A summary of the training and assessment procedure. 

Figure 6: Mean percentage accuracy on the pre-assessment face and bike age memory tests 

according to age (collapsed across training condition). The increase in memory load is 

indicated by the dotted line (i.e. for children aged seven years and older). 
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Figure 7: Percentage accuracy on the face and bike (A) memory and (B) matching tasks pre- 

and post-training for the experimental and control training groups. Average reaction times for 

the matching tasks are shown in (C). 

Figure 8: Percentage accuracy on the face memory test at the pre-training, post-training, and 

follow-up time points, for the experimental and control training conditions. 

Figure 9: The relationship between pre-training face memory scores and the face memory 

gain post-training (i.e. post-training score - pre-training score). 
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