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Abstract. 
 

In this paper work the questions of the simulation of the wind turbine blade dynamics on the basis 

numerical realization of the developed low dimensional beam type model are considered. From the 

governing system of differential-algebraic equations of the simplified beam type model of the blade, using 

the mode superposition approximation, the system of linear ordinary differential equations with respect to 

the coefficient functions of the modal representation was obtained. The developed program codes allow to 

simulate low frequency bending vibrations of wind turbine blades under different stationary and transient 

loadings. The comparison of the simulation results obtained by the proposed simplified blade model with 

the results of the direct FEM simulation shows their close agreement, that confirm an adequacy of the 

developed model and its mode-based approximation to the engineering practice requirements. The 

presented approach to the creating low-dimensional simplified models of slender structures can be useful 

in different fields of aerospace, civil and transport engineering. 
 

 

1.  Introduction 

 

Development of modern wind turbines and control of their dynamics in different operation modes 

need intensive computer simulation of vibrations of critical elements as rotor blades. Nowadays wind 

turbine blades are designed as long (tens meters) slender composite shell structures with stiffeners, 

significantly inhomogeneous (slenderising towards the end). Modern FEM packages like ANSYS, 

ABAQUS etc. allow to simulate mechanical processes in such turbine blades with high accuracy (Chen & 

Chen, 2010), but in many cases, e.g. investigation of general structural dynamics, aero-elastic vibrations, 

preliminary design and model based vibration control, such detailed models are redundant and can be 

replaced by simplified one-dimensional beam type models which allow to describe general blade 

deformations with appropriate accuracy and require much less simulation time or computational resources. 

Parameters of the required simplified beam models (SBM) are derived from results of physical or 

numerical (detailed FEM computations) experiments using different equivalenting and identification 

techniques. This approach is widely used for different aerospace structures (wings, fuselages, etc.) (Lee, 

1995; Malcolm & Laird, 2003; Malcolm & Laird, 2007; Trivailo et al., 2006; Stodieck et al., 2018). 

 But in the case of the wind turbine blades the situation is complicated due to considerable structure 

pre-twisting that doesn’t allow to split flap and lead-lag motions in mathematical model. 

In previous article (Navadeh et al., 2017) an approach to construction of a beam type simplified 

model of a horizontal axis wind turbine (HAWT) composite blade based on the results of more detailed 

finite element method (FEM) simulations of the blade was proposed. The parameters of the model are 

obtained using identification procedure from the FEM modal analysis data. This model allows effective 

description of low vibration bending modes of the blade taking into account the effects of coupling 

between flap wise and lead-lag vibrations. The present paper is devoted to simulation of transient 



vibrations of the wind turbine blade using the simplified model on the basis of the mode superposition 

method and evaluation of its effectiveness by comparison with the results of computations for the original 

shell type FEM model. 

 

2.  Low-dimensional simplified beam-mass model of turbine blade 

 

The real wind turbine blade is approximated by a piecewise homogeneous cantilever beam 

consisting of N weightless sections of length kL with lumped masses Nkmk ,1,  , located at the 

connection points between sections and at the end point, as shown in Figure 1. To take into account the 

distribution of twist angle in the blade geometry along its length, principal axes of beam segment scross-

sections kk yx ,  are rotated around longitudinal axis z  by angles k  (see Figure 2). They-axis is oriented 

in the flap direction and the x-axis is in lead-lag bending direction. The x  and y  axes of the global 

coordinate system is oriented in the turbine rotor plane (lead-lag) and orthogonal to it(flap) directions 

respectively. 

 

 
 

Figure 1. Structure of the simplified beam-mass blade model 

 

 

 
 

Figure 2 

 

 

The deformation of each beam section in local coordinates is described by standard Euler-Bernoulli 

equations: 
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where kyEI )(  and kxEI )(  are bending stiffnesses. Since the beam sections are connected to masses and 

are parts of the dynamic system, displacement components depend not only on z coordinate, but also on 



time t: ),( tzuu kk  , ),( tzvv kk  . Thus, we are dealing with a discrete parameter model in which 

lumped masses are connected by beam elements with distributed stiffnesses described by equations (1). 

In the beam elements displacements kk vu ,
 
are presented by general solutions of homogeneous 

differential equations (1) which are polynomials of the third order. Using local coordinate k  (measured 

from the beginning of the section in z direction), they can be written as: 
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As the generalized coordinated for the components of displacements, the coefficients 
)(k

ja  and 
)(k

jb
 
in (2) 

also are functions of time. 

The components of basis unit vectors of the k-th local coordinate system in the reference global 

coordinate system (subscript “0”) are presented as: 
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and for the components of displacement vector for the k-th beam section in the global coordinate system 

we have 
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Such transformations are universal and affect the components of any other vectors, such as moments and 

forces. 

At the points of connection between sections continuity conditions are hold i.e. the components, in 

the global coordinate system, of transversal displacements and their derivatives with respect to z(rotations) 

as well as components of bending moments are continuous. The components of shear forces have jumps 

due to the applied external forces and inertial forces from the lumped masses. At the end free tip point, 

zero moment and shear force–inertial force conditions hold. At the clamped point of the beam (z=0), the 

cantilever beam essential boundary conditions hold which give for the coefficients of the beam solutions 
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0  bbaa . The conditions for displacements, rotations and moments have the form 

of linear algebraic equations, whereas the dynamic force conditions and ordinary differential equations. 

Together with expressions for the displacement components at the end point in global coordinate system 

ENDEND vu ,  these equations form linear differential-algebraic (DAE) system with respect to components of 

the vector of governing functions of the problem 
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In the previous article (Navadeh et al., 2017) only free vibrations were considered, and the 

components of external forces applied to the lumped masses were omitted, thus the governing system of 

equations was homogeneous and in matrix notations had the form 

 

cBAc                    (6) 

 

where A  and B  are square and rectangular matrixes of constant coefficients respectively. The detailed 

representation of the governing system of equations in expanded formis given in (Navadeh et al., 2017). 



To obtain natural frequencies and shapes of vibration modes for the simplified beam-mass blade 

model the solutions of (6) are represented in exponential form 
tectc )( , that leads to solving the 

generalized eigenvalue problem (Gruber, 2014) 
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which gives the spectrum of eigenvalues, 
2

k , and corresponding eigenvectors kc . The natural cyclic 

frequencies of vibrations are calculated by the formulae )2/(2 kkf  , and components of the kc
 

vectors are used to represent shapes of the normal vibration modes by equations (2). 

Note that in (Navadeh et al., 2017) the differential equations of the governing system, which are the 

component expressions in global coordinates of the second Newton’s law for the first 1N  lumped 

masses of the considered beam-mass model, were not solved with respect to the higher-order (second)time 

derivatives of the 1,1,, 1

0

1

0  Nkba kk
, which are the components of displacements in local coordinate 

systems at the connection points between beam sections (see eqn. (2)), i.e. the displacement components 

for the corresponding k-th masses. It’s not convenient for the further analysis, and these equations should 

be transformed into a simpler form. 

From the conditions of the force balance at connection points between beam segments 

( 1,1  Nk ) (eqn. (7), (8) in (Navadeh et al., 2017)) and taking into account components 

)(),( )()( tFtF k

y

k

x  of external forces applied at these points, we have following dynamic equations 

(hereinafter dots denote temporal differentiation): 

 

,sin)(6sin)(6cos)(6cos)(6

)()sincos(

11

)1(

3

)(

311

)1(

3

)(

3

)(

1

)1(

01

)1(

0





















kkx

k

kkx

k

kky

k

kky

k

k

xk

k

k

k

k

EIbEIbEIaEIa

tFbam



 

 (8)

 

.cos)(6cos)(6sin)(6sin)(6

)()cossin(

11

)1(

3

)(

311

)1(

3

)(

3

)(

1

)1(

01

)1(

0





















kkx

k

kkx

k

kky

k

kky

k

k

yk

k

k

k

k

EIbEIbEIaEIa

tFbam



 

 (9)

 

 

Multiplying equation (8) by 1cos k  and equation (9) by 1sin k  and adding them, we obtain 
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Then, multiplying (9) by 1cos k  and (8) by 1sin k  and subtracting the second from the first, we obtain 
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The dynamic equations at the end point of the beam have the form (see eqn. (9) in [NaGoZhFa, 2017]) 
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Since in further consideration the mode superposition method is applied, we doesn’t present here 

sufficiently large algebraic equations which express in governing DAE system continuity conditions 



(Navadeh et al., 2017), because the components of eigenvectors, used for the solution representation, 

satisfy these equations identically. 

 

3.  Mode superposition method for simulation of transient dynamicsof the wind turbine blade 

 

The considered simplified beam-mass model, which parameters were obtained using the 

identification procedure, can effectively represent low frequency bending vibrations of the blade with 

structural pre-twisting (Navadeh et al., 2017). Because of this, to investigate transient deformations of the 

blade using this model, instead of the direct solution of the linear DAE system, which describes the 

dynamic behaviour of the wind turbine blade, that needs utilization of special numerical methods (and 

moreover can give additional errors due to the model inaccuracy in the higher frequency range), it’s more 

effective to use the mode superposition technique. 

In the framework of the mode superposition method (Bathe, 2014), the solution for the vector of 

governing functions )(tc  (5) of the linear DAE system is represented as a linear combination of 

eigenvectors mc , obtained from the generalized eigenvalue problem (6), with time-dependent coefficient 

functions )(tdm . To investigate low frequency bending vibrations of the blade we will use the 

superposition of only the first M modes in the range, where the using beam type model has sufficient 

agreement with more detailed FEM one: 
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Substituting corresponding components of the representation (14) into dynamic equations (10)–(13), 

we obtain the following system of N2  ordinary differential equations with respect to thefunctions )(tdm : 
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Then, using the Galerkin projection technique, we multiply equations in (15) by corresponding 

components of j-th( Mj ,1 ) eigenvectors used for the solution approximation (14) and sum them. As the 

result we obtain M  ordinary differential equations with respect to M  coefficient functions )(tdm : 
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Due to the orthogonality of displacements in eigenvectors with mass weights we have 
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that simplifies solving the ODE system (17), because its mass matrix is diagonal. 

Finally, we can represent the obtained ODE system (17) in the matrix-vector form, convenient for 

further numerical analysis (Bathe, 2014): 
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Here d  is a column vector of )(td j ; 

the diagonal components of the mass matrix P  are 
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i.e. )( jPdiagP , and )( 11   jPdiagP , 

the components of the stiffness matrix Q  have the form 
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and the components of the load vector f  are expressed as 
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4.  Results of numerical simulation 

 

For simulation of the transient dynamics of the wind turbine blade using the developed multi-

segment beam-mass model in the frame of the described above mode superposition approximation, and for 

the graphical representation of the results of computations, the Matlab codes were developed. Also for 

setting loads in the FEM model of the blade, developed in ABAQUS (2014), and extracting simulation 

results the corresponding Python scripts were written. 

In the present study, as it was done in (Chen & Chen, 2010) and (Navadeh et al., 2017), the blade 

for the three-bladed horizontal-axis upwind turbine with a rated power of 3 MW was chosen as the 

reference model being investigated. In fact, this is a modified version of a 3 MW turbine proposed by 

researchers (Malcolm & Hansen, 2006). The rotor blade, which is 44.175 m long, has a circular cross-

section at its root attaching the rotor hub to the 1.753-meter span location. Then the circular blade cross-

sections gradually go through transition to airfoil sections that have NREL airfoil types of S818 at the 

9.648-meter span location, S825 at 32.667-meter, and S826 at 41.873-meter and 44.175-meter (at the 

blade tip). These NREL types of airfoils can be seen in Fig. 1 from the paper by (Chen & Chen, 2010) 

along with the exact details of the 14 cross-sections forming the blade. Between these cross-section there 

transpires a linear transition on shape and the chord length distribution is according to that work. 

In the FEM simulations conducted in ABAQUS, the reduced integration quadratic shell elements 

S8R with global size 200 mm were used. The thickness of the shell varies between 92.02 mm at the root to 

10.34 mm at the tip of the blade. The FEM model parameters used in the paper are adopted from 

(Navadeh et al., 2017) where the simplified beam model parameters used here were identified. 

To evaluate the effectiveness of the simplified model of the blade in comparison with the detailed 

FEM model we consider the vibrations of the blade under a step in time loading in y direction, distributed 

along the top reference line of the FEM model, as shown in Figure 3.The magnitude of the load density 

varies linearly from the value –1000 N at the root of the blade to –200 N at its end. 

 

 
Figure3 

 

In the present study simulations using the simplified beam model were carried out for number of 

segments N=6, using the model parameters obtained through the identification procedure in the previous 

article (Navadeh et al., 2017). The two most stiff root parts 1 and 2 were combined into one SBM part 

because of their large thickness. The 3rd segment of the shell structure was treated as the 3rd segment of 

SBM because of its intermediate thickness, and the long flexible parts 4 and 5 of different skin thickness 

were divided into two segments of practically equal length (see Table 1). 



Coordinates of the end nodes zk (m), length of beam segments kL , values of bending stiffnesses EIx 

and EIy twisting angles k (degrees) for the k-th sections, and lumped masses mk (kg), located at nodes, 

are given in Table 1: 

 

Table 1. Beam model segment data (SI units) 

 

k 1 2 3 4 5 6 

zk 9.648 14.251 21.7315 29.212 36.6935 44.175 

kL  9.648 4.603 7.4705 7.4805 7.4815 7.4815 

(EIx)k 7.2953·109 4.0715·108 1.1509·108 2.3845·107 8.6304·106 6.7160·106 

(EIy)k 1.3532·1010 5.8728·109 1.9179·109 6.2110·108 2.7655·108 1.6842·108 

k  -12.856 -10.263 -6.335 -3.665 -2.06 -1.52 

mk 6985.084 2003.617 1.1509·108 2.3845·107 8.6304·106 6.7160·106 

 

In mode superposition representation of equation (14) the first four modes were used. It is worth 

mentioning here that in the first step, the simulations were performed by inclusion of all 6 modes 

identified in the paper (Navadeh et al., 2017). The results of computations carried out showed that the 

influence of the fifth and sixth modes is negligible; therefore, accounting for the first four modes is 

necessary while influence of the above mentioned 5th and 6th modes can be neglected. 

The transient dynamic analysis for the shell type model in ABAQUS was fulfilled by the direct time 

integration. 

The results of simulation for displacements (m) in the y (flap) direction at the nodes, where lumped 

masses are located, are shown on the time segment from 0 to 3 seconds in Figure 4 (graphs a–f correspond 

to consecutive k-th nodes, see Figure 1). Solid lines represent the displacements, obtained by the 

simplified model, whereas dashed lines represent the results of the direct FEM simulation. 
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Figure 4 

 

As it is seen in Figure 4.a, FEM and SBM results are not in close agreement. This occurs because 

the Euler–Bernoulli beam model used for SBM approximation is significantly less accurate for the first 

two segments of the blade (they are jointed into one segment of SBM) due to their stubby geometry i.e. 

relatively thick walls and short length. This effect appears not to be critical because the absolute error in 

the displacement in the 1st node of SBM (see Figure 4.a) is significantly less than the displacements in 

other nodes (see Fig. 4.b-f). 

Besides, in Figure 5 the time dependencies of the coefficient functions )(tdm  
of the mode 

superposition representation (14), which define the contributions of different modes into the solution, are 

presented: 
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Figure 5. Coefficient functions of the mode superposition representation:  

a) )(1 td  
(blue line), )(2 td (red); b) )(2 td  (red), )(3 td  (magenta), )(4 td  (yellow). 

 

The comparison of the graphs in Figure 4 demonstrates a close agreement of the results, obtained by 

the simulation of the beam dynamic response under a step in time impulse loading, using simplified beam-

type blade model, with more precise FEM ones. This indicates that the utilized four-mode approximation 

is adequate and allows to describe low frequency vibrations of the blade with sufficient for practical 

purposes accuracy. 

From Figure 5 it is seen that at the considered loading the magnitude of )(1 td is almost twenty times 

greater then )(2 td , and much more then )(3 td  and )(4 td . The result of this, taking into account the 

shapes in y direction of the first and second normal modes which are represented in (Navadeh et al., 2017) 

in Figure 5a, b, is domination of the first mode’s contribution to displacements at the fifth and sixth nodes 

(see Figure 4e and f respectively). But at the fourth node, where the shape function of the first mode 

became near four times less then at the beam end, when the magnitudes of the second and third mode 

shape functions have absolute values some more then a half of their maximums (note that these modes 

have similar shapes in y direction, but different frequencies),as can be seen in Figure 4d,the contribution 

of the last modes is much more significant. Lastly, considering the graph of displacements at the third 

node Figure 4c we see that the presence in the used four-mode approximation of the fourth mode allow to 

represent motion in time more detailed then it could be done if only three modes were taken into account. 

It should be noted that at the second node the displacements, obtained by the simplified beam 

model, are about one and a half times greater in magnitude than corresponding values computed using 

more detailed FEM model, but the shapes of their time dependencies remain similar. This is explained by 

a decrease in the accuracy of the classical beam model (1) which is used in the blade approximation. 

However this inaccuracy in many cases can be neglected, because the magnitude of vibrations observing 

here is ~1% of the maximal magnitude at the blade’s end. The same can be said about the low relational 

accuracy of the solution by the beam approximated model at the first node, where its magnitude relatively 

to the magnitude of vibrations at the blade’s end is ~0.2% vise <0.04% after the FEM simulation. 

 



5.  Conclusions 

 

In the present work the questions of the simulation of the wind turbine blade dynamics on the basis 

numerical realization of the approximated low dimensional beam type model, which was developed in 

(Navadeh et al., 2017), are considered. 

Primarily, the dynamic equations, that are included in the governing DAE system of the simplified 

mass-beam model of the blade, were transformed to ODEs, solved with respect to the higher-order time 

derivatives of the node displacement components of the vector of governing functions. This allows to 

simplify the application of the mode superposition technique for approximate simulation of transient wind 

turbine blade vibrations. 

In the framework of the mode superposition method, the solution for the vector of governing 

functions of the linear DAE system was represented as a linear combination of eigenvectors, obtained 

from the generalized eigenvalue problem, with time-dependent coefficient functions. It should be noted 

that in practice for the investigation of low frequency bending vibrations of the beam type structures 

frequently the approximations containing only the several first vibrational modes is used, and here the 

number of modes is limited in the range, where the using beam type model has sufficient agreement with 

the real blade behaviour (described more detailed by the FEM model). As the result of substitution of the 

mode superposition representation into governing DAE system and utilization of the Galerkin projection 

technique, the linear ODE system with respect to coefficient functions was obtained. Due to orthogonality 

of displacements in eigenvectors with mass weights this system has diagonal mass matrix and can be 

solved by standard numerical methods. 

For the evaluation of the accuracy of the developed simplified beam type model of the wind turbine 

blade with mode superposition approximation in comparison with the precise FEM model the vibrations 

of the blade under a step in time loading which density varies linearly along the blade were considered. 

The results of simulation of the transient dynamics of the blade in the frame of the described above 

approximate model approach show a close agreement with the results, obtained by the direct FEM 

simulation, that indicates the consistency of this approach and its adequacy for the describing low 

frequency vibrations of wind turbine blades with sufficient for practical purposes accuracy. 

Modeling and simulation approaches developed in (Navadeh et al., 2017) and in this paper can be 

applied not only for investigation of the wind turbine blade dynamics, but also in more wide fields of the 

aerospace, civil and transport engineering (vibrations, stability and model based control of wings, 

fuselages, space launchers, high buildings, bridges, pipelines and other long-dimensional structures). 
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