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Abstract 

This feature article reviews state of the art developments in Additive Manufacture, and in particular 

4D Printing. It discusses what it is, what research has been carried out and maps potential 

applications and its future impact. The paper discusses Tibbits’ which has investigated how 3D 

printed parts could transform and adapt over time, and where self-assemblies could occur by means 

of local interaction. The paper describes the latest generation of 3D printers that are able to print 

multi-materials with varying shore hardnesses and in colour, the Hyperform and Kinematic projects 

that have explored the use of mathematical and computational strategies to support folding 

techniques for 4D printing. The paper highlights why the US$855,000 worth of funds from the 

United States Army Research Office is a hint towards the future of a new generation of technology, 

about the novel mask-image-projection-based Stereolithography system developed by the 

University of California, and the Suspended Depositions project where researchers from the 

Southern California Institute of Architecture have achieved suspension of time and material using 

this technique. Lastly, the paper discusses how scientists from the University of Colorado and 

Singapore University of Technology and Design have managed to control both material properties 

and its laminate architecture for shapes to assume complex configurations; as well as the work by 

Richard Horne and James Corbett who investigated the potential of low-cost techniques for filament 

blends. 
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Structured Abstract  

 
Purpose of this paper  

This feature article reviews state of the art developments in Additive Manufacture, particular 4D 

Printing. It discusses what it is, what research has been carried out and maps potential applications 

and its future impact. 

 

Design/methodology/approach 

The article first defines additive manufacturing technologies and goes on to describe the state-of-

art. Following which the paper examines several case-studies and maps a trend that shows an 

emergence of 4D printing. 

  

Findings  

The case-studies highlight a particular specialization within additive manufacture where the use of 

adaptive, biomimetic composites can be programmed to re-shape, or have embedded properties or 

functionality that transform themselves when subjected to external stimuli. 

 

What is original/value of paper  

This paper discusses the state-of-art of additive manufacture, discussing strategies that can be used 

to reduce the print process (such as through kinematics); and the use of smart materials where parts 

adapt themselves in response to the surrounding environment supporting the notion of self-

assemblies. 

 

  



 

 

1.0 The Rise of Additive Manufacturing 

Additive manufacturing has been around for nearly three decades ever since the first systems were 

commercially available in the late 1980s. In this process, parts are built a layer at a time, and are in 

theory not constrained by the complexity of the CAD geometry. The term “solid freeform 

fabrication” is still used today to describe this process. Parts produced from additive manufacture 

have been applied in a variety of ways such as in new product development for visual prototypes 

and functional testing; as well as in medical and aerospace industries for specialised end-use parts. 

 

In line with the increased demand, the number and variety of additive manufacturing systems is set 

to rise. According to statistics from the Wohler’s report, the global market for additive 

manufacturing products and services in 2012 grew by 28.6% to US$2.204 billion (Wohler, 2013). 

Sales of professional grade systems (those costing more than US$5,000) rose by 19.3% to 777,1 units 

in 2012. At the same time, low-cost personal systems averaged at 346% each year from 2008 to 

2011 and cooled to 46.3% in 2012. The popularity of entry-level 3D printers is becoming more 

affordable for mainstream use and for education with the aim of democratising production for the 

masses. This new age of personalisation and customisation promises to transform the way things 

will be produced, either in the comfort of the home or using a Makerspace hub or Fablab that 

provides access to small-scale manufacturing facilities. The end result is often a socially 

manufactured product. 

 

2.0 Time – The Fourth Dimension 

Despite these benefits, one drawback of additive manufactured parts is that they generally tend to 

be static and inanimate with the exception of specially designed functional and moving parts such as 

living hinges, integrated ball and socket joints and encapsulated bearings (Maidin et al., 2012). In 

response to this, a new trend at the other far end of the technology spectrum is emerging. This is 

time as the fourth dimension, which is combined with 3D printing to be known as “4D printing”. It is 

not about how long it takes to print a part; but rather the fact that a 3D printed object after being 

built continues to evolve over time.  

 

What 4D printing offers is the opportunity for objects that change and adapt in response to the 

surrounding environment. So how is this even possible? The relatively recent advancements of 

multi-material additive manufacturing, combined with rapid developments in smart materials and 

active fibres mean that there are now even more opportunities and applications waiting to be 

discovered. Professor Anna Balazs from the University of Pittsburgh's Swanson School of Engineering 

describes 4D printing as the use of adaptive, biomimetic composites that are able to re-shape, or 

have embedded properties or functionality that transform themselves based on external stimuli. Her 

research focuses on the computational design of chemo-mechanically responsive gels and 

composites (University of Pittsburgh, 2013).  

 

Skylar Tibbits who heads the Massachusetts Institute of Technology’s Self-Assembly Technologies 

Lab, is well known for research on 4D printing. Their previous work has focused on the geometry and 

mechanical computation to understand how synthetic substances can become functional and 

serving as low-level smart materials (Tibbits and Cheung, 2012). This programmable and 

computational material, Logic Matter, relies on mechanical computation through the geometric 

constraints of the build block. At the TED conference held in Los Angeles, Tibbits demonstrated how 

4D printed objects could perform self-assemblies where over time static objects transform and 

adapt. This process is made possible by 3D printing a specialised multi-layered material made up of a 

strand of standard plastic with a sandwiched layer made from an absorbent substance that expands 

up to 150 percent when in contact with water. The Stratasys Connex multi-material technology 

allows such specific material properties to be programmed into controlled areas of the designed 

geometry (Stratasys, 2013). At this time of writing, the Connex3 Objet500 printers are able to mix 



 

 

three different resins in precise ratios within a single print operation, and with a range of 45 possible 

colours (Figure 1). The system uses synthetic blends that provide different properties, all of which 

are based on acrylic-based photopolymer resins. These materials are jetted as a liquid and once a 

layer of material is deposited, it is cured by UV light to form into a solid.  

 

 
 

Figure 1: A cyan-magenta-yellow palette from the Objet500 Connex 3 printer (Stratasys, 2014) 

 

Specific materials are chosen so as to harnesses the unique properties that in turn activate the self-

assembly process. For example, the expansion of water-absorbing material provides the energy to 

trigger the bending and twisting action while the remaining material serves as the rigid structure. 

Tibbits claims that the next stage is to move from printing single strands into sheets, and to 

eventually build whole structures which he claims as a vision of the future for construction that 

would tap energy from sources based on heating and expansion, contraction of materials, fluids and 

capillary action, hydraulics, pneumatics, gravity, magnets, wind resistance, shaking, pre- and post-

tensional forces or using compressional members such as springs that adapt to changes in the 

climate, user demands, or loading conditions, etc. Tibbits describes “self-assembly” as a process 

where disordered parts are built in an ordered structure through local interaction, where the 

material and geometry must be tightly coupled with the energy source (2012). Project Cyborg from 

Autodesk Inc., is an example of a simulation software that has been used by researchers to 

determine how and when the various components will behave during the self-assembly process 

(Autodesk, 2014).  

 

3.0 Recent Projects and Developments in 4D Printing 

At an installation at Long Beach, CA. entitled The Self-Assembly Line (Figure 2), pre-fabricated 

modules are placed in a large rotating chamber (Tibbits and Olson, 2012a). Depending on how 

quickly the rotating chamber is spun, an interaction takes place between the modules and the end 

surfaces which contain magnets begin to attract; demonstrating the variables of changing external 

conditions, the geometry of each component, the attraction mechanism and the number of 

individual units. It also shows how self-assemblies can occur through time and with the right amount 

of energy applied to trigger the build process. Such applications can potentially take place in 



 

 

extreme environments that encounter weather fluctuations, near-zero gravity situations or in 

neutral buoyancy, all of which where the indirect energy can spark an interaction. One instance is 

the use of underwater waves to trigger the self-assembly of structures, or parts dropped from high 

altitudes that automatically unfold into complete structures. 

  

 
 

Figure 2: The Self-Assembly Line installation at Long Beach, CA. (Tibbits and Olson, 2012b). 

 

Yet another major limitation of additive manufacturing today is the bed size within the 3D printer 

that determines the maximum physical dimensions for a part to be built. Although “mammoth” 

Stereolithography prototyping machines are available, they are still limited by the constraints of the 

print bed. To counter this, the Hyperform project developed by Marcelo et al. (2013) use 

mathematical, computational and material folding strategies that enable large scale objects to be 

compressed into a minimal volume within the print bed, thus maximising the full printing capabilities 

of the machine. Once printed, the parts unfold and components that contain notches allow it to 

bend in a certain way to stretch out and extend itself. 

 

Nervous System, a Massachusetts-based design studio led by Jessica Rosenkrantz and Jesse Louis-

Rosenberg (Nervous System, 2013a), has also developed a similar computational method for 3D 

printing that incorporates articulated joints (Figure 3). This allows the built parts to automatically 

unfold and change their shape once being removed from the build chamber. Named after the 

science of geometry of motion, they describe the Kinematics project as an example of 4D printing 

where the finished object is able to self-assemble or transform into a pre-determined form. In this 

process, they use tessellation software that intelligently splits the CAD model into triangles linked by 

built-in hinges. Next, the model is computationally folded to compress itself into the smallest 

possible volume and is optimised to be fabricated within the build space of a 3D printer. They have 

successfully produced large pieces of dresses and jewellery despite them being much bigger than the 

size of the print bed. They claim that this holds great promise that will enable the production of 

other large-scale structures given the constraint of today's small printers. 

 



 

 

 
 

Figure 3: The hinge mechanism from Kinematics showing complex assemblages of jointed parts 

(Nervous System, 2013b) 

 

The importance of this emerging field of 4D printing has been recognised by the United States Army 

Research Office who have awarded US$855,000 worth of funds between three university research 

teams - Harvard's School of Engineering & Applied Science, The University of Illinois, and The 

University of Pittsburgh Swanson School of Engineering, to work on the next generation printing 

technologies (US Army, 2013). They are looking to investigate the development of adaptive, 

biomimetic composites that have reprogrammable shapes, properties or function when subject to 

external stimuli. The area of 3D printing is not new to the organisation where the U.S. Army's Rapid 

Equipping Force (REF) deployed their second mobile laboratory to the war zone in Afghanistan in 

2013. The 20-foot container mobile lab costing US$2.8 million can be transported to a new location 

by truck or helicopter. Engineers working inside the lab use 3D printers and CNC systems to machine 

plastic, steel and aluminium parts when required, thereby accelerating the production process and 

reducing the need for an inventory especially for small forward operating bases. The Navy is also 

testing the feasibility of 3D printed ammunition and building unmanned aerial vehicles on board 

carrier vessels. However, the missing link to the puzzle is the issue of assembly that is generally 

regarded as being labour intensive, extremely time consuming and requires specialised training. It is 

hoped that this grant will provide better understanding towards responsive materials, so as to build 

upon the foundations for the new field of 4D printing. 

 

Advances in additive manufacturing allow specific materials that possess controlled functional 

performance to be precisely deposited within a three-dimensional space. Professor Yong Chen and 

his team from the University of California have developed a novel mask-image-projection-based 

Stereolithography (MIP-SL) process that claims to reduce the printing time (Pan et al., 2012). They 

are also exploring the development of a faster multi-material 3D printing process. Using this 

technique, a CAD model is sliced into a number of horizontal sections, following which a masked 

image is projected onto the photo-polymer liquid resin that is exposed to UV light for curing. The 

process is further enhanced by using a two-way projection method that can build a model from both 

ends or to set multi-material models that require different cure-times. The next step will be to 



 

 

examine how to develop an automated system that will position multiple materials according to 

their specific physical properties. 

 

Scientists from the University of Colorado and Singapore University of Technology and Design have 

developed an alternative method of building 4D structures. Their work differs from Tibbits’ in terms 

of the physical phenomena at play and greater emphasis on understanding their occurrence. Qi and 

his team investigated the use of shape-memory polymer composites with glassy fibres to produce 

4D parts (Qi et al., 2014). A multi-material composite is printed from a CAD file that specifies the 

fibre architecture via controllable anisotropic and thermo-mechanical behaviour. By controlling the 

amount, location and orientation of those fibres, researchers are able to pre-determine how the 

active composite materials will react when subjected to stimuli such as thermal or mechanical forces 

that could come from a natural source (e.g. sunlight), from one’s body heat or by passing an electric 

current that will heat up the material. The build process uses shape memory polymer fibres that are 

sandwiched between an elastomeric matrix. By spatially varying the material properties in a 3D 

domain and controlling the lamina and the laminate architecture with varying fibre orientations and 

volume fractions, the reactive layer is able to assume complex three-dimensional configurations 

such as bending, coiling and twisting, with a dependence of time – the 4D aspect. This concept can 

be further developed by utilising other functional material properties and using shape and topology 

optimisation to achieve configuration changes. 

 

The Suspended Depositions project (Figure 4) by Brian Harms and his team from the Southern 

California Institute of Architecture is a novel process of injecting photo-sensitive resin from a needle 

print head that is fixed on a robotic arm (Harms et al., 2012a). Strangely, hair gel is used to act as an 

omnidirectional support material that in turn provides the freedom for the nozzle to navigate and 

fabricate parts directly on and around other existing components within the gel. The suspension of 

time (and material) using this technique allows the build process to be paused, for tool change, to 

modify the digital and physical model, and for multi-material injections within the gel thereby 

achieving true geometric freedom of manufacture. 

 

 
 

Figure 4: Suspended Deposition looks at suspension of resin in space without added supports (Harms 

et al., 2012b). 



 

 

Much work has also been carried out by DIY enthusiasts such as Richard Horne who uses the 

moniker of RichRap having developed a colour blending nozzle that in theory could also be used for 

multi-material printing (Horne, 2012a). Having first experimented with layer selective colour 

experiments and filament joining, Horne continued to explore the use of single or 

multiple extruders running at intervals separately or together (figure 5). After several iterations, it 

was decided that the colour blending nozzle would use a single hot-end with multiple driven feeds 

that showed promising results. Further work will look at utilising different materials such as PLA for 

flexible hinges and ABS for structures or even blending different materials together. James Corbett 

(Corbett, 2012) from the University of Bath, has also explored the feasibility of mixer extruders for 

Fused Deposition Modelling systems (Figure 5). He has examined the mixing properties of materials 

and designed an active colour mixing system that uses a hex bar to generate the necessary shear in 

the viscous plastic for a more homogeneous mixing result. Future work will focus on the 

development of a software and firmware to gain full independent control of each filament by 

altering the feeds rates of different colours, and to calibrate a colour space map that will make 

printing any colour possible.  

 

 
 

Figure 5: Colour blends from Fused Deposition Modelling (Horne, 2012b). 

 

4.0 Vision of the Future 

The future of additive manufacturing is set to rise and exciting times are just around the corner. In 

2014, key patents that cover laser sintering will begin to expire and we are expected to see an 

explosion of open-source machines. Radical production techniques have also been explored, such as 

planar-curing methods. Will we see machines that promise even faster build times using radical ways 

such as having multiple light systems to cure portions of the resin in 3D? Will we see more 

controlled printing processes where different materials can be selectively channeled into an SLA 

build chamber to achieve multi-material or blended prints? Will we also see newer and smarter 

materials that behave according to multiple stimuli? Or perhaps even selective 4D disassembly, like 

the Blossom project by Richard Clarkson (Clarkson, 2014) who used different 3D printed materials to 

simulate a flower petal opening up in bloom? Clarkson’s design consists of a hollow flexible chamber 

which is filled with air that inflates, causing each petal to react. But perhaps for now, time as the 

fourth dimension in 4D printing could refer to both paradigms – strategies that can be used to 

reduce the print process (such as through kinematics); and the use of smart materials where parts 



 

 

adapt themselves in response to the surrounding environment supporting the notion of self-

assemblies. So 4D printing, whether fad or truly revolutionary, you decide, and time will tell! 
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