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Time-varying Systems with Multiplicative Noises
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Abstract—This paper is concerned with the variance-
constrained distributed filtering problem for a class of time-
varying systems subject to multiplicative noises, unknown but
bounded disturbances and deception attacks over sensor net-
works. The available measurements at each sensing node are
collected not only from the individual sensor but also from
its neighbors according to the given topology. A new deception
attack model is proposed where the malicious signals are injected
by the adversary into both control and measurement data during
the process of information transmission via the communication
network. By resorting to the recursive linear matrix inequality
approach, a sufficient condition is established for the existence of
the desired filter satisfying the prespecified requirements on the
estimation error variance. Subsequently, an optimization problem
is formulated in order to seek the filter parameters ensuring
the locally optimal filtering performance at each time instant.
Finally, an illustrative example is presented to demonstrate the
effectiveness and applicability of the proposed algorithm.

Index Terms—Distributed filtering, multiplicative noises, de-
ception attacks, variance constraints, sensor networks, unknown
but bounded disturbances

I. INTRODUCTION

The rapid development of microelectronic technologies over
the past few decades has boosted the utilization of networks
which consist of a large number of devices implemented
distributively for sensing, communication as well as actuating
[28]. A typical example is the sensor network which has
been found wide applications ranging from various industrial
branches to critical infrastructures such as military facilities
and power grids, see [3], [23] and the references therein. In
particular, the state estimation or filtering problems over sensor
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networks have posed several emerging challenges, which have
attracted an ever-increasing research attention within the signal
processing and control community.

So far, considerable effort has been devoted to the investi-
gation of the distributed filtering problems and a number of
strategies have been developed based on the Kalman filtering
theory or the H∞ filtering theory, see [5], [6], [13], [14],
[16], [26], [31] for some recent results. As is well known, the
Kalman filtering technique requires an assumption of Gaussian
distributions for the process and measurement noises, while
the H∞ theory can be utilized in the occasion when the
disturbances are assumed to have bounded energy. However,
in many real-world engineering practice, due to a variety of
reasons (e.g., man-made electromagnetic interference), it is
much more appropriate to model the disturbances/noises as
signals that are unknown but bounded in certain sets rather
than Gaussian noises or energy-bounded disturbances [8],
[12], [33]. Obviously, in such a case, the aforementioned
conventional techniques based on Kalman filtering or H∞
filtering frameworks are no longer effective. Consequently,
the filtering problems for systems subject to the so-called
unknown but bounded noises have exerted tremendous fas-
cination on researchers as well as engineers within the signal
processing community. So far, quite a few methodologies have
been exploited, see e.g. [9], [24]. Nevertheless, in the general
context of sensor networks, little progress has been made on
the corresponding filtering problems owing probably to the
difficulty in quantifying the filtering performance with respect
to the unknown but bounded noises as well as the complex-
ity which stems from the coupling between communication
topology and the system dynamics.

Along with the pervasive utilization of open yet unprotected
communication networks, the sensor networks are vulnerable
to cyber threat [10]. As a result, the security of network, which
is of utmost importance in the networked-related systems, has
provoked an increasing research interest and a multitude of
results have been reported in the literature, see [29] and the
references therein. In general, there are mainly two types of
cyber attacks which can affect the systems behavior directly or
through feedback, namely, the denial-of-service (DoS) attacks
[21] and the deception attacks [7]. Different from the DoS at-
tack which deteriorates the system performance by preventing
the information from reaching the destination, the deception
attack aims at manipulating the system toward the adver-
saries’ desired behaviors by injecting deception information
to the control actions or system measurements. A quintessen-
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tial example of deception attack should be cited is that in
the context of target tracking, the electronic countermeasure
(ECM) techniques are always developed to deceive radars. By
manipulating and rebroadcasting the Doppler information of
the target, the deception signals can be injected and maintained
through frequency-shifted copies of the radar’s signals, thereby
degrading the tracking performance [30].

To tackle the filtering/control problems for the systems
under cyber attacks, several approaches have been developed,
including linear programming [29], linear matrix inequality
method [18], [27], game theory approach [38], to name but
a few key ones. However, when it comes to the distributed
filtering issues over sensor networks, the corresponding results
have been scattered, although some interesting initial results
have appeared, see e.g. [32], [34]. To the best of the authors’
knowledge, up to now, the research on distributed filtering
is far from adequate when the communication networks are
affected by attacks. The difficulty probably lies in the lack of
appropriate attack models which, on one hand, could compre-
hensively reflect the engineering practice, and on the other,
can be handled systematically within the existing frameworks.
There are still a number of open yet challenging problems
deserving further investigation.

In response to the above discussion, it is our objective
in this paper to design a distributed filter for the discrete
time-varying systems with multiplicative noises, unknown but
bounded disturbances and deception attacks such that the
estimation error variance of each sensing node is constrained
by a prespecified upper bound at each time instant. Note
that the specific time-varying nature of the addressed system
imposes substantial challenges on both performance analysis
and filter design, not to mention the difficulties stemming
from the coupling between the communication topology and
the deception attacks, especially when the error variances
are required to satisfy certain upper bounds at each time
step. Therefore, we shall make the first of the few attempts
to develop new paradigms to solve the so-called variance-
constrained distributed filtering problem subject to deception
attacks over sensor networks.

The main contributions can be highlighted as follows: (i)
a unified framework is established within which the variance-
constrained distributed filtering problem can be conveniently
handled in the presence of multiplicative noises, unknown but
bounded disturbances and deception attacks; (ii) the proposed
deception attack model is novel, which provides a better
way to reflect the engineering reality in a comprehensive
way by simultaneous consideration of several network-induced
complexities; and (iii) a sufficient condition is proposed to
recursively determine the filter parameters capable of guar-
anteeing the prespecified upper bound on the estimation error
variances at each time instant.

The rest of this paper is organized as follows: Section
II formulates the variance-constrained distributed filter de-
sign problem for the discrete time-varying system subject to
multiplicative noises, unknown but bounded disturbances and
deception attacks. The main results are presented in Section
III where a sufficient condition for the existence of the desired
filter is given in terms of recursive linear matrix inequalities.

Section IV gives a numerical example. Section V is our
conclusion.

Notation The notation used here is fairly standard except
where otherwise stated. Rn denotes the n-dimensional Eu-
clidean space. 1n denotes an n-dimensional column vector
with all ones. In denotes the identity matrix of n dimen-
sions. The notation X ≥ Y (respectively X > Y ) where
X and Y are symmetric matrices, means that X − Y is
positive semi-definite (respectively positive definite). The su-
perscript “ T ” denotes the transpose. Z+ stands for all the
positive integers. diag{F1, F2, . . .} denotes a block diagonal
matrix whose diagonal blocks are given by F1, F2 . . . .
The notation diagn{Ai} represents the block diagonal matrix
diag{A1, A2, . . . , An}. The notation coln{xi} denotes the
column vector [xT

1 xT
2 . . . xT

n ]T. For matrices A ∈ Rm×n

and B ∈ Rp×q, their Kronecker product is a matrix in Rmp×nq

denoted as A⊗ B. ‖a‖22 where a is a vector represents aTa,
while ‖a‖2A means aTAa. tr[A] means the trace of matrix A.

II. PROBLEM FORMULATION

In this paper, it is assumed that the sensor network has N
sensor nodes which are distributed in the space according to a
specific interconnection topology characterized by a directed
graph G = (V ,M ,L ), where V = {1, 2, ..., N} denotes the
set of sensor nodes, M ⊆ V ×V is the set of edges, and L =
[θij ]N×N is the nonnegative adjacency matrix associated with
the edges of the graph, i.e., θij > 0 ⇔ edge (i, j) ∈ M , which
means that there is information transmission from sensor j to
sensor i. If (i, j) ∈ M , then node j is called one of the
neighbors of node i. Also, we assume that θii = 1 for all
i ∈ V , and therefore, (i, i) can be regarded as an additional
edge. The set of neighbors of node i ∈ V plus the node itself
is denoted by Ni , {j ∈ V |(i, j) ∈ M }.

A. System model

Consider a discrete time-varying system described by

xk+1 =
(
Ak +

q∑

l=1

αl,kAl,k

)
xk + Bkuk + Dkwk, (1)

with the measurements from N sensors given by

yi,k = Ci,kxk + Ei,kvk, i = 1, 2, . . . , N (2)

where xk ∈ Rn, uk ∈ Rm and yi,k ∈ Rp are, respectively, the
state, the known input and the measurement output of sensor
i; αl,k ∈ R (l = 1, 2, . . . , q) are sequences of uncorrelated
zero-mean Gaussian noises with unitary covariances; wk ∈ Rω

and vk ∈ Rν represent the unknown but bounded process
and measurement disturbances, respectively; Ak, Bk, Dk, Ci,k

and Ei,k are real-valued time-varying matrices of compatible
dimensions. The following definitions as well as assumptions
are needed for the further development.

Definition 1: Let Ψ1 and Ψ2 be some real matrices with
Ψ , Ψ2 −Ψ1 > 0. A nonlinearity ϕ(·): Rn 7→ Rn is said to
satisfy the sector condition with respect to Ψ1 and Ψ2 if

(
ϕ(ε)−Ψ1ε

)T(
ϕ(ε)−Ψ2ε

) ≤ 0, ∀ε ∈ Rn. (3)
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Fig. 1. Deception attack model.

In this case, the sector-bounded nonlinearity ϕ(·) is said to
belong to the sector [Ψ1,Ψ2].

Definition 2: A bounded ellipsoid E (c, P, n) of Rn with a
nonempty interior can be defined by

E (c, P, n) , {x ∈ Rn : (x− c)TP−1(x− c) ≤ 1} (4)

where c ∈ Rn is the center of E (c, P, n) and P > 0 is a
positive definite matrix that specifies the ellipsoid’s shape and
orientation.

Assumption 1: The unknown but bounded noises wk and vk

are confined to the following specified ellipsoids:

wk ∈ E (0,Wk, ω) ,{wk ∈ Rω : wT
k W−1

k wk ≤ 1}
vk ∈ E (0, Vk, ν) ,{vk ∈ Rν : vT

k V −1
k vk ≤ 1} (5)

where Wk > 0 and Vk > 0 are known positive definite
matrices of appropriate dimensions.

B. Deception attack model

In this paper, we investigate the following deception attack
scenario. Attempting to deteriorate the filtering performance,
the adversary injects certain deception signals into the true
signals of the control input uk and the measurement outputs
yi,k during the process of data transmission through the
communication networks. Such an attack scenario can be
illustrated by Fig. 1.

Before giving the deception attack model, we make some
further assumptions on the system knowledge that are pos-
sessed by the adversary for implementing a successful attack.
In this paper, it is assumed that the adversary has sufficient
resources and adequate knowledge to arrange a successful
attack [25]. Specifically, the adversary, in the first place,
knows the accurate values of the control input uk and the
measurement output yi,k in real time, and in the second place,
has the ability to modify the true values of uk and yi,k

to arbitrary ones. Moreover, the attacks are arranged in a
coordinated fashion where the deception signals are injected
into each communication channel simultaneously to maximize
the impact to the plant/estimator [29].

The signals used by the adversary for the deception attacks
are generated as follows:

{
~uk = −uk + δk

~yi,k = −yi,k + ϑi,k, i = 1, 2, . . . , N
(6)

where δk and ϑi,k (i = 1, 2, . . . , N) are the unknown but
bounded signals belonging to the following ellipsoids:

δk ∈ E (0, Sk,m) ,{δk ∈ Rm : δT
k S−1

k δk ≤ 1},
ϑi,k ∈ E (0, Ri,k, p) ,{ϑi,k ∈ Rp : ϑT

i,kR−1
i,kϑi,k ≤ 1} (7)

with Sk and Ri,k (i = 1, 2, . . . , N) being positive definite
matrices of compatible dimensions.

Remark 1: In (7), δk and ϑi,k (i = 1, 2, . . . , N), which have
been assumed to be unknown but confined to certain ellipsoidal
sets, are used by the adversary to generate the deception attack
signals. It should be noted that δk and ϑi,k have similar forms
with the process noise wk and the measurement noise vk, and
are therefore difficult to be distinguished by the detectors. On
the other hand, the most widely implemented attack detector
in the practical applications, namely, the χ2 detector, is only
effective when the noises obey Gaussian distribution [1]. As
such, the utilization of unknown but bounded signals could
help to pass through the χ2 detector. In other words, from the
adversary’s perspective, it is practically reasonable to constrain
the malicious signals δk and ϑi,k (i = 1, 2, . . . , N) within
given ellipsoidal sets.

Remark 2: In engineering practice, attack detectors are
categorized as a software barrier, and there are some other
“hard” physical constraints that the adversary would need
to face. Such physical constraints include device saturations,
bandwidth limitations, channel fading and signal quantizations
[6]. The kinds of hardware constraints should be taken into
consideration if we are to establish a comprehensive yet
realistic deception attack model. On the other hand, such
constraints inevitably bring in new challenges that demand
new techniques in analyzing the performance and design the
filters.

Based on the discussions in Remark 2 and from Fig. 1, we
can reformulate the actual control input ũk (sent to the plant)
and the actual measurement outputs ỹi,k (fed to the estimator)
by {

ũk = uk + Γ~uk

ỹi,k = yi,k + Ξi~yi,k, i = 1, 2, . . . , N
(8)

where the matrices Γ and Ξi represent the physical constraints
imposed on the attack signals and are assumed to be of the
following forms:

{
Γ = diag{γ1, γ2, . . . , γm},
Ξi = diag{ξi,1, ξi,2, . . . , ξi,p}, i = 1, 2, . . . , N.

(9)

Here, the entries of Γ and Ξi have upper- and lower-bounds
that are expressed as follows:

{
0 ≤γ

j
≤ γj ≤ γ̄j < ∞, j = 1, 2, . . . , m

0 ≤ξ
i,s
≤ ξi,s ≤ ξ̄i,s < ∞, s = 1, 2, . . . , p

(10)

where 0 ≤ γ
j

< 1 and γ̄j ≥ 1 are known scalars representing
the lower- and upper-bounds on γj , and 0 ≤ ξ

i,s
< 1 and

ξ̄i,s ≥ 1 are known scalars describing the lower- and upper-
bounds on ξi,s, respectively.

Remark 3: We now take the matrix Γ as an example to
illustrate how the upper- and lower-bounds on γj affect the
behavior of the deception attack signal ~uk (the impact on
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~yi,k from ξi,s can be analyzed similarly). Specifically, when
γj = 1, it means that the jth entry of the deception signal
~uk can be injected correctly into the corresponding true uk

as the adversary plans, otherwise ~uk might be unexpectedly
(from the attacker’s perspective) degraded (0 ≤ γj < 1) or
amplified (γj > 1). In this sense, the model (8)–(10) offers a
comprehensive and realistic means to reflect the influence on
the attacks resulting from the physical constraints as well as
the network-induced complexities.

By denoting

Γ ,diag{γ
1
, γ

2
, . . . , γ

m
}, Γ̄ , diag{γ̄1, γ̄2, . . . , γ̄m},

Ξi ,diag{ξ
i,1

, ξ
i,2

, . . . , ξ
i,p
}, Ξ̄i , diag{ξ̄i,1, ξ̄i,2, . . . , ξ̄i,p},

we can rewrite (10) into the following compact forms:
{

Γ ≤ Γ ≤ Γ̄,

Ξi ≤ Ξi ≤ Ξ̄i, i = 1, 2, . . . , N.
(11)

In what follows, for the convenience of later derivation, we
divide the deception attack signals Γ~uk and Ξi~yi,k as follows:

{
Γ~uk = Γ~uk + ϕ(~uk),
Ξi~yi,k = Ξi~yi,k + ψi(~yi,k), i = 1, 2, . . . , N.

(12)

It then can be easily checked that
{

ϕT(~uk)
(
ϕ(~uk)− Γ̃~uk

) ≤ 0,

ψT
i (~yi,k)

(
ψi(~yi,k)− Ξ̃i~yi,k

) ≤ 0, i = 1, 2, . . . , N
(13)

where Γ̃ , Γ̄ − Γ > 0 and Ξ̃i , Ξ̄i − Ξi > 0 are
positive definite matrices. Clearly, it follows from Definition 1
that ϕ(~uk) and ψi(~yi,k) are vector-valued nonlinear functions
satisfying the sector condition and belonging to the sectors
[0, Γ̃] and [0, Ξ̃i] (i = 1, 2, . . . , N), respectively.

C. Design objective

On account of the deception attacks discussed above, the
original system (1)–(2) should be reformulated by




xk+1 =

(
Ak +

q∑

l=1

αl,kAl,k

)
xk + Bkũk + Dkwk,

ũk = uk + Γ~uk,

ỹi,k = yi,k + Ξi~yi,k, i = 1, 2, . . . , N.

(14)

For the system (14), at each sensing node i (i =
1, 2, . . . , N ), the following filter structure is adopted:

x̂i,k+1 = Gi,kx̂i,k + Bkuk +
∑

j∈Ni

θijKij,k(ỹi,k − Ci,kx̂i,k)

(15)
where x̂i,k ∈ Rn is the estimate of the state xk based on
the ith sensing node, and the matrices Gi,k and Kij,k (i, j =
1, 2, . . . , N) are the filter parameters to be determined.

Assumption 2: The initial state x0 of the system (14) and
its estimate values from each sensing node, namely, x̂i,0 (i =
1, 2, . . . , N), satisfy:

E
{
(x0 − x̂i,0)(x0 − x̂i,0)T

} ≤ Φ0 (16)

where Φ0 > 0 is a known positive definite matrix.

The distributed filtering problem under investigation is to es-
timate the state of the system (1) using a network of filters con-
nected according to the graph G with the guarantee of variance
constraints on the estimation errors. Specifically, the objective
of this paper is twofold. For the system (1)–(2) subject to the
deception attacks (6), let the communication graph G and the
sequence of positive definite matrices {Φk}k≥0 (prespecified
constraints on the estimation error variance) be given. It is
our first aim to design the sequences of filtering parameters
{Gi,k}k≥0 and {Kij,k}k≥0 in (15) subject to the given couple
(G , {Φk}k≥0) such that the following inequalities are satisfied
for all k ≥ 0:

E
{
(xk − x̂i,k)(xk − x̂i,k)T

} ≤ Φk, i = 1, 2, . . . , N. (17)

Secondly, within the proposed framework, an optimization
problem will be considered for minimizing Φk in the sense of
matrix trace at each time instant to ensure the locally optimal
filtering performance. This problem will be referred to as a
variance-constrained distributed filtering problem subject to
deception attacks.

III. DISTRIBUTED FILTER DESIGN

In this section, we will design a distributed filter of form
(15) for system (1)–(2) subject to multiplicative noises, un-
known but bounded disturbances and deception attacks. A
sufficient condition for the existence of the desired filter will
be formulated in terms of a set of recursive linear matrix
inequalities (RLMIs). First, two lemmas which are useful for
our subsequent development are introduced as follows.

Lemma 1: (Schur Complement Lemma) Given constant
matrices S1,S2,S3 where S1 = ST

1 and 0 < S2 = ST
2 , then

S1 + ST
3 S−1

2 S3 < 0 if and only if
[ S1 ST

3

S3 −S2

]
< 0, or

[ −S2 S3

ST
3 S1

]
< 0. (18)

Lemma 2: (S-procedure [2]) Let κ0(·),κ1(·),. . .,κs(·) be
quadratic functions of the variable ζ ∈ Rn: κj(ζ) , ζTTjζ
(j = 0, 1, . . . , s), where TT

j = Tj . If there exist τ1 ≥ 0, . . .,
τs ≥ 0 such that T0 −

∑s
j=1 τjTj ≤ 0, then the following is

true:
κ1(ζ) ≤ 0, . . . , κs(ζ) ≤ 0 =⇒ κ0(ζ) ≤ 0. (19)

From the system (14) and the filter (15), for sensing node
i (i = 1, 2, . . . , N), the one-step ahead estimation error is
calculated by

xk+1 − x̂i,k+1

=

(
Ak +

q∑

l=1

αl,kAl,k

)
xk −BkΓuk + BkΓδk + Bkϕ(~uk)

+ Dkwk −Gi,kx̂i,k −
∑

j∈Ni

θijKij,k(I − Ξi)Ci,kxk

−
∑

j∈Ni

θijKij,k(I − Ξi)Ei,kvk −
∑

j∈Ni

θijKij,kΞiϑi,k

−
∑

j∈Ni

θijKij,kψi(~yi,k) +
∑

j∈Ni

θijKij,kCi,kx̂i,k. (20)
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For simplicity of the further development, we denote

Tλ,i , [ 0 · · · 0︸ ︷︷ ︸
i−1

Iλ 0 · · · 0︸ ︷︷ ︸
N−i

],

Ωλ,i , T T
λ,iTλ,i(IN ⊗ Iλ), λ = {n, q, p}, i = 1, . . . , N.

Denoting x̃i,k , xk − x̂i,k, we can rewrite (20) into a
compact form as follows:

x̃k+1 =(Ak + ᾱkĀk)ζk − Bkµk + Bk δ̃k + B̄kϕ̃k

+Dkw̃k − Gkx̂k −Kk(I − Ξ)Ckζk

−Kk(I − Ξ)Ekṽk −KkΞϑk

−Kkψk +KkCkx̂k (21)

where

x̃k , colN{x̃i,k}, ζk , colN{xk}, x̂k , colN{x̂i,k},
µk , colN{uk}, δ̃k , colN{δk}, ϕ̃k , colN{ϕ(~uk)},
w̃k , colN{wk}, ṽk , colN{vk}, ϑk , colN{ϑi,k},
ψk , colN{ψi(~yi,k)}, Ak , diagN{Ak},
Ãk , diagN

{∑q

l=1
Al,k

}
, αk ,

[
α1,kI · · · αq,kI

]
,

Āk ,
[

AT
1,k AT

2,k · · · AT
q,k

]T
, ᾱk , diagN{αk},

Āk , diagN{Āk}, Bk , diagN{BkΓ}, B̄k , diagN{Bk},
Ck , diagN{Ci,k}, Dk , diagN{Dk}, Ek , diagN{Ei,k},
Gk , diagN{Gi,k}, Ξ , diagN{Ξi}, Kk , [θijKij,k]N×N .

Noticing that when j /∈ Ni, θij = 0, we know that Kk is a
sparse matrix which can be described by

Kk ∈ Qn×m (22)

where Qn×m , {Q = [Qij ] ∈ RnN×mN
∣∣Qij ∈

Rn×m,, Qij = 0 if j /∈ Ni}.
The following theorem presents a sufficient condition for the

existence of the desired distributed filter by RLMI approach.
Theorem 1: For the system (1)–(2) subject to the de-

ception attacks (6), let the network topology G and the
prespecified sequence of variance constraints {Φk}k≥0 be
given. The design objective (17) is achieved if there exist se-
quences of real-valued matrices {Gk}k≥0 and {Kk}k≥0 (Kk ∈
Qn×m), sequences of positive definite matrices {S̃k}k≥0

and {R̃i,k}k≥0, sequences of non-negative scalars {τ1,k}k≥0,
{τ2,k}k≥0, {τ3,k}k≥0, {τ4,k}k≥0, {εi,k}k≥0, {%i,k}k≥0 and
{ρi,k}k≥0 (i = 1, 2, . . . , N) satisfying the following N
RLMIs:




−∆k ∗ ∗
Tn,iΛ̄k −Φk+1 ∗
Tn,iΛ̂k 0 −Φk+1


 ≤ 0, i = 1, 2, . . . , N

(23)
where

∆k , τ4,kΠk +
N∑

i=1

ρi,kΥi,k

+ diag
{

1−
N∑

i=1

(εi,k + %i,k)− τ1,k − τ2,k − τ3,k,

N∑

i=1

εi,kT T
q,iTq,i, S̃k,

N∑

i=1

T T
p,iR̃i,kTp,i,

τ2,kW−1
k , τ3,kV −1

k , 0, 0
}

, (24)

Π̄k ,




uT
k Γ̃
0
−Γ̃
0
0
0

2Im

0




, Ῡi,k ,




x̂T
k Ωn,idiagN{CT

i,kΞ̃i}Ωp,i

Ωq,idiagN{PT
k CT

i,kΞ̃i}Ωp,i

0
−Ωp,idiagN{Ξ̃i}Ωp,i

0
Tp,idiagN{ET

i,kΞ̃i}Ωp,i

0
2Ωp,iIpNΩp,i




,

Πk , 1
2

[
0 0 0 0 0 0 Π̄k 0

]
, (25)

Υi,k , 1
2

[
0 0 0 0 0 0 0 Ῡi,k

]
, (26)

Im , 1N ⊗ Im, Iω , 1N ⊗ Iω, Iν , 1N ⊗ Iν , (27)

Λ̄11 ,
(
Ak − Gk +KkΞCk

)
x̂k − Bkµk,

Λ̄12 , AkPk −Kk(I − Ξ)CkPk,

Λ̄k ,
[

Λ̄11 Λ̄12 BkIm −KkΞ DkIω

−Kk(I − Ξ)EkIν B̄kIm −Kk

]
, (28)

Λ̂k ,
[ Ãkx̂k ÃkPk 0 0 0 0 0 0

]
(29)

with Pk being a factorization of Φk (i.e., Φk = PkPT
k ) and

Pk , diagN{Pk}. Moreover, the parameters Sk and Ri,k can
be computed by Sk = τ1,kS̃−1

k and Ri,k = %i,kR̃−1
i,k .

Proof: We prove Theorem 1 by induction which can
be divided into two steps, namely, the initial step and the
inductive step.

Initial step. For k = 0, it can be known directly from
Assumption 2 that the initial value of the state x0 and its
estimates x̂i,0 (i = 1, 2, . . . , N) satisfy

E
{
(x0 − x̂i,0)(x0 − x̂i,0)T

} ≤ Φ0. (30)

Inductive step. Given that at the time instant k > 0, the
following is true:

E
{
(xk − x̂i,k)(xk − x̂i,k)T

} ≤ Φk, (31)

then we aim to, with the condition given in the theorem,
demonstrate that the following set of inequalities holds for
all i:

E
{
(xk+1 − x̂i,k+1)(xk+1 − x̂i,k+1)T

} ≤ Φk+1. (32)

Since the inequality (31) is true, it follows from [9]
that there exists a sequence of vectors zi,k ∈ Rq (with
E{zT

i,kzi,k} ≤ 1) satisfying xk = x̂i,k + Pkzi,k where
Pk ∈ Rn×q is a factorization of Φk = PkPT

k . Denoting
zk , colN{zi,k} and noticing Pk = diagN{Pk}, we can
further acquire that

ζk = x̂k + Pkzk. (33)

Now, substituting (33) into (21) yields

x̃k+1 =
(Ak + ᾱkĀk − Gk −Kk(I − Ξ)Ck +KkCk

)
x̂k
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− Bkµk +
(
(Ak + ᾱkĀk)Pk −Kk(I − Ξ)CkPk

)
zk

+ BkImδk + B̄kImϕk +DkIωwk

−Kk(I − Ξ)EkIνvk −KkΞϑk −Kkψk. (34)

We now define a vector as follows:

βk ,
[

1 zT
k δT

k ϑT
k wT

k vT
k ϕT

k ψT
k

]T
. (35)

Then, the one-step ahead estimation error x̃k+1 in (34) is
expressed by

x̃k+1 =Λkβk (36)

where

Λ11 ,(Ak + ᾱkĀk − Gk +KkΞCk + Gk)x̂k − Bkµk,

Λ12 ,(Ak + ᾱkĀk)Pk −Kk(I − Ξ)CkPk + GkPk,

Λk ,
[

Λ11 Λ12 BkIm −KkΞ DkIω

−Kk(I − Ξ)EkIν B̄kIm −Kk

]
. (37)

Next, we decompose the matrix Λk into a deterministic part
Λ̄k defined in (28) and a stochastic part Λ̃k which contains the
random variable ᾱk as follows:

Λk = Λ̄k + Λ̃k (38)

where

Λ̃k ,
[

ᾱkĀkx̂k ᾱkĀkPk 0 0 0 0 0 0
]
.

Then, by taking into consideration the statistical properties of
the random variable ᾱk, we have

E{ΛT
k T T

n,iΦ
−1
k+1Tn,iΛk}

=Λ̄T
k T T

n,iΦ
−1
k+1Tn,iΛ̄k + Λ̂T

k T T
n,iΦ

−1
k+1Tn,iΛ̂k. (39)

In the following, we shall proceed to deal with the con-
straints (13) imposed on the attack signals ~uk and ~yi,k (i =
1, 2, . . . , N). It can be known from (13) that the nonlinear
vector-valued functions ϕ(~uk) and ψi(~yi,k) (i = 1, 2, . . . , N)
are belonging to the sectors [0, Γ̃] and [0, Ξ̃i] (i = 1, 2, . . . , N),
respectively. As such, we can perform the following deriva-
tions:

ϕT(~uk)
(
ϕ(~uk)− Γ̃~uk

) ≤ 0 ⇐⇒ βT
k Πkβk ≤ 0 (40)

where Πk is defined in (25).
Likewise, we have

βT
k Υi,kβk ≤ 0 (41)

where Υi,k is defined in (26).
For the brevity of presentation, we denote

Ni,k , diag
{−1, T T

q,iTq,i, 0, 0, 0, 0, 0, 0
}

,

M1,k , diag
{−1, 0, S−1

k , 0, 0, 0, 0, 0
}

,

Ji,k , diag
{
−1, 0, 0, T T

p,iR
−1
i,kTp,i, 0, 0, 0, 0

}
,

M2,k , diag
{−1, 0, 0, 0,W−1

k , 0, 0, 0
}

,

M3,k , diag
{−1, 0, 0, 0, 0, V −1

k , 0, 0
}

.

According to Definition 2, it is not difficult to reformulate
the constraints E{zT

i,kzi,k} ≤ 1, δk ∈ E (0, Sk,m), ϑi,k ∈

E (0, Ri,k, p), wk ∈ E (0,Wk, ω) and vk ∈ E (0, Vk, ν) in
terms of the variable βk as follows:

βT
k Ni,kβk ≤ 0, βT

k M1,kβk ≤ 0, βT
k Ji,kβk ≤ 0,

βT
k M2,kβk ≤ 0, βT

k M3,kβk ≤ 0.
(42)

By applying the Schur Complement Lemma (Lemma 1) to
the set of RLMIs (23) and noting that Sk = τ1,kS̃−1

k and
Ri,k = %i,kR̃−1

i,k , we obtain

Λ̄T
k T T

n,iΦ
−1
k+1Tn,iΛ̄k + Λ̂T

k T T
n,iΦ

−1
k+1Tn,iΛ̂k −∆k ≤ 0 (43)

which, by (24), is equivalent to

Λ̄T
k T T

n,iΦ
−1
k+1Tn,iΛ̄k + Λ̂T

k T T
n,iΦ

−1
k+1Tn,iΛ̂k

−diag{1, 0, 0, 0, 0, 0, 0, 0}
−τ1,kM1,k − τ2,kM2,k − τ3,kM3,k − τ4,kΠk

−
N∑

i=1

εi,kNi,k −
N∑

i=1

ρi,kΥi,k −
N∑

i=1

%i,kJi,k ≤ 0. (44)

By resorting to Lemma 2 and on account of (40), (41) and
(42), we immediately arrive at

βT
k

(
Λ̄T

k T T
n,iΦ

−1
k+1Tn,iΛ̄k + Λ̂T

k T T
n,iΦ

−1
k+1Tn,iΛ̂k

)
βk ≤ 1, (45)

which, by means of (39), further indicates that

E{βT
k ΛT

k T T
n,iΦ

−1
k+1Tn,iΛkβk} ≤ 1, (46)

or equivalently,

E{x̃T
i,k+1Φ

−1
k+1x̃i,k+1} ≤ 1. (47)

By using Schur Complement Lemma again, the inequality
(47) holds if and only if

E{x̃i,k+1x̃
T
i,k+1} ≤ Φk+1, (48)

which accomplishes the induction. Accordingly, we conclude
that the design objective (17) is achieved subject to the fixed
communication topology G and variance constraints {Φk}k≥0.
The desired sequences of filtering parameters {Gk}k≥0 and
{Kk}k≥0 can be obtained by solving the set of RLMIs (23)
iteratively. The proof is now complete.

In the following stage, an optimization problem is formu-
lated with the purpose to determine the filtering gains ensuring
the locally optimal filtering performance by minimizing Φk in
the sense of matrix trace at each time instant.

Corollary 1: For the system (1)–(2) subject to the deception
attacks (6), let the network topology G be given. A sequence
of minimized {Φk}k≥1 can be guaranteed (in the sense of
matrix trace) if there exist sequences of real-valued matrices
{Gk}k≥0 and {Kk}k≥0 (Kk ∈ Qn×m), sequences of positive
definite matrices {S̃k}k≥0 and {R̃i,k}k≥0, sequences of non-
negative scalars {τ1,k}k≥0, {τ2,k}k≥0, {τ3,k}k≥0, {τ4,k}k≥0,
{εi,k}k≥0, {%i,k}k≥0 and {ρi,k}k≥0 (i = 1, 2, . . . , N) solving
the following optimization problem:

min
Φk+1,Gk,Kk,S̃k,R̃i,k,τ1,k,τ2,k,τ3,k,τ4,k,εi,k,%i,k,ρi,k

tr[Φk+1] (49)

subject to




−∆k ∗ ∗
Tn,iΛ̄k −Φk+1 ∗
Tn,iΛ̂k 0 −Φk+1


 ≤ 0.
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Remark 4: So far, the addressed variance-constrained dis-
tributed filtering problem has been discussed for the time-
varying systems with multiplicative noises, unknown but
bounded disturbances and deception attacks. The existence
condition of the desired distributed filter has been established
by resorting to the recursive linear matrix inequality approach.
The filter gains can be determined via solving a set of RLMIs
iteratively. The optimization problem for the locally optimal
filtering performance has also been solved by minimizing the
constraints imposed on the estimation error variance in the
sense of matrix trace. One of our future research topics is
the variance-constrained distributed filtering subject to other
frequently seen network-induced complexities such as trans-
mission delay [4], [20], [37], multiple missing measurements
[15], [22] and quantization effects [19], [35], [36]. It is also
our interest to apply the proposed technique to deal with the
consensus control problems for stochastic multi-agent systems
studied in [17], where the open communication network may
be also under attacks.

IV. NUMERICAL EXAMPLE

In this section, an illustrative example is presented to illus-
trate the effectiveness of the proposed algorithm. We consider
a target tracking system whose dynamic model is given as
follows:

xk+1 =
[

1 T
0 1

]
+ Dwk (50)

where T is the sampling period and the state xk = [sk ṡk]T

with sk and ṡk being the position and velocity, respectively. It
is worth mentioning in (50), the system parameters are time-
invariant and the state is only subject to the external additive
noise wk. However, in the real-world application, because
of the changeable circumstance, these parameters are usually
time-varying. Moreover, the system may contain, apart from
the additive noises, certain multiplicative disturbances that
have significant impact on the performance [11]. Taking these
into account, we propose the model of system (1)–(2) with
following parameters that are of more practical significance:

Ak =
[

1 T
0 1

]
, T = 0.1,

A1,k =
[

0.08 + 0.1 sin(3k) −0.05
0.01 −0.01 + 0.02 cos(k)

]
,

A2,k =
[

0.06 + 0.01 sin(10k) 0.02
−0.01 −0.07 + 0.02 cos(k)

]
,

C1,k =
[

1 0
]
,

C2,k =
[

0.9 + sin(k) 0
]
,

C3,k =
[

0.75 + 0.5 sin(k) 0.1
]
,

Dk =
[

0.1 + 0.05 cos(3k)
0.2 + 0.04exp{−k}

]
,

E1,k = 0.2 + 0.05 cos(3k),
E2,k = 0.2 + 0.15 sin(2k),
E3,k = 0.15 + 0.05 sin(2k).

Suppose the unknown but bounded disturbances are wk =
0.2 sin(5k) and vk = 0.5 cos(2k) and set Wk = 0.04, Vk =

0.25. Then it can be easily checked that wk and vk belong to
the ellipsoid sets defined in (5).

Suppose that there are three sensor nodes connected accord-
ing to graph G . The associated adjacency matrix L is selected
as follows:

L =




1 0 1
0 1 1
1 1 1


 .

Set the initial values as follows:

x0 =
[

5
3

]
, x̂1,0 =

[
2.8
1.6

]
, x̂2,0 =

[
3.0
2.0

]
,

x̂3,0 =
[

3.2
1.2

]
, Φ0 =

[
15 0.1
0.1 15

]
.

Then it can be easily checked that (16) is satisfied.
Suppose that the that the constraints imposed on the attack

signals are characterized by Γ = 0.8, Γ̄ = 1.2, Ξ1 = 0.8,
Ξ̄1 = 1.2, Ξ2 = 0.9, Ξ̄2 = 1.1, Ξ3 = 0.7 and Ξ̄3 = 1.3.

In this section, we proceed to utilize the algorithm proposed
in Corollary 1 to solve the optimization problem (49). By
using Matlab software, the simulation is carried out and the
results are shown in Figs. 2–7. Specifically, Figs. 2–3 depict
the trajectories of the individual entries of the system state xk

(i.e., x
(1)
k and x

(2)
k ) and their estimates at each sensing node.

Figs. 4–5 present the trajectories of the one-step-ahead estima-
tion errors (i.e., x̃i,k) of all the sensing nodes. The estimation
error variances of all the sensing nodes are proposed in Fig. 6–
7, which indicate that the proposed algorithm performs quite
well.
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Fig. 2. The state x
(1)
k and its estimate.

V. CONCLUSION

The variance-constrained distributed filtering problem has
been studied for a class of discrete time-varying systems with
multiplicative noises, unknown but bounded disturbances and
deception attacks over sensor networks. A novel deception
attack model has been proposed, where the attack signals are
injected by the adversary to both control and measurement
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k and its estimate.
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Fig. 5. The estimation error of x
(2)
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data during the transmission via the communication networks.
A sufficient condition has been established for the existence
of the required filter satisfying the estimation error variance
constraints by means of the RLMI approach. An optimization
problem has been presented to seek the filter parameters
with the guarantee of the locally minimal estimation error
variance at each time instant. Finally, an illustrative example
has been used to show the effectiveness and applicability of the
proposed algorithm. It is worth mentioning that our proposed
filtering scheme is actually a robust technique against decep-
tion attacks. In practical engineering, certain attack detectors
such as the widely used χ2 detector are usually implemented.
However, χ2 detector is only effective to distinguish deception
signals obeying Gaussian distribution, which is therefore can-
not be applied to prevent the unknown but bounded deception
signals considered in this paper. It is of practical significance
to exploit novel mechanisms that are capable of detecting other
types of attack signals aside from Gaussian noises.
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Fig. 6. The variance of x̃
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(now renamed as Ecole Nationale Supérieure d’Ingé nieurs de Poitiers),
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