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The effectiveness of a repair strategy, for damaged RC beam-column joints, that combines strain harden-
ing cementitious composite (SHCC) and laminates of carbon fiber reinforced polymers (CFRP laminates) is
assessed in the present work. According to this technique, existing concrete cover in the joint zone of the
frame is replaced by a self-compacting SHCC. This thin layer of SHCC is reinforced with CFRP laminates
that are bonded into the saw cut grooves. Two full-scale severely damaged interior RC beam-column
joints were retrofitted using two different configurations for this technique: (i) applying the strengthen-
ing system in the front and rear faces of the specimens; (ii) jacketing all sides of the elements of the
specimens with the strengthening system. The effectiveness of these retrofitting configurations are
assessed and compared by evaluating experimentally the hysteretic response, the dissipated energy,
the degradation of secant stiffness, the displacement ductility and the failure modes of each repaired
specimen, and also using the values of these indicators obtained in the virgin state of these specimens.
This comparison revealed that the adopted retrofitting strategies can restore and even enhance the
performance of this type of structural elements, mainly when the solution based on four-sided jacketing

is used.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Seismic deficiencies of RC structures designed based on pre-
seismic provisions, such as pre-1970th buildings, is figured out in
both experimental tests [1,2] and also post-earthquake observa-
tions (e.g. Turkey 1999 and Italy 2009). These vulnerabilities are
mostly due to the lack of seismic design and detailing of these
structures. Among the structural components of a framed-
structure, beam-column joints play the most significant role in
the lateral stability, since a brittle failure at the joint region may
result in a progressive collapse of a building. Therefore, both
energy dissipation and ductility capacities of these structures,
when a seismic event occurs, highly depend on the stability and

* Corresponding author at: ISISE, Dep. Civil Eng., School Eng., University of Minho,
Campus de Azurém, 4800-058 Guimardes, Portugal. Tel.: +351 917 40 90 75.
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hvarum@fe.up.pt (H. Varum).

http://dx.doi.org/10.1016/j.compstruct.2014.12.012
0263-8223/© 2014 Elsevier Ltd. All rights reserved.

deformation of the beam-column joints. Continuous damage due
to aging effects, even in those structures designed based on seismic
oriented codes, also makes them vulnerable against earthquakes.
Several strategies for seismic retrofitting of these group of
structures are available, such as steel jacketing, cast-in-place con-
crete/RC jacketing [3], shotcrete jacketing [4], epoxy injection
repair [5], application of Fiber Reinforced Polymers (FRPs) [6-9].
Li et al. [10] showed that the interior RC beam-column joints
can be strengthened by using a ferrocement jacket as the replace-
ment of the exiting concrete cover at critical regions of the framed
elements along with embedding inclined bars in the joint region.
High performance fiber reinforced composites (HPFRC) were used
by Shannag and Alhassan [11] for the strengthening of 1/3 scale
interior beam-column joints containing vulnerable detailing
against seismic actions. A 25 mm thick jacket of HPFRC covering
critical regions of column-joint and extending up to a 100 mm on
the beams of the specimens were the adopted strengthening con-
figuration. The results of this experimental program have revealed
that HPFRC jackets can significantly improve the seismic response
of deficiently detailed interior beam-column joints. However, this

Please cite this article in press as: Esmaeeli E et al. Retrofitting of interior RC beam-column joints using CFRP strengthened SHCC: Cast-in-place solution.
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jacketing solution has increased the dimensions of the cross
sections of the elements in 25% to 47%, which can be a real obstacle
on the use of this technique in certain applications. The experimen-
tal program performed by Tsonos [4]| was focused on the strength-
ening of 1/2 scale exterior beam-column joints by adding a new
steel cage reinforcement that was covered either with shotcrete
or cast-in-place cement based materials. Based on the results of
this experimental program, Tsonos [4] stated that both cast-
in-place and shotcrete solutions provided a significant improve-
ment in the seismic response of this type of structures. A superior
performance of the cast-in-place solution in respect to the shot-
crete technique, mainly in terms of energy dissipation capacity,
was observed and attributed to a better covering of the added steel
bar cage that was assured by the former technique. Considering an
increase of 140 mm in each side of the column’s cross section of
the 1/2 scale specimens, inacceptable interference can result in
terms of architectural and functional requisites. Wang and Hsu
[12] a satisfactory performance of the strengthening effectiveness
of RC jacketing of columns of beam-column assemblies with shear
deficiency in the joint region. For this case, the adopted thickness
of the RC jacket resulted in an increase up to 67% in the dimensions
of the column section.

Strain hardening cementitious composite (SHCC) is a class of
Fiber Reinforced Concretes (FRCs), with the character of developing
a continuous increase of post-cracking tensile capacity up to the
stress localization at one of the multiple formed cracks for a rela-
tively high tensile strain. The formation of multiple diffused hair-
line cracks through all the loaded length of the specimen during
the hardening stage assures levels of ductility not possible to attain
in conventional FRCs. By testing in bending masonry elements
strengthened with a thin layer of SHCC applied to their tensile face,
Esmaeeli et al. [13] demonstrated that higher load carrying capac-
ity and ductility is achievable when compared to flexural strength-
ening methodologies based on the use of thicker layers of self-
compacting steel FRC. Recently Esmaeeli et al. [14] developed a
thin prefabricated hybrid composite plate (HCP), composed of
SHCC and CFRP laminate, with a high durability potential. By per-
forming some experimental tests, they demonstrated the high effi-
cacy of the HCP for the repair and the strengthening of the different
types of the RC elements including retrofitting of damaged
beam-column joints.

In this paper an experimental program for the assessment of the
effectiveness of a retrofitting technique for damage interior RC
beam-column joints by casting-in-place SHCC and further rein-
forcing that with CFRP laminates is described, and the main
obtained results are presented and discussed.

Both the fine graded matrix and the high content of fly ash in
the skeleton of SHCC can promote the formation of a relatively high
bond quality at the interface between SHCC and existing concrete.
A high strain capacity (strain at maximum tensile strength of com-
posite) and a tight crack width, often and in average smaller than
100 pm up to the ultimate tensile capacity, is known as a durable
composite cover and expected sufficient confining pressures at rel-
atively high strains. In fact, the results of previous studies showed
that for the concrete patched with SHCC, a single crack with a large
width formed in substrate transforms to a multiple diffused fine
crack in the patch layer which are typically impermeable and
assure the durability of the repaired substrate [15-17]. When SHCC
is used to repair RC elements with progressive corrosion of their
steel rebars, the risk of splitting and spalling of this ductile retrofit-
ting cover due to the expanded volume of the rusted bars is mini-
mized [18,19]. Moreover, the tensile strain ductility of SHCC results
in a high potential of stress redistribution at the bearing zones,
therefore avoids premature failure at this region when anchors
used to enhance shear stress transference between the retrofitted
layers.

The idea of reinforcing SHCC layer with bonded CFRP laminates
into the saw cut grooves benefits the progressive increase in tensile
strength of the SHCC, at least up to the rupture strain of CFRP lam-
inate, generally 1.5% to 1.6%. This provides strain compatibility
between these two composites while ductility of SHCC in combina-
tion of high tensile strength of CFRP laminates may produce a
strengthening scheme with a high toughness. Also bonding CFRP
laminates as the supplementary tensile reinforcement to the
exposed face of the SHCC layer, in the hardened state, minimizes
the obstacles during placing the fresh SHCC. A better bond quality
control between SHCC and CFRP laminates can be expected too.
Finally, the mechanism of formation of numerous diffused micro
cracks and opening and closing of those during reversal cyclic loads
results in a high capacity of energy dissipation which is the most
desired character for seismic load resisting elements.

2. Experimental program

The experimental program is composed of retrofitting two
severely damaged full-scale interior beam-column joints. The ret-
rofitting methodology was based on replacing concrete cover with
SHCC in the joint region and along the critical lengths of beams and
columns. To enhance the tensile strength of this ductile layer, CFRP
laminates were bonded into grooves cut on hardened SHCC along
both the longitudinal and the transverse directions. Two different
depths, 10 and 20 mm, for the grooves were adopted in order to
allow the arrangement of the CFRP laminates in two different ori-
entations. An X-shaped configuration of these CFRP laminates,
bonded in two different levels, was used for the shear strengthen-
ing of the joint region.

The difference between the adopted retrofitting schemes for the
tested specimens was the number of faces of the framed elements
that was retrofitted. While in one specimen only the front and rear
faces of beams, columns and joint were retrofitted, for the other
specimen all the external faces of the mentioned elements were
jacketed.

After retrofitting, these specimens were subjected to the same
test setup and loading pattern that were used to characterize their
lateral load-displacement response in their virgin state. To evalu-
ate the efficacy of the adopted retrofitting strategies the results
obtained from these experiments were then compared to the
corresponding results of their virgin states.

2.1. Damaged specimens

Two severely damaged interior RC beam-column joints, desig-
nated as JPA3 and JPB, were selected from a group of specimens
that were tested in their virgin state in the ambit of an experimen-
tal research program of a PhD thesis [20]. Both specimens were
identical in terms of the lengths and cross section geometry of
their framed elements. The only difference between these speci-
mens was the number of longitudinal rebars: more 4 longitudinal
rebars were used in the column of JPB. The lengths of the beams
and columns of these specimens were taken as the mid-span and
the mid-storey of a common RC building built before 1970th,
respectively. The mid-length of the elements were used to facili-
tate the simulation of the boundary conditions in the experimental
test since moment inflection point of a RC frame under a lateral
loading is expected to occur in the these zones.

According to the configuration of the most buildings con-
structed before 1970th, plain steel bars were used as the longitudi-
nal and transverse reinforcement for both beams and columns.
There were no transverse reinforcement in the joint region and
90° bended end was used for the stirrups and hoops of the beams
and columns, respectively. More details about the configuration of
the selected specimens for the retrofit, JPA3 and JPB, are shown in
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Fig. 1. Adopting a shorter length for the inferior column was due to tensile strength of the steel longitudinal reinforcement, respec-
the limitation imposed by the test setup which is discussed further tively, with an elasticity modulus of 198 GPa.

in this section.

A lateral reversal displacement history was imposed to the top

The average compressive strength, measured in 150 mm cubes of the superior column at the presence of a constant axial load of
of concrete, was equal to 23.8 MPa with an estimated characteristic 450 kN. This axial force introduces a gravity load corresponding
compressive strength of 19.8 MPa, corresponding to the C16/C20 to an axial compressive stress of 21.3% of the average concrete
concrete strength class according to the classifications of the compressive strength. The lateral load was constituted of a series
EC2-1992-1-1 [21]. By performing tensile tests, average values of of displacement-controlled cycles, in push (positive displacement)
590 and 640 MPa were determined for the yield and the ultimate and pull (negative displacement) direction, with an incremental
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Fig. 1. Details of adopted configurations for the interior RC beam-column connections.
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Fig. 2. Loading history adopted for the lateral displacement cycles (d?: peak displacement for the corresponding cycle or set of cycles).
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magnitude up to 4% interstory drift. After three cycles of loading
that introduced a drift level of 0.13%, each level of displacement
was repeated three times, as it is shown in Fig. 2. The specimens
were tested in a horizontal position according to the test setup
illustrated in Fig. 3. As it is shown in this figure, the shorter length
of the inferior column of the specimen is connected to a steel ele-
ment with equivalent stiffness, to accommodate the load cells and
pin connection at the bottom of this column.

The maximum load carrying capacity of 43.2 and 39.5 kN was
registered for JPA3 and JPB, respectively, at the drift levels of
2.7% and 2.3%, correspondingly.

As shown in Fig. 4, in both specimens the extents of the dam-
ages included concrete crushing and spalling at the intersections
of the beams and the columns, and sever sliding of longitudinal
reinforcement due to significant bond deterioration. Flexural
cracks on the right beam of both specimens were localized at the
beam-joint interface. The main crack at the right beam of JPA3
and JPB specimens is at a position of 120 and 170 mm far from
beam-joint interface, respectively. There were minor flexural
cracks at the column-joint interfaces of JPB. Specimen JPA3 also
has experienced severe damages concentrated in the joint region,
where two wide diagonal cracks have formed and concrete cover
has spalled. Additional information about experimental program

"y
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-
Ju |
= |

M-\ de
~— [ 1 1L 0 (-) € (+)
i =] 8 = o
g | s 5 é[ ] o
S &8 ]
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= - .
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o o o 5 5 o e
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- =
Load cells
=
il
2000 mm 2000 mm

Fig. 3. Test setup adopted for the horizontally placed specimens [20].

and test results of the virgin specimens can be found elsewhere
[20].

2.2. Retrofitting strategy

According to the adopted retrofitting strategy, the concrete
cover at critical regions of the damaged beam-column joints is
replaced with a thin layer of a casted-in-place SHCC. Afterward,
this layer of the SHCC was reinforced with CFRP laminates bonded
to the saw cut grooves on that according to the NSM technique.
Chemical anchors were used to improve inter-laminar shear stress
transference between the SHCC and the concrete substrate. The
rheology of the SHCC material, used in this study, is tailored to pro-
duce a highly fluid and self-compacting fresh state behavior so that
this composite can easily flow and fill narrow spaces between the
formworks and the existing concrete (gaps of less than 25 mm).

To the retrofitted JPA3 and JPB specimens, the nomination of
the JPA3-R and JPB-R was attributed, respectively. As mentioned
before, the adopted retrofitting schemes for the specimens differed
according to the number of faces of their elements which was ret-
rofitted. While in JPA3-R only the front and rear faces of beams,
columns and joint were retrofitted, in JPB-R all the external faces
of the mentioned elements were jacketed.

The retrofitting process was applied with the specimens posi-
tioned horizontally and in two steps: (i) before and (ii) after turn-
ing the specimens. Following the details of each step of the
retrofitting strategy are described.

2.2.1. Concrete cover removal and replacement

Details of the retrofitting schemes are presented in Fig. 5. The
retrofitting length for both beams and columns was taken as twice
of the section depth of the corresponding element. Therefore, using
a jackhammer concrete cover was removed in the joint region and
also in all lateral faces of the beams and columns of both speci-
mens for a length of 800 and 600 mm, respectively. The concrete
cover was initially removed up to a depth to expose the longitudi-
nal reinforcements. Afterward, in an effort of increasing the inter-
face area between casted-in-place materials and existing steel bars,
the removal of the concrete cover continued up to attain approxi-
mately half of the diameter of the longitudinal bars. To seal the
existing cracks, boreholes were drilled through the cracked sec-
tions. After cleaning the holes using compressed air, small diame-
ter pipes were placed inside them, then the exposed crack
development at the concrete substrate was sealed and epoxy resin
SikaDur-52 was injected. After turning the specimen, the injection
was repeated to assure that the cracked section was sealed as
much as possible.

Wooden formworks with interior varnished faces were installed
to cast the cement based materials. The lateral faces of columns
and the top and bottom faces of the beams of JPA3 were casted
using a mortar that was then cured for 7 days (see Fig. 1 for the
nomination of the faces of the elements of the beam-column

(a)

(b)

Fig. 4. The extent of damages before retrofitting (a) JPA3 and (b) JPB.
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Fig. 5. Details of the schemes used for the retrofitting of the damaged specimens (dimensions in mm).

joints). After this period of curing, the top edges of the hardened
mortar were roughened and fresh SHCC was placed.

For the case of JPB, a continuous placing of SHCC starting from
lateral faces of the columns and the top and bottom faces of the
beams, and then moving to the front face of the specimen was
followed.

Considering the variation in the thickness of the existing con-
crete cover, between 16 and 20 mm, and a minimum of 20 mm

thickness required to accommodate two layers of CFRP laminates
in the SHCC layer, a 5 mm higher finishing level for the SHCC
was adopted, as measured from the level of the existing concrete
cover at the extremities of the retrofitted regions.

The self-compacting character of the SHCC and its high fluidity
eliminated the need to any external vibration. Only the exterior
face of the fresh SHCC was levelled by using a thin long metal
bar, with a rectangular cross section, for the finishing purpose.

Compos Struct (2014), http://dx.doi.org/10.1016/j.compstruct.2014.12.012
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It should be noted that before casting the cement based materi-
als, the concrete substrate was saturated with water in order to
assure a better interface bond and a lower risk of developing
shrinkage cracks.

One day after casting the SHCC the formworks were removed. A
wet curing procedure was followed for at least 7 days as it was
reported the most appropriate curing for SHCC [22]. After at least
17 days of casting the SHCC, grooves were executed on the SHCC
according to the configurations showed in Fig. 5. These grooves
had 5 mm of width, and 10 or 20 mm of depth, depending on the
level adopted for the installation of the CFRP laminates. Before
inserting the CFRP laminates, the grooves were cleaned by using
compressed air, and then filled with epoxy resin S&P 220 as the
bonding agent. Afterward, CFRP laminates that were previously
cleaned with acetone, were placed inside the grooves.

After turning the specimens the same retrofitting process was
applied to the rear face, namely: removal of the concrete cover,
sealing of the cracks, roughening the top edges of newly casted
materials, placing the fresh SHCC, curing of SHCC, cutting the
grooves and inserting CFRP laminates.

For the case of JPB the grooves were also cut on the SHCC casted
on the lateral faces of columns and the top and bottom faces of the
beams, and pair of CFRP laminates was bonded into these grooves
according to Fig. 5. Therefore, for the case of JPA3-R, the longitudi-
nal reinforcement comprised pairs of continuous laminates on
each of the front and rear faces of the beams and columns (see
Fig. 5), while JPB had a similar CFRP strengthening but also with
extra pairs of CFRP laminates bonded to the each of the lateral
faces of its columns, and the top and bottom faces of its beams.
CFRP laminates bonded to the lateral faces of the beams and col-
umns were continued beyond the interface of these elements with
the joint region, where the occurrence of the largest bending
moments is expected (moment critical sections). For this purpose,
an inclined drilling was used to execute the holes. After placing the
CFRP laminates, the epoxy resin was injected. The bond length of
100 mm was adopted for these CFRP laminates after moment crit-
ical section (anchorage length), since a minimum of 90 mm is char-
acterized as the required bonding length to fully mobilize potential
tensile strength of this type of CFRP laminates [23].

The adopted spacing for transverse CFRP laminates in both
JPA3-R and JPB-R was 100 mm (Fig. 5). In an attempt to increase
the shear resistance of the joint region, a pair of CFRP laminates
with an X shape configuration was applied on each front and rear
face of the joint region of both specimens.

2.2.2. Installing chemical anchors

Chemical anchors were installed before and after turning the
specimens, when the SHCC was cured at least 20 days. These
10 mm diameter anchors (HIT-V-8.8 M10X190) were mounted
inside the holes perforated on the beams, columns and on the joint
region, at the positions represented in Fig. 5. Before mounting the
anchors, the holes were partially filled with Hilti Hit-HY 200-A,

(b)

Fig. 6. View of the retrofitted specimens (a) JPA3-R and (b) JPB-R.

which is a fast curing injectable bonding agent. An embedded
length of 145 mm was assured for the anchors, measured from
the finished surface of SHCC. A torque of 30 N - m was applied to
fasten the nuts and partially confine the concrete substrate. Fig. 6
shows a view of the specimens after have been repaired.

2.3. Material properties of retrofitting system

The self-compacting SHCC was composed of a cementitious
mortar reinforced with 2% of volume short discrete PVA fibers.
The PVA fiber used in this study had a length of 8 mm and was pro-
duced by Kuraray Company with the designation of RECs 15 x 8.
The average tensile stress at crack initiation and the average tensile
strength of the SHCC was 2.43 and 3.35 MPa, respectively, with a
minimum tensile strain capacity of 1.3%. More details on mixture
ingredients, mixing process and test setup of the SHCC can be
found in [10,13,22]. From uniaxial tensile tests carried out accord-
ing to the recommendations of SO 527-2:1996 [24] on seven days
cured of six dumbbell-shaped S&P 220 epoxy resin, an average ten-
sile strength of 18 MPa and average modulus of elasticity of
6.8 GPa were obtained. Tensile properties of CFRP laminate (S&P
laminate CFK 150/2000) with a cross section of 1.4 x 10 mm? were
characterized following the procedure proposed in ISO 527-5:2009
[25]. From the tests executed in six coupons, average values of
2689 MPa, 1.6% and 165 GPa were obtained for the tensile
strength, strain at CFRP rupture and modulus of elasticity,
respectively.

2.4. Test setup and loading pattern

The test setup, lateral load history and gravity load used for
testing virgin specimens were adopted for testing the retrofitted
specimens.

3. Results and discussion
3.1. Hysteresis response

Fig. 7 shows the hysteretic responses of both virgin and retrofit-
ted specimens in terms of lateral load versus lateral displacement
(and drift) registered at the top of the superior column. Both retro-
fitting techniques resulted in stable loops with smooth decay of
load carrying capacity in the post-peak stage of the structural
response. The values registered for the maximum lateral load (Fp)
and its corresponding drifts (dp) for specimens in the retrofitted
and virgin states are listed in Table 1. The increase level in terms
of lateral peak load after retrofitting is also indicated in this table.
According to the obtained results, the retrofitting technique
adopted for JPA3-R recovered up to 93% of the maximum lateral
load carried out by this specimen in its virgin state, calculated as
the average load in the positive and negative directions. Applying
the retrofitting technique to all lateral faces of the framed
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Fig. 7. Hysteretic responses of the specimens in the strengthened and virgin states.

Table 1

Maximum lateral load capacity and the corresponding drifts of the specimens in the repaired and virgin states.

Specimen Negative direction Positive direction Negative direction Positive direction
F, (kN) d, (%) F;; (kN) d;’ (%) Increase in peak load

JPA3-R —38.0 -1.65 +40.9 +1.65 -9.3% —5.5%

JPA3 -41.9 -2.31 +43.3 +2.60

JPB-R -52.7 -1.62 +57.14 +2.33 +48.9% +44.5%

JPB -354 -1.99 +39.55 +2.24

elements, as was done in JPB-R, resulted in a significant increase in
terms of lateral load carrying capacity. This increase was +48.9%
and +44.5% for negative and positive directions, respectively, when
compared to the corresponding values recorded in the virgin state
of this specimen (JPB).

For both strengthening techniques the average value of the drift
corresponding to the maximum lateral load, in negative and posi-
tive direction, has decreased. This can be attributed to a lower
shear deformation at the joint region due to the contribution of
the strengthening scheme in confining the concrete of the joint
core, and also in increasing the shear stiffness of the joint panel,
up to the peak load.

For each specimen, the residual lateral load carrying capacity at
4% drift (F4%) was compared to the registered peak of the lateral
load (F,) according to o = [1 — (Fay /F;)]%. The degradation of the
peak load («) was calculated for both virgin (o) and retrofitted
specimens (og). The amount of this degradation was 21.85% and
25.6% for JPA3-R and JPB-R, respectively, which are the average val-
ues for negative and positive loading directions. While at the same
drift level, JPA3-R had almost the same peak load degradation as
JPA3 (22.35%), corresponding value for JPB-R was much higher
than JPB (3.7%). Larger degradation in the peak load of JPB-R, as
compared to JPB, is associated to different damage evolution and
failure modes of these specimens. In fact, in comparison with
JPB, JPB-R attained higher level of lateral load; therefore, higher
shear stresses were applied to its joint region at the ultimate state.
This resulted in an eventual damage concentration in the joint
region. In the other hand, the lateral load carrying capacity of JPB
was limited by the premature flexural capacity of the beams,
which was caused by the sliding of their longitudinal rebars that
is expected to have smoother load degradation.

3.2. Damage evolution and failure modes

Fig. 8 shows the pattern of the developed micro cracks, and
major damages registered at the end of the test on the front faces
of both specimens. The surface of the SHCC was painted with a
transparent concrete varnish before testing the specimens. At the
end of the test this surface was sprayed by a penetrating liquid
to reveal micro cracks difficult to detect at necked eyes. The sche-
matic representation of these damages is showed at the left side of
the corresponding photo for the purpose of better assessment of
the developed damage. The damage evolution is described in the
following paragraphs.

JPA3-R: The first series of cracks has initiated at the cycles cor-
responding to 0.33% of drift. These cracks were formed at the top
face of the left and the right beams at a distance of 100 mm from
the lateral faces of the column. At cycles corresponding to 0.5% of
drift, cracks at the bottom faces of both left and right beams, sym-
metric to the cracks on top face, were observed. Some relative slid-
ing between retrofitting layer and concrete substrate was observed
when cycles of 0.83% drift were reached.

The first series of the inclined cracks at the junction of the
beams and columns was observed in all four corners at the cycles
corresponding to 1% of drift. Further increase in the lateral dis-
placement at the top of the superior column resulted in the pro-
gress of these cracks into the interface of the epoxy adhesive/
SHCC of the bonded X shape CFRP system at the joint region. Thus,
for any larger displacement demand, damages were localized at
the joint region in the form of progressive separation between
the epoxy adhesive and the SHCC. Finally, at drift cycles of 1.67%,
due to the load reversal effects, the debonding was almost pro-
gressed along the entire length of the elements of the X shape CFRP

Compos Struct (2014), http://dx.doi.org/10.1016/j.compstruct.2014.12.012
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(b) JPB-R

Fig. 8. Damage propagation and concentration at the failure of (a) JPA3-R and (b) JPB-R.

configuration. As a consequence of this debonding, a total loss in
contribution of these inclined CFRP laminates as a part of
shear resisting mechanism of the joint region was occurred. Thus,
shear failure of the joint region was the governing failure mode of
JPA3-R.

JPB-R: The onset of the first series of cracks was at the set of
cycles corresponding to 0.5% of drift. These cracks were formed
at the top and bottom faces of the left and right beams in a distance
of approximately 90 mm far from lateral faces of the column. The
inclined cracks at the junction of the beams and columns were ini-
tially formed at cycles corresponding to a drift level of 0.83%. Sim-
ilar to the case of JPA3-R, these set of cracks resulted in a
progressive debonding along the interface of epoxy adhesive/SHCC
of the X-shaped CFRP system at the joint region. At drift cycles of
1.67% this debonding was already progressed along the entire
length of the inclined CFRP laminates. At the same cycles, the lon-
gitudinal steel bars at the top face of the right beam started to have
significant sliding, so that the concrete cover perpendicular to the
bended end of these bars was cracked. As it will be discussed in the
next section, sliding of these rebars resulted in degradation of flex-
ural capacity of the beams when the top face of them was in ten-
sion. The non-symmetrical response of JPB-R, in negative and
positive loading directions, can be caused by this phenomenon.
At the next sets of the cycles, corresponding to 2% of drift, the
already cracked concrete cover over the bended region of these
bars was spalled off. Afterward, any further increase in drift
demand just followed by widening of the existing X-shaped cracks
at the joint region. Therefore, the shear failure at the panel of the
joint resulted in degradation of lateral load resistance of JPB-R in
both negative and positive loading directions.

3.3. Flexural strength of beams
Eq. (1) represents the static equilibrium between the maximum

developed moments at the left and the right beams with respect to
the lateral force at the top of the column.

VC:M 1)
L

where Vc is the shear force in the column, M and M; are the values
of the internal bending moment developed at the beam-column
interfaces of the right and the left beam, respectively. The sign of
the bending moment is assumed positive when the bottom face of
the beam is in tension and negative when this face is in compres-
sion. In Eq. (1), L¢ is the total length of the column between its lat-
eral supports (1.5 + 1.5 m). According to Eq. (1), any reduction in the
flexural capacity of the left or right beams may result in the loss of
lateral capacity of the beam-column assembly, unless this reduc-
tion could be compensated through the moment redistribution to
other parts of the structure.

The maximum moments of each of the left and right beams ver-
sus the drift demands were calculated, at a distance 50 mm far
from beam-column interfaces, by considering the force values reg-
istered in the load cells and equilibrium conditions, and the
obtained results are illustrated in Fig. 9. Note that in this figure,
for the convenience of understanding, the multiplied value of M;
by —1 is presented. Thus, the beams’ bending moments corre-
sponding to the negative and the positive loading directions are
presented in the first and the third quadrants of Cartesian system,
respectively.

According to Fig. 9a, the maximum bending moments devel-
oped in the left (M;) and the right (M) beams of JPA3-R, during
the negative displacement, were +65.94 and —39.6 kN - m both at
a drift level of —1.64%. During the positive displacement, the left
and the right beams reached their maximum bending moment,

43,04 and +71.17 kN - m, at drift levels of +1.65% and +2.65%,
respectively.

As depicted in Fig. 9b, the values of maximum bending
moments for JPB-R in the left and the right beams, during the neg-
ative displacement were +108.81 kN - m at a drift level of —2.62%
and —57.16 kN - m at —1.62% of drift, respectively. The developed
maximum bending moment for the positive displacement, in the
left and the right beams were —55.64 and +107.46 kN - m at drift
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Fig. 9. Development of the resisting bending moment at the interfaces of the beams with columns (a) JPA3-R and (b) JPB-R.

Maximum bending moments developed in the beams of the repaired and the virgin specimens.

Specimen Negative direction Positive direction Negative direction Positive direction
Absolute values Variation
M; (kN -m) My (kN -m) M; (kN -m) M;; (kN - m) M} My M; M;
JPA3-R +65.94 -39.6 —43.04 +71.17 -13.07% -1.39% +8.03% —10.98%
(-1.64) (-1.64) (+1.65) (+2.65)
JPA3 +75.85 —40.16 -39.84 +79.95
(~2.32) (~2.32) (+2.59) (+2.59)
JPB-R +108.81 -57.16 —55.64 +107.46 56.16% 79.35% 62.22% 41.81%
(—2.62) (-1.62) (+1.66) (+2.33)
JPB +69.68 -31.87 -34.30 +75.78
(—4.0) (-1.99) (+2.58) (+2.44)

* Values in parentheses indicate the corresponding drift in percentage at maximum bending moment.

levels of +1.66% and +2.33%, respectively. A sudden reduction
observed in bending moment capacity of the right beam during
negative loading at drift cycle of 1.67% (Fig. 9b) was caused by a
significant sliding of longitudinal bars at the top face of the right
beam, as discussed in the previous section.

The registered maximum bending moments for these speci-
mens during both the positive and the negative loading
displacements are also indicated in Table 2. In this table
M;, M;, M§ and My indicate the positive and negative bending
moments in the left or right beams. Corresponding values for their
virgin state and the percentage of the increase in their flexural
capacities achieved after the retrofitting are also reported in this
table. According to this data, after retrofitting, in average and for
the positive bending moments, up to 88% of flexural capacity of
the beams of JPA3 was recovered. For the negative bending
moments, the flexural capacities of the beams in virgin state were
fairly restored. The retrofitting system adopted for JPB, however,
provided a much larger increase in resisting bending moments of
the beams. Based on this retrofitting technique an average increase
of 49% and 71% for the positive and negative moments were
obtained, respectively.

It should be noted that the values registered for flexural resis-
tance of both retrofitted specimens do not necessarily represent
the flexural capacity of the beams, since the degradation in
beam-column joint shear capacity was the prevailing failure
modes of both specimens.

3.4. Dissipated energy

Energy dissipation capacity of a RC element is the consequence
of inelastic deformation and damage propagation. Opening and

closing of cracks contribute significantly to the energy dissipation
capacity, as well. Therefore, for SHCC material with the potential
of formation multiple diffused micro cracks, a high level of energy
dissipation under cyclic loadings is expected. The amount of dissi-
pated energy per cycle, E;, can be calculated from the enclosed area
in each loading cycle, as presented by the hysteresis response of
lateral load versus lateral displacement. Summation of the dissi-
pated energy with respect to the increment in lateral drift results
in cumulative dissipated energy up to each given level of interstory
drift. The evolution of the dissipated energy for retrofitted and cor-
responding specimen in virgin state is presented in Fig. 10. During
all loading steps, both retrofitting solutions have provided a cumu-
lative dissipated energy higher than the one registered in their cor-
responding virgin state. In this respect, the retrofitting solution
applied in JPB specimen was more effective. In fact, at 4% of drift
the cumulative dissipated energy of JPA3-R was 44.4 kN-m, which
was only 5% larger than the corresponding value in JPA3, while the
JPB-R reached 53.4 KN-m indicating an increase of 95% comparing
to value calculated for JPB.

3.5. Secant stiffness

Degradation in the stiffness of a beam-column joint can pro-
gressively occurs when it is subjected to reversal cyclic loading.
To assess the stiffness degradation, the secant stiffness, K;, is esti-
mated during the drift evolution, and its relationship is repre-
sented in Fig. 11, for both the specimen in the retrofitted and
virgin states. The secant stiffness is taken as the slope of the
straight line which connects the peak loads at the positive and
the negative displacements of the load versus displacement
envelop at the first cycle of each level of imposed drift. According
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Fig. 10. Evolution of the dissipated energy during the cyclic loading (a) JPA3-R and JPA3, and (b) JPB-R and JPB.
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Fig. 11. Secant stiffness evolution in (a) JPA3-R and JPA3, and (b) JPB-R and JPB.

to this figure, the retrofitting technique adopted for JPA3-R has just
restored 82% of the initial secant stiffness of this specimen in its
virgin state, while the technique applied on the JPB-R has almost
restored the initial secant stiffness registered in JPB (its virgin
state). This can be explained by a less effective bond between the
casted mortar and the old concrete of JPA3-R.

Considering the degradation of the secant stiffness at the end of
each sets of loading cycles, JPA3-R had greater secant stiffness than
JPA3 between loading cycles corresponds to 0.13% and 1.67%. After
1.67% the secant stiffness of the retrofitted and virgin state was
fairly similar. For the case of JPB-R, after 0.13% of drift, the adopted
retrofitting scheme resulted in a slower degradation in secant stiff-
ness than its virgin state.

3.6. Displacement ductility

Ductility is the potential of a lateral load resisting system to
undergo large inelastic deformation during its post-peak regime
with only slight reduction in its ultimate lateral load carrying
capacity. The ductility is generally quantified as a normalized dis-
placement or a rotation index depending if the ductility is aimed to
be assessed in terms of global or local behavior, respectively. For
the case of the present study, the displacement ductility index
(ua) is calculated as the ratio of the ultimate lateral displacement
(dy) and the displacement at the yield point (d,), Fig. 12. The

dc
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v\ o
1000+ v T
v 0o
\'\V\v\v\gkng;g
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Fig. 12. Schematic representation of the definition of the equivalent bilinear curve
for the evaluation of the displacement ductility index.

ultimate point can be defined as the displacement corresponding
to a load level in the post-peak response of the specimen that is
a fraction of the peak load (Fp). According to the available litera-
ture, this ratio can be taken between 10% and 20% [26-28]. The
yield displacement can be obtained from a bi-linear curve
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Fig. 13. Envelope of the load versus drift for both the repaired and virgin specimens along with the equivalent elastic—perfectly plastic curves (a) JPA3-R and JPA3, and (b) JPB-
R and JPB.
Table 3
Data for the evaluation of displacement ductility factor.
Specimen Negative direction Positive direction Ha TN
- - (“7)
d, (mm) d, (mm) d, (mm) d) (mm)
JPA3-R —22.5 (-0.75) ~79.2 (—2.64) +16.5 (+0.55) +102.9 (+3.43) 4.88 +56%
JPA3 —345(-1.15) ~110.5 (~3.68) +34.5 (+1.15) +105.2 (+3.51) 3.13
JPB-R —25.5(-0.85) —933(-3.11) +31.5 (+1.05) +97.2 (+3.24) 337 +12%
1PB —345 (~1.15) —87.6 (—2.92) +31.5 (+1.05) +108.9 (+3.63) 3.00

* Values in parentheses indicate the corresponding drift in percentage at maximum bending moment.

assuming equivalent elastic-perfectly plastic response. To estimate
this bi-linear curve, two conditions should be fulfilled: (i) the area
under this curve should be equal to the one of the envelope of load
versus lateral displacement, and (ii) the deviation between these
two curves, measured based on the absolute sum of the areas
enclosed between these curves, should be the minimum (see
Fig. 12). The displacement ductility index is then calculated as
the ratio between the ultimate and the yield displacements. In this
context it was assumed for the ultimate displacement the one cor-
responding to 10% loss of the peak load (0.9F,). The envelope of the
load versus drift, and also the equivalent elastic-perfectly plastic
curves estimated for both the retrofitted and virgin specimens
are presented in Fig. 13. Table 3 also indicates the yield and the
ultimate displacements obtained for the calculation of the dis-
placement ductility index for the positive and negative loading,
where 1 and pf are the ductility for the specimen in the virgin
and retrofitted state, respectively. The reported ductility index is
calculated as the average ductility using the corresponding values
of displacement ductility in both positive and negative displace-
ments. It is verified that, for both retrofitted specimens the average
of the yield displacements, in negative and positive directions, has
decreased when compared to the average value registered for their
corresponding specimens in the virgin state. The reduction of the
yield displacement is a consequence of lower stiffness degradation
assured by the retrofitting system, mainly during the cycles up to
1.15% of drift. According to the results included in Table 3, and
comparing to the displacement ductility registered in the speci-
mens in its virgin state, the retrofitting strategy has assured an
increase of 56% and 12% in displacement ductility of JPA3-R and
JPB-R, respectively. The higher increase in displacement ductility
of JPA3-R can be attributed to the larger sliding between the retro-
fitting scheme and the concrete substrate, and also due to the exis-
tence of larger damages before retrofitting of this specimen.

4. Conclusions

The effectiveness of retrofitting methodologies by jacketing the
critical regions of two full-scale severely damaged reinforced con-
crete (RC) interior beam-column joints was experimentally inves-
tigated. Cast-in-place strain hardening cement composites (SHCC)
reinforced with carbon fiber reinforced polymer (CFRP) laminates
according to the near surface mounted (NSM) technique forms
the main concept of the adopted retrofitting strategy. Two varia-
tions of this retrofitting technique were applied, where the main
difference is restricted to the number of the retrofitted sides of
the sections of the elements (2 sides in the JPA3-R and 4 sides in
JPB-R specimens). Chemical anchors were used to improve shear
stress transference between retrofitting scheme and the existing
concrete substrate.

The developed SHCC was able to easily flow and fill the rela-
tively small gaps between formworks and the substrate without
the need of any vibration, which is an important requisite for a cast
in place retrofitting intervention. Based on the results obtained
from experimental tests where cyclic lateral loading under a con-
stant column axial force was applied, the following conclusions
can be pointed out:

1. Two-sided retrofitting system applied to the severely damaged
JPA3 specimen was capable of restoring the lateral load carrying
capacity and energy dissipation performance, and increase the
ductility registered in the virgin state of this specimen. The ini-
tial secant stiffness of this specimen in its virgin state was, how-
ever, not totally recovered (82%).

2. The four-sided retrofitting system applied in the severely dam-
aged JPB specimen assured a significant increase in terms of lat-
eral load capacity and energy dissipation when the
corresponding values registered in this specimen in its virgin
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state are considered for comparison purposes. A higher increase
of the flexural resistance for the beams was also obtained due to
the presence of CFRP laminates in the top and bottom faces of
the beams, which has contributed to decrease the sliding of
the flexural steel reinforcement of these beams. This technique
has also decreased the rate of the stiffness degradation during
the cyclic loading process, and assured a higher increase of duc-
tility than the two-sided retrofitting configuration. In compari-
son with the substantial enhancement attained for these
mentioned seismic characters, the increase in displacement
ductility was only 12%.

3. Although the governing failure mode for both specimens was
joint shear capacity deterioration, no brittle response was
observed.

4. Considering that the progress of the inclined cracks in the joint
region resulted in debonding failure between the adhesive of
the X-shaped CFRP laminates and the SHCC, effectiveness of this
configuration of CFRP laminates in the joint region is under
question. Therefore, bonding a horizontal or vertical arrange-
ment of transverse CFRP laminates at this region is
recommended.

5. A high capacity of stress redistribution in SHCC resulted in mul-
tiple crack formation around anchored regions, but no bearing
failure was observed.

6. The final geometry of the retrofitted specimens was almost not
affected by the proposed retrofitting interventions, but the seis-
mic performance of these specimens was significantly
improved.
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