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Introduction

The high frequency scattering coefficients for
the soft and hard circular discs have been calculated

by Jones (1), (2) using an integral equation approach.

The author used Jones' method for the soft disc, with
some minor changes, to find the far field off the axis

of symmetry for a normally incident plane wave (7)and
extended the method to calculate the scattering coefficient
for the plane wave at oblique incident (8§) In this work

the author demonstrated the fundamental nature of certain
functions which occurred naturally after a contour
deformation had produced extensive cancellations.

Subsequently, Williams (9)has shown that these functions

may he obtained more directly.

The purpose of the present paper is to calculate in
detail the leading terms in a high frequency asymptotic
expansion of the far scattered field off the axis of
symmetry due to a normally incident plane harmonic scalar
wave impinging on a hard circular disc. To do this use
is made of techniques developed for work on the soft disc.




1. The Integral Equation

If the problem is normalised and represented in a
cylindrical polar co-ordinate system with the hard disc

occupying the region 0 < r < 1,z = 0 then Jones Q) has

shown that f(w), the discontinuity in the field across the

disc, satisfies the integral equation
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The parameter a is the product of the wave number of the
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incident field and the disc radius, and is large. The
axisymmetric incident field is represented by u.(r,z) and is
assumed to be harmonic and of small amplitude.Time dependence

¢ is understood and omitted throughout.

A new unknown is defined by
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Using the edge condition f(1) = 0 and inverting , Jones has

shown that
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In considering the analogous equation for the soft

disc the author redefined the unknown function and after some
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contour deformations produced a more amenable known
function depending upon a fundamental function. Williams (?)
subsequently obtained this fundamental function by a more
direct method. In either case the required field could be
expressed using Jones' iteration scheme.

A similar analysis in the present case shows that
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The function Mz(u,w) is defined by (Jones(2))
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Using (4) and (6) f(w) can be written
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The function fundamental to the problem is vy, (W)
which depends upon the particular incident field being
considered. Once the incidental field has been specified

then y, (w) is determined by the methods of(7)or more
directly by William's method (9 ) . In either case if the
incident field is a plane wave from the negative z direction

¥ (w)=-2. (12)



2. The Far Scattered Field

The scattered field is given by
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where S is the unit circle, centre the origin, in the

plane z= 0 andl}lis a point on S. For pointsR far from

the disc it is more convenient to use spherical polar co-ordinates
(R.,0,¢). Since the incident field is assumed axisymmetric

the far field will be independent of ¢. The point on the discR

is expressed in co-ordinates (r1,91,0;,) Where r;=w, 0 < w < 1
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and Ot 25. In these co-ordinates
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The far scattered field may therefore he written

ioc wsin 8cos (¢ —¢)

_ . 1 2
U R)~ ﬁ%m cos e(j)wf(w) (j) ¢ Udg,dw +0[RI—2J
1 e™ L « R 1
~ TTL «ccos OF(0) + O[R_zj (14)
where
1
F(O( = [wfiw) [(oc w sin 0) dw. (15)
0 0

Using (10) and (11) in this last expression and an analysis



similar to that used in (7) shows that
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Call the first pair of terms the zero order contribution

to F(0) and denote them by F ) (0). Similarly call each subsequent
pair of terms for each k the k"™ order contribution and denote them
by F ®(0).

Equations (14) and (16) determine the far scattered field

though detailed evaluation of the integrals is required.



3. An Asymptotic Form of lPk(w)

Equation (16) contains the Functions ¢ (w) and ‘Pk 1(—w)
k +

Using (7) ‘Pk 1(—w) can be expressed as an integral involving
+
lPk(w). Hence in the cases where lPk(w) occurs |w| > 1

and so an asymptotic form can be used.

In order to develop a suitable asymptotic expansion
equations (8) and (9) are employed. Using the fact that

M, (v,w) has poles atv=1w we have
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Deforming the contour onto the negative imaginary axis and
changing v to -iv gives
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The integrand is expanded for small v assuming |w| > 1

and use is made of the result
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4. The Zero Order Contribution to F(0)

The zero order contribution is given from equation (16) by
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For the plane wave at normal incidence
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and so
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The integrals are similar to those encounted when considering

the soft disc problem and are evaluated in a similar way.

Again the first integral cancels completely with part of the

second integral. Finally
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5. The k™  Order Contribution to

from equation (16) this contribution is given by
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The asumptotic form Of‘Pk(w) 'developed earlier may be

employed in the first integral. Evaluation of the resulting
integrals then yields
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Asymptotic evaluation of the second integral is more involved
and requires some labour. The result is
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When equations (19) and (20) are combined to give
F ® (0) the first cancels completely with part of the second.

The resulting asymptotic development is given by
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6. Asymptotic Forms of the

In order to find explicit forms of the various
contributions to F (0) using the results of the previous section

it is necessary to obtain expressions for the v, involved

for each k, Such expressions may be found from the iteration

scheme (7) and the particular form of‘PO(w) given in (12).

Since
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In order to calculate the asymptotic forms of vy, , yj
etc. amore general formulation is required. In the integral

foryy,(w) , (7) and above, the asymptotic form of v (w)

from (17) may be employed. Evaluation of the integrals then

11.



12.

shows that
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These are sufficient to find the first to fourth order

contributions to F(0).
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7. The First to Fourth Order Contributions to F(0).

Equation (21) gives the general k™ order contribution
to F(0) in terms of y; . Using the results of the previous

section explicit forms of the first to fourth order contri-

butions can be found.
These are
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8. An Explicit Form of the Far Scattered Field.
It has been shown in equation (14) that the far

scattered field may be written in the form

1 e—iocR

. |
US(IE) ~ ? Tl oC COS OF(O)'FO(?)

where

F@)= 3 FO @)

Equations (18), (24), (25) and (26) show that

F(0) = F 0)+ F (0) + F (0) + F ®(0) + F*(0) + O (oc-4)

An explicit form of the far scattered field is therefore
available upto and including the term of O(a ). As in
the case of the soft disc this expression for the

scattered field 1is subject to the restrictions that R »1

and ©O iOor%- This represents the far field off the

axis of symmetry and away from the plane of the disc.

The leading term of the zero and of the first order

contributions have been found using Keller's Ray Theory

(3-6) The other terms found in this work are believed

to be new.
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