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Abstract 

The enhancement of double strengthening by nanoparticles and nanoscale precipitates in die-

cast Al–Si–Mg–Mn–TiB2 composites has be achieved by introducing TiB2 nanoparticles into 

Al-*Si-*Mg alloy fabricated by  super vacuum assisted high pressure die casting process. The 

composite with 3.5wt.% TiB2 nanoparticles could deliver the hardness of 1.5 GPa, the yield 

strength of 351 MPa and ultimate tensile strength of 410 MPa in association with an 

industrially applicable ductility of 5.2 %, after solution and peak ageing heat treatment. The 

TiB2 nanoparticles distributed at the grain boundaries rather than in the α–Al matrix of the 

composites in as-cast state. After solution and peak ageing, the TiB2 nanoparticles were 

enrolled into the α–Al matrix through the combining and coarsening of the α–Al phase during 

heat treatment, and nanoscale β′′ precipitates formed in the α–Al matrix. Both the TiB2 

nanoparticles and the nanoscale β′′ precipitates had highly coherent interfaces with the α–Al 

matrix, i.e., Al(11-1)//TiB2(0001), Al[011]//TiB2[11-20], Al[320]//β''(a-axis), Al[1-30]//β''(c-

axis) and Al(020)//β''(b-axis), confirming strong interfacial strengthening. The double 

strengthening of the TiB2 nanoparticles and the nanoscale β′′ precipitates dispersing in the α–

Al matrix resulted in the milestone high strength of the composites. 
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1. Introduction 

The application of thin-wall component in transport manufacturing has been recognised 

as an effective method to reduce the structure weight and the green gas emissions resulted 

from the reducing burn of fuels. To achieve the manufacturing of thin-wall components, high 

pressure die casting (HPDC) has been widely used in producing aluminium and magnesium 

alloy components because of the advantages of high dimensional accuracy, high production 

efficiency, and considerable economic benefits [3–6]. In recent years, the world-wide 

interesting requires the die-cast aluminium alloys to provide high strength and high ductility  

in order to achieve thin wall components.  

The currently available die-cast aluminium alloys can be basically divided into two 

groups, one can provide good yield strengths, and the other can provide excellent ductility. 

The alloys based on Al-Si-Cu and Al-Si-Mg usually offer a yield strength of ~130–170 MPa 

in association with a ductility of ~4–5 % under as-cast condition [9,10]. After heat treatment, 

the yield can be increased to **. The alloys based on the Al-Si-Mg and Al-Mg-Si can provide 

an elongation greater than 15%, which can still be adjusted through heat treatment. From 

these, it is clear that the development of aluminium alloys needs to be able to either increase 

the yield strength or increase the elongation.  

In order to increase the yield strength, the micro alloying method has been applied, but 

the achievable yield strengths are still in the relatively low level of 180–190 MPa [11–14]. 

Meanwhile, the particle reinforcement method was proved to be effective for strengthening 

cast aluminium alloys [15,16]. For cast aluminium alloys, ceramic particles such as TiB2, 

Al2O3, Si3N4, B4C, TiC and SiC have been added as strengthening phases [17–22]. However, 

few literatures reported the particle reinforcement of the die-cast aluminium alloys under 

HPDC [23], partially because of the capability and castability of these materials. Among the 

available ceramic reinforcement particles for casting, TiB2 wets with molten aluminium, and 

can be in-situ synthesised in the molten aluminium with a size of nanoscale and applicable 

for HPDC [24]. So TiB2 nanoparticles can be chosen to reinforce the die-cast aluminium 

alloys. Moreover, the super vacuum assisted HPDC process developed recently can achieve a 

high vacuum of ~20 mbar [25], which is far below the vacuum level of ~50–100 mbar 

obtained by the conventional vacuum assisted HPDC process [26–29], and it can largely 

decrease the gas porosities in HPDC castings and enable the further strengthening of the die-

cast aluminium alloys through heat treatment. 



From the developed HPDC aluminium alloys, Al–Si–Mg alloys have been widely used 

for the manufacturing of high integrity castings with a combination of good castability, 

strength, ductility and corrosion resistance [30–32]. However, 310 MPa was nearly the upper 

limit of the yield strength of the Al–Si–Mg cast alloy system [33]. This is mainly because that 

the application of strengthening mechanisms in Al-Si-Ma alloys rely on sulition 

strengthening, precipitate strengthening, grain size strengthening and weak secondary phase 

strengthening. In order to increase the yield strength of die-cast aluminium alloys, it is 

essential to enhance the strengthening by an effect and innovate way that was not used 

before.  

        Therefore, in the present study, we aim employ a double strengthening mechanism to 

enhance the die cast materials to offer higher yield strength with a good elongation. TiB2 

nanoparticles were added into the Al–Si–Mg–Mn  alloy melt to introduce extra strengthening 

phase without significantly sacrificing the castability on top of the existing strengthening 

mechnisims in the alloy. BY doing this  the die-cast Al–Si–Mg–Mn–TiB2 composites can 

provide a yield strength above 350 MPa with the industrially applicable ductility of over 4 %. 

The processing characterisations is introduced for ***. The discussion focus on the double 

strengthening in the materials.  

2. Experimental 

2.1. Materials preparation 

The die-cast Al–Si–Mg–Mn–TiB2 composites reinforced by TiB2 nanoparticles, with the 

actual compositions (in wt.%) of Al–9Si–0.6Mg–0.6Mn–0.18Fe–0.12Ti–xTiB2 (x=0, 1.5, 

3.5), were melted in a clay-graphite crucible using the electric resistance furnace. The 

commercial purity pure ingot of Al was first melted in the crucible, then the pure ingot of Mg 

and the master alloys of Al–50 wt.% Si, Al–20 wt.% Mn, Al–45 wt.% Fe and Al–10 wt.% Ti 

were added into the molten Al to achieve the designed composition. After the TiB2 ceramic 

nanoparticles with the desired amounts were added into the melt through the addition of the 

Al–10 wt.% TiB2 master alloy. The details of the TiB2 nanoparticles in the Al–10 wt.% TiB2 

master alloy are presented in Section 3.1. During melting, the temperature of the furnace was 

controlled at 750 °C. After melting, the Al–10 wt.% Sr master alloy was added into the melts 

to achieve the desired Sr content of 200 ppm, for the modification of the morphology of the 

eutectic Si phase during solidification. Then the melts were degassed through injecting pure 

argon into the melts by using a rotary degassing impeller at a speed of 350 rpm for 5 min. 

After degassing, the melts were stirred mechanically for the homogenisation of the TiB2 



nanoparticles in the alloy melts, and the melts were ready for the super vacuum assisted 

HPDC subsequently. 

2.2. Two-stage super vacuum assisted HPDC 

Fig. 1a shows the two-stage super vacuum assisted HPDC process applied for the 

fabrication of the present die-cast Al–Si–Mg–Mn–TiB2 composites. Different from the 

generally used one-stage vacuum by evacuation only from the die cavity, here the two-stage 

vacuum was applied by evacuation from both the shot sleeve and the die cavity 

simultaneously, and the super vacuum of ~20 mbar was obtained in limited evacuation time, 

which was far below the commonly achieved vacuum of ~50–100 mbar by the one-stage 

evacuation process [26–29]. The details of the two-stage evacuation process were introduced 

in our latest report [25]. Eight ASTM B557 standard round tensile test bars with a gauge 

dimension of ϕ6.35 mm × 50 mm were casted in the die cavity under each HPDC shot, as 

shown in Fig. 1a. The HPDC experiments were conducted on a 4500 kN cold chamber HPDC 

machine. Fig. 1b presents one stage of the vacuum channel set at the shot sleeve, and Fig. 1c 

shows the other stage of the vacuum channel set at the top of the die cavity. The HPDC die 

was heated by the circulation of mineral oil, and the die temperature was controlled at ~95 

°C. The prepared alloy melts were loaded into the shot sleeve for HPDC, and the pouring 

temperature of the melts was controlled at 690 °C. The holding pressure during HPDC was 

controlled at 320 bar. 

 

Fig. 1. The set-up of die and vacuum for the two-stage super vacuum assisted high pressure die casting of 
the die-cast Al–Si–Mg–Mn–TiB2 composites. (a) Schematic showing the ASTM B557 standard round 
tensile test bars casted under super vacuum assisted high pressure die casting, (b) Vacuum channel 1 

evacuated from the shot sleeve, (c) Vacuum channel 2 evacuated from the die cavity. 

2.3. Heat treatment and tensile tests 



The as-cast tensile test bars fabricated by super vacuum assisted HPDC were subjected 

to T6 heat treatment, which included the solid solution treatment and the subsequent peak 

artificial ageing. Solution treatment was conducted at 540 °C for 30 min, followed by 

immediate water quenching. Ageing treatment was carried out at 170 °C for different time, 

followed by air cooling. Vickers hardness tests were conducted on a FM-800 tester with an 

applied load of 10 kg for 10 s, to determine the peak ageing time. The T6 heat-treated tensile 

test bars were pulled on an Instron 5500 machine at room temperature. The extensometer 

with a gauge length of 50 mm was applied for the monitoring of the strain during tensile tests. 

The ramp rate for extension was set as 1 mm/min. Each tensile data reported with standard 

deviation was based on the testing of at least twelve samples. 

2.4. Microstructure characterization 

The microstructure was examined using the Zeiss SUPRA 35VP scanning electron 

microscope (SEM) equipped with electron backscatter diffraction (EBSD), and the JEOL-

2100 transmission electron microscopy (TEM). The microstructure characterization of the 

samples was taken from the gauge length section of the tensile test bars. The samples for 

SEM morphology analysis were prepared following the standard grinding and polishing 

process, and then etching with the standard Keller's solution. The samples for EBSD analysis 

were prepared by vibration polishing at a frequency of 90 Hz for three hours after the 

standard grinding and polishing. The tensile fracture analysis was also performed via SEM. 

Thin specimens for TEM observation were prepared by ion beam polishing on a Gatan 

Precision Ion Polishing System (PIPS, Gatan model 691). A constant preparation temperature 

of -10 °C was maintained during the ion beam polishing. TEM operating at 200 kV was used 

for bright-field imaging, select area diffraction pattern (SADP) analysis and high-resolution 

transmission electron microscopy (HRTEM) imaging. 

3. Results & discussion  

3.1. Al–TiB2 master alloy 

        The Al–10wt.%TiB2 master alloy was synthesised through the in-situ reaction between 

the K2TiF6 and KBF4 salts in the molten Al at a high temperature of ~850 °C [36]. The TiB2 

ceramic nanoparticles were formed during the reaction, and remained in the Al–10wt.%TiB2 

master alloy after solidification. Fig. 2a presents the SEM morphology of the Al–10wt.%TiB2 

master alloy, and TiB2 nanoparticles were found dispersing homogeneously in the Al matrix 

of the master alloy. The TiB2 nanoparticles were reported in the shape of the hexagonal 



prisms with hexagonal close packed  lattice structure, and the TiB2 nanoparticles were 

facetted with basal {0001} and prismatic {1100} facets [37].  From Fig. 2a, most of the TiB2 

nanoparticles were observed lying on the Al matrix with exposing {1100} prismatic facets, as 

the TiB2 nanoparticles with the basal {0001} facets embedded in the Al matrix were washed 

away by water during the clean process after etching. Fig. 2b shows the bright-field TEM 

morphology of the TiB2 nanoparticle in the Al–10wt.%TiB2 master alloy. Fig. 2c presents the 

SADP of the TiB2 nanoparticle in Fig. 2b, and Fig. 2d shows the HRTEM image of the TiB2 

nanoparticle in Fig. 2b, which verified that the nanoparticles dispersed in the Al–10wt.%TiB2 

master alloy were TiB2. The TiB2 nanoparticles are ceramic phases with a high melting point 

of 3230 °C, and the TiB2 nanoparticles are stable phases that don′t react with molten Al after 

the formation through in-situ reaction. It is easier to add the TiB2 nanoparticles into the Al 

melts through the Al–TiB2 master alloy rather than the pure TiB2 powders. Thus the TiB2 

nanoparticles were the stable reinforcement phases that were added into the designed die-cast 

Al–Si–Mg–Mn alloy melts through the Al–10wt.%TiB2 master alloy, for the achieving of 

high performance die-cast Al–Si–Mg–Mn–TiB2 composites. 

 

Fig. 2. SEM and TEM micrographs showing the TiB2 nanoparticles in the Al–10wt.%TiB2 master alloy. 
(a) Morphology and distribution of TiB2 nanoparticles under SEM observation, (b) Bright-field TEM 
morphology of TiB2 nanoparticle, (c) SADP and (d) HRTEM image of the TiB2 nanoparticle in (b). 

3.2. As-cast Al–Si–Mg–Mn–TiB2 composites 



3.2.1. Casting and die-cast capability 

         Fig. 3 presents the castings of the ASTM B557 standard round tensile test bars 

fabricated under super vacuum assisted HPDC. Fig. 3a shows the casting of the Al–Si–Mg–

Mn die-cast alloy without TiB2 reinforcement, and the casting was well filled with high 

integrity and no hot-tearing crack, indicating the good die-cast capability of the Al–Si–Mg–

Mn base alloy. Fig. 3b presents the casting of the 1.5wt.% TiB2 reinforced composite, and the 

integrity of the casting was similar to that of the base alloy, indicative of the good die-cast 

capability of the Al–Si–Mg–Mn–1.5wt.% TiB2 composite. Fig. 3c shows the casting of the 

3.5wt.% TiB2 reinforced composite, and the casting was still well filled to the very thin chill 

vent end with good integrity and no hot-tearing crack, indicating the good die-cast capability 

of the Al–Si–Mg–Mn–3.5wt.% TiB2 composite. The addition of the nano reinforcement 

particles could decrease the fluidity of the alloy melt, and the slight decrease of the chill vent 

height in the castings of the TiB2 reinforced composites comparing with the base alloy was 

due to the minor decrease of the fluidity of the alloy melts. The high content of silicon 

ensured the good fluidity and low solidification temperature range and thermal expansion of 

the base alloy, which were beneficial to the die filling and hot-tearing resistance of the base 

alloy, and this led to the good die-cast capability of the base alloy. The good die-cast 

capability of the base alloy and the limited addition of TiB2 nanoparticles within 3.5wt.% 

resulted in the good die-cast capability of the present Al–Si–Mg–Mn–TiB2 composites. 

 

Fig. 3. Castings of the ASTM B557 standard round tensile test bars fabricated under super vacuum assisted 
high pressure die casting. (a) 0wt.% TiB2 reinforced alloy, (c) 1.5wt.% TiB2 reinforced composite, (d) 

3.5wt.% TiB2 reinforced composite. 

 3.2.2. As-cast microstructure 



         Figs. 4a and b show the SEM morphology of the as-cast Al–Si–Mg–Mn die-cast alloy 

without TiB2 reinforcement. The microstructure of the alloy comprised the α–Al phase, the 

eutectic Si phase and the intermetallic phases of α–Fe and β–Mg2Si. The α–Al phase was in 

two different sizes, i.e., the relatively coarse primary α1–Al phase solidified in the shot sleeve 

with lower cooling rate and the fine secondary α2–Al phase solidified in the die cavity with 

higher cooling rate. The eutectic Si phase was in fibrous morphology due to the modification 

effect of the element Sr [33,38]. The β–Mg2Si intermetallic phase distributed in the grain 

boundary of the α–Al phase, and it was in block shape. Fig. 4c presents the SEM morphology 

of the as-cast Al–Si–Mg–Mn–1.5wt.% TiB2 composite, TiB2 nanoparticles were observed in 

the eutectic area that was in the grain boundary. The eutectic Si phase was also in fibrous 

morphology, and the α–Fe intermetallic phase was in faceted morphology. Fig. 4d shows the 

SEM morphology of the as-cast Al–Si–Mg–Mn–3.5wt.% TiB2 composite, TiB2 nanoparticles 

were also observed in the eutectic area that was in the grain boundary, and the amount of the 

TiB2 nanoparticles in the grain boundary of the 3.5wt.% TiB2 reinforced composite was 

higher than that of the 1.5wt.% TiB2 reinforced composite. The size of the faceted α–Fe 

intermetallic phase was ~0.5–1 μm. 

 

Fig. 4. SEM micrographs showing the microstructure of the die-cast Al–Si–Mg–Mn–TiB2 composites in 
as-cast state. (a,b) 0wt.% TiB2 reinforced alloy, (c) 1.5wt.% TiB2 reinforced composite, (d) 3.5wt.% TiB2 

reinforced composite. 



        The intermetallic phase of β was rich in Mg and Si, and the intermetallic phase of α–Fe 

was rich in Al, Fe, Mn and Si, according to the energy dispersive X-ray spectroscopy (EDS) 

analysis under SEM. However, it was hard to determine the chemical formula and structure 

of the intermetallic phases under SEM, as the measurement accuracy of the element content 

was not high enough. TEM analysis was applied to confirm the β and α–Fe intermetallic 

phases in the present composites. Fig. 5a presents the bright-field TEM morphology of the β 

phase, and the SADP analysis result in Fig. 5b verified that the β phase was the Mg2Si phase 

with the face centred cubic lattice structure. The lattice parameter of the β phase was 

determined as 0.638 nm from the (200) interplanar spacing of 0.319 nm measured in Fig. 5b, 

which agreed well with the reported lattice parameter of 0.639 nm of the β–Mg2Si phase [39]. 

Fig. 5c shows the bright-field TEM morphology of the α–Fe phase, and the SADP analysis 

result in Fig. 5d confirmed that the α–Fe phase was the Al15(Fe,Mn)3Si2 phase with the body 

centred cubic lattice structure. The lattice parameter of the α–Fe phase was determined as 

1.270 nm from the (0-11) interplanar spacing of 0.898 nm measured in Fig. 5d, which agreed 

well with the reported lattice parameter of 1.270 nm of the Al15(Fe,Mn)3Si2 phase [40]. 

 

Fig. 5. TEM micrographs confirming the intermetallic phases in the die-cast Al–Si–Mg–Mn–TiB2 
composites in as-cast state. (a) Bright-field TEM image of the β–Mg2Si intermetallic phase, (b) SADP of 

the β–Mg2Si phase in (a), (c) Bright-field TEM image of the α–Fe intermetallic phase, (d) SADP of the α–
Fe phase in (c). 



        Fig. 6 presents the bright-field TEM micrographs showing the distribution of the TiB2 

nanoparticles in the as-cast die-cast Al–Si–Mg–Mn–TiB2 composites. Figs. 6a and b show the 

TEM morphology of the 1.5wt.% TiB2 reinforced composite in as-cast state, and the TiB2 

nanoparticles distributed in the grain boundary (GB) of the α–Al phase. The matrix of the α–

Al phase was clean, and hardly did the TiB2 nanoparticles present in the α–Al grain. Figs. 6c 

and d present the TEM morphology of the 3.5wt.% TiB2 reinforced composite in as-cast 

state, and the TiB2 nanoparticles also distributed in the grain boundary rather than in the α–Al 

grain. The amount of the TiB2 nanoparticles in the grain boundary of the 3.5wt.% TiB2 

reinforced composite was higher than of the 1.5wt.% TiB2 reinforced composite. The 

distribution of the TiB2 reinforcement nanoparticles in the grain boundary rather than in the 

α–Al matrix was also reported in the laser additive manufacturing of aluminium alloy [41], 

which had similar high cooling rate during solidification with the present HPDC process. 

 

Fig. 6. Bright-field TEM micrographs showing the distribution of the TiB2 nanoparticles in the as-cast die-
cast Al–Si–Mg–Mn–TiB2 composites. (a) 1.5wt.% TiB2 reinforced composite, (b) Enlarged morphology of 

the TiB2 nanoparticles in the grain boundary (GB) in (a), (c) 3.5wt.% TiB2 reinforced composite, (d) 
Enlarged morphology of the TiB2 nanoparticles in the grain boundary in (c). 

3.3. Heat treatment of Al–Si–Mg–Mn–TiB2 composites 

        Figs. 7a and b show the SEM morphology of the die-cast Al–Si–Mg–Mn alloy after 

solution heat treatment. The fibrous eutectic Si phase in the as-cast alloy was spheroidized 



into the fine spheroidal Si particles after solution treatment, and the spheroidized Si particles 

distributed in the grain boundary of the α–Al matrix phase. The β intermetallic phase was 

hardly observed in the solution treated alloy, which indicated that the β phase in the grain 

boundary of the as-cast alloy was well dissolved into the α–Al matrix after the solution 

treatment. Fig. 7c presents the bright-field TEM morphology of the die-cast Al–Si–Mg–Mn 

alloy after solution heat treatment, and the SADP in Fig. 7d verified that the spheroidized 

particle in Fig. 7c was the Si phase. The lattice parameter of the Si phase was determined as 

0.544 nm from the (111) interplanar spacing of 0.314 nm measured in Fig. 7d, which agreed 

well with the lattice parameter of 0.543 nm of the Si phase with diamond cubic structure. The 

spheroidization of the eutectic Si phase during solution treatment was also reported by 

previous studies on Al–Si based cast alloys [33,35,38], and the dissolving of the β phase into 

the α–Al matrix was due to the high temperature diffusion during solution treatment. 

 

Fig. 7. SEM and TEM micrographs showing the microstructure of the die-cast Al–Si–Mg–Mn alloy after 
solution heat treatment. (a) Low magnification SEM morphology, (b) Enlarged SEM morphology, (c) 

Bright-field TEM morphology of the spheroidized Si phase, (d) SADP of the Si phase in (c). 

        Fig. 8 presents the evolution of the hardness of the die-cast Al–Si–Mg–Mn–TiB2 

composites versus ageing time after solution treatment. With the increase of the ageing time, 

the hardness first increased till reached the peak due to the precipitation of the fine nanoscale 

precipitates, and decreased subsequently resulting from the transformation of the fine 



nanoscale precipitates into the relatively coarser nanoscale precipitates. The fine nanoscale 

precipitates are coherent with the Al matrix and have the strongest precipitation strengthening 

effect, while the coarsened nanoscale precipitates are not well coherent with the Al matrix 

and have relatively weaker precipitation strengthening effect. The hardness of the 0wt.% TiB2 

reinforced alloy reached the peak at the ageing time of 6 h, while the hardness of the 1.5wt.% 

TiB2 and 3.5wt.% TiB2 reinforced composites reached the peak at the ageing time of 8 h. The 

hardness of the solution and ageing heat-treated composites increased with increasing content 

of TiB2, and the peak hardness of the 3.5wt.% TiB2 reinforced composite was as high as 

1.502 GPa. The peak ageing hours of 6 h, 8 h and 8 h were chosen as the final optimized 

ageing time for the 0wt.% TiB2, 1.5 wt.% TiB2 and 3.5wt.% TiB2 reinforced composites 

respectively. 

 

Fig. 8. Evolution of the hardness (HV10) of the die-cast Al–Si–Mg–Mn–TiB2 composites versus ageing 
time after solution heat treatment. 

        Fig. 9 shows the evolution of the α–Al phase in the die-cast Al–Si–Mg–Mn–TiB2 

composites during heat treatment by EBSD analysis. Fig. 9a presents the inverse pole figure 

(IPF) orientation map showing the distribution of the α–Al phases in the as-cast composite 

reinforced by 3.5wt.% TiB2, and the insert of the colour code in Fig. 9b represents the detail 

crystal orientation of the α–Al phases in Fig. 9a. Different α–Al phases can be easily 

distinguished by the difference of the orientation colour under IPF. From Fig. 9a, the 

relatively coarse primary α1–Al and the fine secondary α2–Al phase were also observed in the 

as-cast composite under IPF, which agreed with the observation in Fig. 4 under SEM. Fig. 9b 

shows the grain size distribution of the α–Al in the as-cast composite, the α1–Al could be 

large as 30 μm, while the α2–Al could be small as 3 μm. Fig. 9c presents the IPF orientation 

map showing the distribution of the α–Al phases in the 3.5wt.% TiB2 reinforced composite 



after solution and peak ageing heat treatment. The grain size of the α–Al phase in Fig. 9c was 

obviously coarser than that in Fig. 9a, which indicated that the α–Al phase was coarsened 

during heat treatment. Fig. 9d shows the grain size distribution of the α–Al phase in the 

3.5wt.% TiB2 reinforced composite after heat treatment, and it also verified the coarsening of 

α–Al during heat treatment, as the α–Al phase was shifted to direction of larger grain size. 

The combining of the neighbouring α–Al grains during the high temperature solution 

treatment at 540 °C led to the coarsening of the α–Al phase by diffusion. The coarsening of 

the α–Al phase during heat treatment was also reported by previous studies [35]. 

 

Fig. 9. EBSD results showing the evolution of the α–Al phase in the die-cast Al–Si–Mg–Mn–TiB2 
composites during heat treatment. (a) IPF orientation map and (b) grain size distribution of the α–Al phase 
in the as-cast composite reinforced by 3.5wt.% TiB2, (c) IPF orientation map and (d) grain size distribution 
of the α–Al phase in the 3.5wt.% TiB2 reinforced composite after solution and peak ageing heat treatment. 

3.4. Heat-treated Al–Si–Mg–Mn–TiB2 composites 

3.4.1. Tensile properties 

        Fig. 10a presents the typical tensile stress-strain curves of the die-cast Al–Si–Mg–Mn–

TiB2 composites after solution and peak ageing heat treatment. With increasing content of 

TiB2, the strength of the heat-treated composites increased, while the ductility decreased. Fig. 



10b shows the tensile properties of the die-cast Al–Si–Mg–Mn–TiB2 composites after 

solution and peak ageing heat treatment. The yield strength, ultimate tensile strength (UTS) 

and elongation (El) of the 0wt.% TiB2 reinforced alloy were 317±2 MPa, 368±3 MPa and 

11.6±0.9 %, respectively. The 1.5wt.% TiB2 reinforced composite provided the high yield 

strength of 330±3 MPa and UTS of 384±3 MPa in conjunction with the ductility of 9.1±0.8 

%, and the 3.5wt.% TiB2 reinforced composite delivered the super high yield strength of 

351±3 MPa and UTS of 410±4 MPa in association with the good ductility of 5.2±0.6 %. 

Never did literatures achieve die-cast aluminium alloys with the milestone high yield strength 

of 350 MPa in association with an industrially applicable ductility of 4 %. The super high 

yield strength of 351 MPa and UTS of 410 MPa in conjunction with the ductility of 5.2 % 

delivered by the present die-cast Al–Si–Mg–Mn–3.5wt.%TiB2 composite are milestone 

mechanical properties for the high pressure die casting industry. In addition, the Al–Si–Mg–

Mn–TiB2 composites were proved having good die-cast capability within the addition of 

3.5wt.% TiB2 nanoparticles in Section 3.2.1, which made the present high performance die-

cast Al–Si–Mg–Mn–TiB2 composites promising for industrial application. 

 

Fig. 10. (a) Tensile stress-strain curves and (b) tensile properties of the die-cast Al–Si–Mg–Mn–TiB2 
composites after solution and peak ageing heat treatment. 

3.4.2. Microstructure and strengthening mechanism 

        The TEM images in Fig. 11 show the nanoscale precipitates in the α–Al matrix of the 

present die-cast alloy after solution and peak ageing treatment. Fig. 11a presents the bright-

field TEM image taken along the non-zone axis of the α–Al matrix, and nanoscale β''–Mg2Si 

precipitates dispersed homogeneously in the matrix of different α–Al phases. Fig. 11b shows 

the bright-field TEM image taken along the <001> zone axis of one α–Al grain, and 

embedded and lying β'' nanoscale precipitates were observed dispersing uniformly in the α–

Al matrix. The β'' precipitate was reported in needle-like shape [39], and the embedded and 



lying β'' precipitates were the same β'' precipitates in nature. Fig. 11c presents the HRTEM 

image of the embedded β'' precipitate, and it clearly presented the unit cell of C-centered 

monoclinic structure with a = 1.52 nm and c = 0.67 nm, which verified that the embedded 

precipitate was β'' [39,42,43], and the nanoscale β'' precipitate was coherent with the α–Al 

matrix with Al[320]//β''(a-axis) and Al[1-30]//β''(c-axis). The fast Fourier transform (FFT) 

pattern in Fig. 11d also confirmed that the embedded precipitate in Fig. 11c was β''. Fig. 11e 

shows the HRTEM image of the lying β'' precipitate, and the β'' precipitate had coherent 

interface with the α–Al matrix with Al[020]//β''(b-axis). The FFT pattern in Fig. 11f verified 

that the lying precipitate in Fig. 11e was β''. The coherence between β'' precipitate and the α–

Al matrix resulted in excellent precipitation strengthening of the Al matrix. 

 

Fig. 11. TEM micrographs showing the nanoscale β'' precipitate in the Al matrix of the die-cast Al–Si–
Mg–Mn alloy after solution and peak ageing heat treatment. (a) Bright field image taken from non-zone 

axis of Al, (b) Bright field image taken along the <001> zone axis of Al, (c) HRTEM image of embedded 



β'' precipitate in (b), (d) FFT pattern of (c), (e) HRTEM image of lying β'' precipitate in (b), (f) FFT pattern 
of (e). 

        Fig. 12 presents the TEM micrographs of the die-cast Al–Si–Mg–Mn–TiB2 composites 

after solution and peak ageing heat treatment. Figs. 12a and b show the bright-field TEM 

images of the α–Al matrix of the 1.5wt.% TiB2 reinforced composite, and TiB2 nanoparticles 

and nanoscale β'' precipitates were observed in the α–Al matrix, indicating that the α–Al 

matrix was double strengthened by the TiB2 nanoparticles and nanoscale β'' precipitates. Figs. 

12c and d present the bright-field TEM images of the α–Al matrix of the 3.5wt.% TiB2 

reinforced composite, and the α–Al matrix of the 3.5wt.% TiB2 reinforced composite was 

also double strengthened by the TiB2 nanoparticles and nanoscale β'' precipitates. The number 

density of the nanoscale β'' precipitates in Fig. 12 seemed lower than that in Fig. 11, which 

was due to the difference of the observing direction under TEM. The morphology of the 

nanoscale β'' precipitates was unclear when observing along the direction that the 

morphology of the TiB2 nanoparticles was clear, and the number density of the nanoscale β'' 

precipitates in the 0wt.% TiB2, 1.5wt.% TiB2 and 3.5wt.% TiB2 reinforced composites was 

identical actually. 



 

Fig. 12. TEM micrographs showing the nanoscale β'' precipitate and TiB2 nanoparticles in the Al matrix of 
the die-cast Al–Si–Mg–Mn–TiB2 composites after solution and peak ageing heat treatment. Bright field 

images of the (a,b) 1.5wt.% and (c,d) 3.5wt.% TiB2 reinforced composites, (e) HRTEM image and (f) FFT 
pattern showing the interface and orientation relation between the middle TiB2 nanoparticle and the Al 

matrix in (d). 

        From Fig. 6, the TiB2 nanoparticles distributed in the grain boundary rather than the α–

Al matrix of the 1.5wt.% and 3.0wt.% TiB2 reinforced composites in as-cast state. The α–Al 

phases in the heat-treated composite were coarser than that in the as-cast composite, as 

verified by the EBSD analysis in Fig. 9, which indicated that the nearby α–Al phases in as-

cast state were combined and coarsened during the subsequent high temperature solution heat 

treatment at 540 °C by diffusion. The TiB2 nanoparticles in the grain boundary of the as-cast 

composite were therefore enrolled into the α–Al matrix of heat-treated composite through the 

combining and coarsening of the α–Al phases during the solution heat treatment. Fig. 12e 



presents the HRTEM image showing the interface between the middle TiB2 nanoparticle and 

the α–Al matrix in Fig. 12d, and the TiB2 nanoparticle was found having coherent interface 

with the α–Al matrix, with the (0001) crystal plane of the TiB2 nanoparticle parallel to the 

(11-1) crystal plane of the α–Al matrix, which indicated strong interfacial bonding and 

strengthening. The FFT pattern in Fig. 12f revealed that the crystal orientation relation (OR) 

between the TiB2 nanoparticle and the α–Al matrix was Al(11-1)//TiB2(0001) and 

Al[011]//TiB2[11-20], and this OR agreed with previous reports [41,44]. Thus the die-cast 

Al–Si–Mg–Mn–TiB2 composites were double strengthened by the TiB2 nanoparticles and the 

nanoscale β'' precipitates that both had coherent interfaces with the α–Al matrix, which 

resulted in the high strength of the present composites. 

3.4. Fracture mechanism 

Fig. 13 shows the SEM micrographs of the tensile fracture surface of the die-cast Al–Si–

Mg–Mn–TiB2 composites, after solution and peak ageing heat treatment. Fig. 13a presents 

the SEM morphology of the fracture of the 0wt.% TiB2 reinforced alloy, Al dimples were 

found distributing uniformly across the fracture indicating the ductile fracture, which agreed 

with the good ductility of the alloy. Cracks were observed originating from the Si phase due 

to its brittle feature [25,33]. Fig. 13b shows the SEM morphology of the fracture of the 

1.5wt.% TiB2 reinforced composite, and TiB2 nanoparticles were observed on the fracture. 

Crack was still found in the Si phase in the fracture, and the number of the Al dimples in the 

fracture decreased comparing with the 0wt.% TiB2 reinforced alloy, which was consistent 

with the decrease of the ductility of the composite. Figs. 13c and d present the SEM 

morphology of the fracture of the 3.5wt.% TiB2 reinforced composite, and it also comprised 

the Al dimples, the cracked Si phase and the TiB2 nanoparticles. However, the number of the 

Al dimples decreased further due to the increase of the TiB2 nanoparticles in the fracture, 

which led to the further decrease of the ductility of the composite. The increase of the hard 

TiB2 ceramic reinforcement nanoparticles accelerated the crack of the brittle Si phase under 

stretching, due to the strong interaction of the hard TiB2 nanoparticles and the brittle Si 

phase, and this led to the decrease of the ductility of the composites with increasing addition 

of TiB2 nanoparticles. 



 

Fig. 13. SEM morphology of the tensile fracture surface of the die-cast Al–Si–Mg–Mn–TiB2 composites 
after solution and peak ageing heat treatment. (a) 0wt.% TiB2 reinforced alloy, (b) 1.5wt.% TiB2 reinforced 

composite, (c,d) 3.5wt.% TiB2 reinforced composite. 

4. Conclusions （结论部分也要改，你这也是工艺文章的套路，改成机理文章的。因为

你是想告诉别人强度的增加原因。） 

        (1) Advanced die-cast Al–Si–Mg–Mn–TiB2 composites were fabricated with milestone 

high yield strength of above 350 MPa and an industrially applicable ductility of over 4 %, 

through the reinforcement of TiB2 nanoparticles and the super vacuum assisted high pressure 

die casting process. The compsites beared good die-cast capability within the addtion of 

3.5wt.% TiB2 nanoparticles. 

        (2) The 3.5wt.% TiB2 nanoparticle reinforced die-cast Al–Si–Mg–Mn–TiB2 composite 

delivered the super high hardness of 1.5 GPa, the milestone high yield strength of 351±3 MPa 

and ultimate tensile strength of 410±4 MPa in association with a good ductility of 5.2±0.6 %, 

after solution and peak ageing heat treatment. 

        (3) The TiB2 nanoparticles distributed in the grain boundary rather than in the α–Al 

matrix phase of the die-cast Al–Si–Mg–Mn–TiB2 composites in as-cast state. After solution 

and peak ageing heat treatment, the TiB2 nanoparticles were enrolled into the α–Al matrix 

phase through the combining and coarsening of the α–Al phase during heat treatment. 



        (4) The α–Al matrix of the solution and peak aged die-cast Al–Si–Mg–Mn–TiB2 

composites were double strengthened by the TiB2 nanoparticles and the nanoscale β'' 

precipitates that both had coherent interfaces with α–Al, which resulted in the milestone high 

strength of the composites. The TiB2 nanoparticles were coherent with Al matrix with Al(11-

1)//TiB2(0001) and Al[011]//TiB2[11-20], and the nanoscale β'' precipitates were coherent 

with Al matrix with Al[320]//β''(a-axis), Al[1-30]//β''(c-axis) and Al(020)//β''(b-axis). 
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