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Abstract

This paper is concerned with the envelope-constrained H∞ filtering problem for a class of discrete nonlinear stochastic systems
subject to quantization effects over a finite horizon. The system under investigation involves both deterministic and stochastic
nonlinearities. The stochastic nonlinearity described by statistical means is quite general that includes several well-studied
nonlinearities as its special cases. The output measurements are quantized by a logarithmic quantizer. Two performance
indices, namely, the finite-horizonH∞ specification and the envelope constraint criterion, are proposed to quantify the transient
dynamics of the filtering errors over the specified time interval. The aim of the proposed problem is to construct a filter such
that both the prespecified H∞ requirement and the envelope constraint are guaranteed simultaneously over a finite horizon.
By resorting to the recursive matrix inequality approach, sufficient conditions are established for the existence of the desired
filters. A numerical example is finally proposed to demonstrate the effectiveness of the developed filtering scheme.
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1 Introduction

Due to the significance in control and signal process-
ing, the nonlinear filtering problem has been attracting
constant research interest in the past several decades. A
number of approaches have been developed to deal with
the filtering problem for nonlinear stochastic systems,
among which some of the most widely used include but
are not limited to Bayes filtering, particle filtering, ex-
tended Kalman filtering (EKF) and unscented Kalman
filtering (UKF). The Bayes filter aims to, in a recursive
fashion, estimate the hidden state by using the avail-
able measurements and the process model [9]. Based on
the Bayesian theory in combination with the concep-
t of sequential importance sampling, particle filtering
is particularly useful in coping with nonlinear and/or
non-Gaussian problems [4]. However, the high computa-
tional complexity largely hinders the utilization of par-
ticle filters. Another recursive filter that should be men-
tioned is the celebrated Kalman filter [12], which is in
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fact a linear version of Bayes filter for systems subject
to Gaussian noises. As for nonlinear stochastic Gaussian
systems, several invariants based on Kalman filters have
been developed among which the most widely applied
are EKF and UKF. EKF provides an approximation of
an optimal estimate by linearizing the nonlinear system
at the state estimates, which has been found wide ap-
plications in both theoretical research and engineering
practice [7]. However, it is no longer applicable when
the process/measurement models are highly nonlinear,
which gives rise to the so-called unscented Kalman filter-
ing. The UKF uses a deterministic sampling technique
known as the unscented transform to pick a minimal set
of sample points around the mean value and could give
more accurately estimates than EKF especially for those
highly nonlinear systems [20].

The past several decades have seen a surge of research
interest on the H∞ filtering problems for nonlinear sys-
tems and several effective approaches have been exploit-
ed to deal with filtering problems with the requested
disturbance attenuation level, see e.g. [5, 7, 17–19, 21].
On another research frontier, networked control system-
s (NCSs) have attracted much attention owing to their
clear application insights in a wide range of areas [27,28].
It has been recognized that, in the context of NCSs,
the quantization effects stemming from analog-to-digital
conversion processes are ubiquitous, which would proba-
bly lead to the deterioration of the system performance.
In the NCS research, there are mainly two types of quan-
tization models, namely, the uniform quantization [23]
and the logarithmic quantization [8]. In particular, a
sector-bound technique has been presented in [8] that
is capable of coping with the logarithmic quantization
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issues conveniently, and such an elegant paradigm has
then been quickly followed in the area, see e.g. [13, 18].

The envelope-constrained filtering (ECF) algorithm has
been stirring some research interest in the past few
decades. The main idea of ECF algorithm is to confine
the output of the filtering error (stimulated by a speci-
fied input) into a prescribed envelope. Such an envelope
is determined by the desired output and tolerance band.
The ECF technique has found successful applications
in a variety of engineering branches ranging from signal
processing to digital communications [2, 3]. Up to now,
several methodologies have been utilized in the liter-
ature to deal with the envelope-constrained filtering
problems, see, e.g. [22,26]. It should be pointed out that
almost all the results relevant to ECF have been con-
cerned with the linear time-invariant systems. When it
comes to general nonlinear time-varying systems, the
corresponding envelope-constrained filtering problem
has not been thoroughly investigated yet and this mo-
tivates us to shorten such a gap in the current study.
It is, therefore, the main purpose of this paper to deal
with the identified challenges by launching a major s-
tudy on the so-called envelope-constrainedH∞ filtering
problem.

The rest of this paper is organized as follows. Section 2
formulates the envelope-constrained H∞ filtering prob-
lem for discrete-time nonlinear system subject to quan-
tization effects. The main results are presented in Sec-
tion 3 where sufficient conditions for solvability of the
addressed filtering problem are given in terms of recur-
sive linear matrix inequalities (RLMIs). Section 4 gives
a numerical example and Section 5 outlines our conclu-
sion.

2 Problem Formulation

Consider the following nonlinear system defined on the
horizon [0, N ]:







xk+1 =f(xk) + g(xk) +Bkwk

yk =h(xk) +Dkvk
zk =Lkxk

(1)

where xk ∈ R
nx , yk ∈ R

ny and zk ∈ R
nz represent,

respectively, the system state, the measurement output
and the signal to be estimated. wk ∈ l2([0, N ];Rnw) and
vk ∈ l2([0, N ];Rnv) are the disturbance inputs. Bk, Dk

and Lk are known time-varying matrices with appropri-
ate dimensions.

The deterministic nonlinearities f(xk) and h(xk) are
known and analytic everywhere over the finite horizon
[0, N ]. On the other hand, the stochastic nonlinearity
g(xk) is assumed to have the following first moment for
all xk:

E{g(xk)|xk} = 0 (2)

with the covariance given by

E{g(xk)g
T(xj)|xk} =0, k 6= j

E{g(xk)g
T(xk)|xk} =

q
∑

l=1

̺l,k̺
T
l,k

(
xTkΥl,kxk

) (3)

where ̺l,k and Υl,k ≥ 0 (l = 1, 2, . . . , q) are, respective-
ly, known column vectors and matrices with compatible
dimensions.

In this paper, the quantization effects are taken into
consideration. Denote the quantizer as

σ(·) ,
[

σ1(·) σ2(·) · · · σny
(·)

]

which is symmetric, i.e., σj(−y) = −σj(y) (j =
1, 2, . . . , ny). The quantizer is assumed to be logarithmic
type and the process of the quantization is described by

σ(yk) =
[

σ1(y
(1)
k ) σ2(y

(2)
k ) · · · σny

(y
(ny)
k )

]T

(4)

where y
(j)
k (j = 1, 2, . . . , ny) denotes the j-th entry of

the vector yk. For each σ(·), the set of quantization level
is described by

Uj =
{
± µ̂

(j)
i , µ̂

(j)
i = χi

j µ̂
(j)
0 , i = 0,±1,±2, . . .

}
∪
{
0
}
,

0 < χj < 1, µ̂
(j)
0 > 0. (5)

where χj (j = 1, 2, . . . , ny) is the quantization density.
Each of the quantization level corresponds to a segmen-
t such that the quantizer maps the whole segment to
this quantization level. According to [8], the associated
quantizer is defined as follows:

σ(y
(j)
k ) =







µ̂
(j)
i ,

1 + χj

2
µ̂
(j)
i ≤ y

(j)
k ≤

1 + χj

2χj

µ̂
(j)
i

0, y
(j)
k = 0

− σ(−y
(j)
k ), y

(j)
k < 0

(6)

Consequently, it can be easily seen from the above defi-
nition (6) that the following inequality holds:

(
σ(yk)−G1yk

)T(
σ(yk)−G2yk

)
≤ 0 (7)

whereG1 , diagny
{2χj/(1+χj)} andG2 , diagny

{2/(1+

χj)}. Since 0 < χj < 1, it is obvious that 0 ≤ G1 < I ≤
G2. Then, σ(yk) can be decomposed as follows:

σ(yk) = G1yk + ϕ(yk) (8)

where ϕ(yk) is a nonlinear vector-valued function which,
from (7), satisfies

ϕT(yk)
(
ϕ(yk)−Gyk

)
≤ 0 (9)

with G being defined as G , G2 −G1.

Definition 1 [6] A bounded ellipsoid E (c, P, n) of Rn

with a nonempty interior in the mean square sense can
be defined by

E (c, P, n) , {x ∈ R
n : E{(x− c)TP−1(x− c)} ≤ 1}

where c ∈ R
n is the center of E (c, P, n) and P > 0 is a

positive definite matrix.

In this paper, the filter to be designed is of the following
form:

x̂k+1 = Fkx̂k +Hkσ(yk), x̂0 = 0. (10)

Denote ek , xk − x̂k and z̃k , zk − ẑk. Subtracting
(10) from (1) and taking (8) into account, we obtain the
following filtering error system:







ek+1 =f(xk) + g(xk) +Bkwk − Fkx̂k

−HkG1h(xk)−Hkϕ
(
yk
)
−HkG1Dkvk

z̃k =Lkek
(11)

By defining
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Φk ,
∂f(x)

∂x

∣
∣
∣
x=x̂k

, Ψk ,
∂h(x)

∂x

∣
∣
∣
x=x̂k

,

and utilizing the Taylor series expansion formula, we
linearize the nonlinear functions f(xk) and h(xk) around
the state estimate x̂k as follows:
f(xk) = f(x̂k) + Φk(xk − x̂k) + L1∆1(xk − x̂k) (12)

h(xk) = h(x̂k) + Ψk(xk − x̂k) + L2∆2(xk − x̂k) (13)

where L1 ∈ R
nx×nl1 and L2 ∈ R

ny×nl2 are known scal-
ing matrices, and ∆1 ∈ R

nl1
×nx and ∆2 ∈ R

nl2
×nx are

unknown matrices such that ‖∆1‖ ≤ 1 and ‖∆2‖ ≤ 1.
Taking (12) and (13) into consideration, we reformulate
the filtering error system (11) as






ek+1 =f(x̂k)− Fkx̂k −HkG1h(x̂k)

+ (Φk + L1∆1 −HkG1Ψk −HkG1L2∆2)ek
+ Ekξk −Hkϕ(yk) + g(xk)

z̃k =Lkek
(14)

where ξk , [wT
k vTk ]

T and Ek , [Bk −HkG1Dk].
Before giving the main objective of this paper, for the
brevity of later presentation, we denote

Λi , [ 0 · · · 0
︸ ︷︷ ︸

i−1

1 0 · · · 0
︸ ︷︷ ︸

nz−i

]. (15)

This paper aims to design filter (10) such that the fol-
lowing requirements are achieved simultaneously:
R1 ) (H∞ specification) Given γ > 0 and Ξ > 0, the
output z̃k of the filtering error system (14) satisfies

N∑

k=1

E
{
‖z̃k‖

2
}
≤ γ2

N∑

k=1

‖ξk‖
2 + γ2eT0 Ξe0 (16)

for any nonzero ξk 6= 0.
R2 ) (Envelope constraint) Given the following input

ξ◦k =

{
1, k = 0

0, 1 ≤ k ≤ N
(17)

under the zero-initial condition, the corresponding out-
put z̃◦k of filtering error system (14) satisfies

Λi(ψk − βk) ≤ E {Λiz̃
◦
k} ≤ Λi(ψk + βk) (18)

where the sequences of vectors {ψk}0≤k≤N and
{βk}0≤k≤N represent, respectively, the desired output
and the tolerance band.

3 Main Results

3.1 H∞ requirement

For the brevity of later presentation, we denote

ηk ,

[

1 eTk xTk

]T

, ϕk , ϕ(yk), G ,

[

0 I I
]T

,

Hk ,

[

0 −HT
k 0

]T

, Γ ,

[

0 0 I
]

, Lk ,

[

0 Lk 0
]

,

f̃k , f(x̂k)− Fkx̂k −HkG1h(x̂k),

Φ̃k , Φk + L1∆1 −HkG1Ψk −HkG1L2∆2,

Ak ,






1 0 0

f̃k Φ̃k 0

f(x̂k) Φk + L1∆1 0




 , Ek ,






0 0

Bk −HkDk

Bk 0




 .

Accordingly, from (1) and (14), we have:
{
ηk+1 =Akηk + Ekξk + Gg(Γηk) +Hkϕk,
z̃k =Lkηk.

(19)

Theorem 1 Given γ > 0, Ξ > 0 and {Fk, Hk}0≤k≤N .
For system (14), the H∞ performance index is guaran-
teed if there exist a sequence of positive definite matrices
{Pk}0≤k≤N+1 with P0 − γ2Ξ̄ ≤ 0 (Ξ̄ = diag{0,Ξ, 0}),
and a sequence of positive scalars {εk}0≤k≤N such that

Ωk − εk

[

Π11 ΠT
21

Π21 2Inz
−GL2L

T
2G

]

≤ 0 (20)

where

Ωk ,






Ω̄k + LT
kLk AT

kPk+1Ek AT
kPk+1Hk

∗ ET
k Pk+1Ek − γ2Inξ

ET
k Pk+1Hk

∗ ∗ HT
k Pk+1Hk




 ,

(21)
Π11 , diag{0, 0,−Inx

, 0},

Π21 ,

[

−Gh(x̂k) −GΨk 0 −GD̃k

]

.

Proof: See Appendix A.

Next, for presentation simplicity, we denote

L̄1 ,

[

0 LT
1 LT

1

]T

, L̄2 ,

[

0 −LT
2G

T
1H

T
k 0

]T

,

I ,

[

0 Inl1
0
]

, Ĩ ,

[

I 0 0 0
]

, L̃1 ,

[

0 0 0 L̄T
1

]T

,

L̃2 ,

[

0 0 0 L̄T
2

]T

, L̃ ,

[

ǫ1,kL̃1 ǫ2,kL̃2 ĨT ĨT
]

,

J , diag{ǫ1,kInl1
, ǫ2,kInl2

, ǫ1,kInx
, ǫ2,kInx

},

Āk ,






1 0 0

f(x̂k)− Fkx̂k −HkG1h(x̂k) Φk −HkG1Ψk 0

f(x̂k) Φk 0




 ,

Ω̃k ,






∑q

l=1 Γ
TΥl,kΓαl,k − Pk + LT

kLk 0 0

∗ −γ2Inξ
0

∗ ∗ 0




 ,

Āk ,

[

Āk Ek Hk

]

, Π̃k ,

[

−εkΠk + Ω̃k Ā T
k

Āk −P−1
k+1

]

.

Theorem 2 Given γ > 0, Ξ > 0 and {Fk, Hk}0≤k≤N

be given. For filtering error system (14), the H∞

performance index is guaranteed if there exist a se-
quence of positive definite matrices {Pk}0≤k≤N+1

with P0 − γ2Ξ̄ ≤ 0, sequences of positive scalars
{εk, ǫ1,k, ǫ2,k}0≤k≤N , and sequences of positive scalars
{αl,k}0≤k≤N (l = 1, 2, . . . , q) such that

[

−αl,k ̺Tl,kG
T

∗ −P−1
k+1

]

≤ 0,

[

Π̃k L̃

∗ −J

]

≤ 0. (22)

Proof: See Appendix B.
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3.2 Envelope constraint

Lemma 1 Given {Fk, Hk}0≤k≤N . If there exist a se-
quence of positive definite matrices {Qk}0≤k≤N+1, se-
quences of positive scalars {τ1,k, τ2,k, τ3,k, τ4,k, τ5,k}0≤k≤N

satisfying the following recursive linear matrix inequali-
ty:

[

−Mk ΣT
k

Σk −Qk+1

]

≤ 0 (23)

where

Ψ̃21 ,

[

−G
(
h(x̂k) + D̃kξ

◦
k

)
−GΨkΘk 0 −GL2

]

,

Ψ̃k , diag
{
[

0 Ψ̃T
21

Ψ̃21 2Iny

]

, 0
}

,

Λ̃k , diag
{
[

Λ̃
(11)
k Λ̃

(12)
k

Λ̃
(21)
k Λ̃

(22)
k

]

, 0, 0, 0, Inx

}

,

Λ̃
(11)
k , −x̂Tk

q
∑

l=1

̺l,k̺
T
l,kΥl,kx̂k,

Λ̃
(12)
k , −x̂Tk

q
∑

l=1

̺l,k̺
T
l,kΥl,kΘk,

Λ̃
(21)
k , −ΘT

k

q
∑

l=1

̺l,k̺
T
l,kΥl,kx̂k,

Λ̃
(22)
k , −ΘT

k

q
∑

l=1

̺l,k̺
T
l,kΥl,kΘk,

Mk , τ4,kΨ̃k + τ5,kΛ̃k + diag{1− τ1,k, τ1,kIϑ

− (τ2,k + τ3,k)Θ
T
kΘk, τ2,kInl1

, τ3,kInl2
, 0, 0},

Σk ,

[

Σ
(11)
k Σ

(12)
k L1 −HkG1L2 −Hk Inx

]

,

Σ
(11)
k , f(x̂k)− Fkx̂k −HkG1h(x̂k) + Ekξ

◦
k,

Σ
(12)
k , (Φk −HkG1Ψk)Θk,

with Θk being a factorization of Qk (i.e., Qk = ΘkΘ
T
k ),

then xk ∈ E (x̂k, Qk, nx) holds for all k ∈ [0, N ]. In other
words, the state estimation error ek is confined in the
ellipsoid E (0, Qk, nx) at each time step k over the finite
horizon [0, N ].
Proof: See Appendix C.
Theorem 3 Given {Fk, Hk}0≤k≤N , {ψk}0≤k≤N and
{βk}0≤k≤N . The envelope constraint defined in (18) is
achieved if there exist a sequence of positive definite ma-
trices {Qk}0≤k≤N+1 and sequences of positive scalars
{λk, τ1,k, τ2,k, τ3,k, τ4,k, τ5,k}0≤k≤N satisfying

[

−Mk ΣT
k

Σk −Qk+1

]

≤ 0, (24)






− (Λiβk)
2
+ λk 0 −Λiψk

0 −λkIϑ ΘT
kL

T
kΛ

T
i

−Λiψk ΛiLkΘk −1




 ≤ 0 (25)

where Θk is a factorization of Qk (i.e., Qk = ΘkΘ
T
k ).

Proof: See Appendix D.

3.3 Filter design

Theorem 4 Given γ > 0, Ξ > 0, {ψk}0≤k≤N and
{βk}0≤k≤N . The output estimation error z̃k satisfies
simultaneously the prespecified H∞ specification and
envelope constraint if, under the initial condition {P0 ≤
γ2Ξ̄, Q0 ≥ 0}, there exist sequences of positive definite
matrices {Pk, Qk}0≤k≤N+1, sequences of real-valued
matrices {Fk, Hk}0≤k≤N , sequences of positive scalars
{εk, ǫ1,k, ǫ2,k, λk, τ1,k, τ2,k, τ3,k, τ4,k, τ5,k}0≤k≤N , se-
quences of positive scalars {αl,k}0≤k≤N (l = 1, 2, . . . , q)
satisfying the following set of recursive linear matrix
inequalities

[

−αl,k ̺Tl,kG
T

∗ −Pk+1

]

≤ 0,

[

Π̃k L̃

∗ −J

]

≤ 0, (26)

[

−Mk ΣT
k

Σk −Qk+1

]

≤ 0, (27)






− (Λiβk)
2
+ λk 0 −Λiψk

0 −λkIϑ ΘT
kL

T
kΛ

T
i

−Λiψk ΛiLkΘk −1




 ≤ 0 (28)

where the parameter Pk+1 is updated recursively accord-
ing to Pk+1 = P−1

k+1, and the parameter Θk is computed

iteratively by decomposing Qk such that Qk = ΘkΘ
T
k .

Proof: The proof follows directly fromTheorems 1–3 and
is therefore omitted here.

Remark 1 So far, we have discussed the envelope-
constrained H∞ filtering problem for general nonlin-
ear system subject to quantization effects. Within the
established theoretical framework, our results can be
extended to certain filtering problems with other perfor-
mance requirements/constraints such as security per-
formance [15], ellipsoidal constraints [16], consensus
performance [14], communication cost [29] and dissipa-
tivity [25].

4 Numerical Example

Consider the following univariate non-stationary growth
model (UNGM) investigated in [11]:







xk+1 =0.5xk + 25
xk

1 + x2k
+ 8 cos(1.2 ∗ (k + 1)) + g(xk) + wk

yk =
x2k
20

+ vk

zk =0.2xk

It is worth mentioning that in [11], wk and vk are as-
sumed to obey Gaussian distribution with zero mean
and known variances. However, in practical engineer-
ing, apart from the stochastic noises, sometimes systems
might be corrupted by other different kinds of distur-
bances such as the energy bounded disturbances inves-
tigated in this paper. Therefore, in this paper, we as-
sume wk = 0.5e−0.2k sin(k) and vk = 5 cos(2k)/(k + 1),
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Fig. 1. The state xk and its estimate.

which, obviously, are two energy bounded disturbance
sequences.
On the other hand, note that in [11], the item g(xk)
does not exist. However, in many cases, the system may
contaminate with the stochastic nonlinearities owing to
a variety of reasons such as random failures and re-
pairs of the components, changes in the interconnec-
tions of subsystems, and sudden environment changes.
Thus, in order to better reflect the engineering reality
and present a comprehensive model, we take into ac-
count the stochastic nonlinearity g(xk) with the form of
g(xk) = 0.06sign[xk]xkςk where ςk is a Gaussian white
sequences with unitary covariance. Then it can be easily
checked that g(xk) satisfies

E{g(xk)|xk} =0,

E{g(xk)g
T(xk)|xk} =0.0036xTk xk.

In this example, the parameters of the logarithmic quan-
tizer σ(·) are taken as µ̂0 = 3 and χ = 0.6. Then, it can
be obtained that G1 = 0.75 and G2 = 1.25.
To study theH∞ performance, in the simulation, choose
γ = 1.5 and Ξ = 0.5. Set the initial values by P0 =
diag{0, 0.5, 0}, Q0 = I2 and x̂0 = 0. According to The-
orem 4, the presented time-varying LMIs can be solved
recursively by utilizing Matlab software.
The simulation results are presented in Figs. 1–2. Fig. 1
depicts the trajectories of the state xk and its estimate.
It can be observed that all the estimate can track the true
value with a satisfactory accuracy, which confirms that
the proposed filtering algorithm performs quite well.
In order to investigate the envelope constraint criteri-
on, with the given input ξ◦k, the desired output ζk and
the tolerance band βk are selected as ψk = −0.25 and
βk = 1.95. The simulation result is shown in Fig. 2,
where it can be clearly seen that the filtering error out-
put is constrained by the pre-specified bounds. There-
fore, it can be summarized that the envelope constraint
can be achieved by using the exploited recursive filtering
algorithm.

5 Conclusion

In this paper, the envelope-constrained H∞ filtering
problem has been discussed for a class of discrete time-
varying nonlinear system over a finite horizon. Both

0 5 10 15 20 25 30 35
−4

−3

−2

−1

0

1

2

3

4

F
ilt

er
in

g 
er

ro
r 

w
ith

 th
e 

en
ve

lo
p 

co
ns

tr
ai

nt
s

No. of samples. k

 

 
filtering error
upper bound
lower bound

Fig. 2. The filtering error z̃◦k and its upper and lower bounds.

deterministic and stochastic nonlinearities are included
in the system under consideration. The stochastic non-
linearity described by statistical means is quite general
which could encompass certain frequently seen non-
linearities in the literature. An envelope-constrained
performance index has been proposed to reflect the
transient behavior of the filtering errors over the speci-
fied horizon. By means of recursive matrix inequalities
approach, sufficient conditions of the existence of the
desired filter have been established guaranteeing si-
multaneously the pre-specified H∞ criterion and the
envelope constraint. An illustrative example has been
proposed to show the effectiveness and applicability of
the presented filtering scheme.
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A Proof of Theorem 1

Proof:The proof can be conducted easily and is therefore
omitted here due to the limitation of pages.

B Proof of Theorem 2

Proof: Based on Theorem 1, we only need to prove that
the matrix inequalities (22) imply the matrix inequality
(20). According to Schur Complement Lemma [1], the
first inequality in (22) is true if and only if

̺Tl,kG
TPk+1G̺l,k ≤ αl,k. (B.1)

By utilizing the property of matrix trace, we obtain

tr
[
G̺l,k̺

T
l,kG

TPk+1

]
≤ αl,k. (B.2)

Similarly, it follows from the Schur Complement Lem-
ma [1] that the second linear matrix inequality (22) holds
if and only if

[

−εkΠk + Ω̃k Ā T
k

Āk −P−1
k+1

]

+ L̃J−1L̃T ≤ 0, (B.3)

which is equivalent to
[

−εkΠk + Ω̃k A T
k

Ak −P−1
k+1

]

≤ 0 (B.4)

where

Ak ,

[

Ak Ek Hk

]

.
It follows immediately from Schur Complement Lem-
ma [1] and (B.4) that

−εkΠk + Ω̃k + A
T
k Pk+1Ak ≤ 0. (B.5)

Subsequently, taking (B.2) into consideration, we obtain

−εkΠk +Ωk ≤ 0. (B.6)

Therefore, according to Theorem 1, we can conclude that
the desired H∞ requirement is achieved. The proof is
now complete.

C Proof of Lemma 1

Proof: Applying the input ξ◦k defined in (17) to the fil-
tering error system (14), we obtain the one-step-ahead
state estimation error as follows:
ek+1 =f(x̂k)− Fkx̂k −HkG1h(x̂k) + Ekξ

◦
k −Hkϕk

+ (Φk −HkG1Ψk)(xk − x̂k) + L1∆1(xk − x̂k)

−HkG1L2∆2(xk − x̂k) + g(xk). (C.1)

In the following, we are going to prove the lemma by
induction. Firstly, for k = 0, it can be known from x0 = 0
and x̂0 = 0 that:
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E
{
(x0 − x̂0)

TQ−1
0 (x0 − x̂0)

}
≤ 1 (C.2)

where Q0 > 0 is any given matrix. Thus, when k = 0,
x0 ∈ E (x̂0, Q0, nx) is satisfied.

Secondly, supposing that xk ∈ E (x̂k, Qk, nx) is true at
k > 0, we shall demonstrate that the following holds:

E
{
(xk+1 − x̂k+1)

TQ−1
k+1(xk+1 − x̂k+1)

}
≤ 1. (C.3)

Since xk ∈ E (x̂k, Qk, nx) is true, we have

E
{
(xk − x̂k)

TQ−1
k (xk − x̂k)

}
≤ 1. (C.4)

Consequently, it follows from [10] that there exists a
vector ϑk ∈ R

nϑ (E{ϑTk ϑk} ≤ 1) such that

xk = x̂k +Θkϑk (C.5)

where Θk is a factorization of Qk, i.e., Qk = ΘkΘ
T
k .

Substituting (C.5) into (C.1) yields

xk+1 − x̂k+1

=f(x̂k)− Fkx̂k −HkG1h(x̂k) + Ekξ
◦
k

+ (Φk −HkG1Ψk)Θkϑk + L1∆1Θkϑk
−HkG1L2∆2Θkϑk −Hkϕk + g(xk). (C.6)

Next, letting δ1,k , ∆1Θkϑk, δ2,k , ∆2Θkϑk and de-
noting a vector as

̟k ,

[

1 ϑTk δT1,k δ
T
2,k ϕ

T
k gT(xk)

]T

,

we can rewrite the dynamics of state estimation error
(C.6) as follows:

xk+1 − x̂k+1 = Σk̟k. (C.7)

On the other hand, the inequality E{ϑTk ϑk} ≤ 1 can be
equivalently expressed in terms of vector ̟k as

E{̟T
k U1̟k} ≤ 0 (C.8)

where U1 , diag{−1, Iϑ, 0, 0, 0, 0}.

Noting δ1,k = ∆1Θkϑk and δ2,k = ∆2Θkϑk, we can infer
from ‖∆1‖ ≤ 1 and ‖∆2‖ ≤ 1 that

δT1,kδ1,k = ϑTkΘ
T
k∆

T
1 ∆1Θkϑk ≤ ϑTkΘ

T
kΘkϑk, (C.9)

δT2,kδ2,k = ϑTkΘ
T
k∆

T
2 ∆2Θkϑk ≤ ϑTkΘ

T
kΘkϑk, (C.10)

which can be rewritten by

̟T
k U2̟k ≤ 0, (C.11)

̟T
k U3̟k ≤ 0, (C.12)

where U2 , diag{0,−ΘT
kΘk, Inl1

, 0, 0, 0} and U3 ,

diag{0,−ΘT
kΘk, 0, Inl2

, 0, 0}.

Likewise, we know from the inequality (9) that:

ϕT
k ϕk − ϕT

kGyk ≤ 0 ⇐⇒ ̟T
k Ψ̃k̟k ≤ 0. (C.13)

Taking the statistical property of the stochastic nonlin-
earity g(xk) into consideration, we obtain

E{gT(xk)g(xk)}

=x̂Tk

q
∑

l=1

̺l,k̺
T
l,kΥl,kx̂k + ϑTkΘ

T
k

q
∑

l=1

̺l,k̺
T
l,kΥl,kΘkϑk

+ x̂Tk

q
∑

l=1

̺l,k̺
T
l,kΥl,kΘkϑk + ϑTkΘ

T
k

q
∑

l=1

̺l,k̺
T
l,kΥl,kx̂k,

which is equivalent to E{̟T
k Λ̃k̟k} = 0.

We are now in a position to demonstrate that the in-
equality (C.3) is true for the time instant k > 0.

By means of Schur Complement Lemma [1], the inequal-
ity (23) is true if and only if

−Mk +ΣT
kQ

−1
k+1Σk ≤ 0, (C.14)

which implies

E
{
̟T

k Σ
T
kQ

−1
k+1Σk̟k −̟T

k diag{1, 0, 0, 0, 0, 0}̟k

}

−τ1,k̟
T
k U1̟k − τ2,k̟

T
k U2̟k − τ3,k̟

T
k U3̟k

−τ4,k̟
T
k Ψ̃k̟k − τ5,k̟

T
k Λ̃k̟k ≤ 0. (C.15)

Accordingly, we know that

E
{
̟T

k Σ
T
kQ

−1
k+1Σk̟k

}
≤ 1 (C.16)

which indicates that

E
{
(xk+1 − x̂k+1)

TQ−1
k+1(xk+1 − x̂k+1)

}
≤ 1. (C.17)

Thus, the induction is now accomplished and we con-
clude that xk ∈ E (x̂k, Qk, nx) holds for all k ∈ [0, N ].
The proof is now complete.

D Proof of Theorem 3

Proof: First, according to Lemma 1, we can knowdirectly
from (24) that the one-step-ahead estimation error ek
belongs to the ellipsoid E (0, Qk, nx), and therefore there
exists a random vector ϑk (E{ϑTk ϑk} ≤ 1) such that

ek = Θkϑk, Qk = ΘkΘ
T
k . (D.1)

Next, it is easy to see that the inequality (18) holds if
and only if

(E {Λiz̃
◦
k} − Λiψk)

2 ≤ (Λiβk)
2 . (D.2)

By defining a new vector ˜̟ k ,

[

1 E{ϑTk }
]T

, and taking

into account the fact that E{ϑTk }E{ϑk} ≤ E{ϑTk ϑk} ≤ 1,
we acquire

(E {Λiz̃
◦
k} − Λiψk)

2
− (Λiβk)

2

≤ (E {Λiz̃
◦
k} − Λiψk)

2
− (Λiβk)

2
+ λk − λkE{ϑ

T
k }E{ϑk}

= ˜̟ T
k

(
[

− (Λiβk)
2 + λk 0

0 −λkIϑ

]

+

[

−Λiψk

ΘT
kL

T
kΛ

T
i

]
[

−Λiψk ΛiLkΘk

] )

˜̟ k. (D.3)

Consequently, by means of Schur Complement Lem-
ma [1], it can be readily known from the inequality (25)
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that (E {Λiz̃
◦
k} − Λiψk)

2
− (Λiβk)

2
≤ 0 holds for all

i ∈ {1, 2, . . . , nz}. Therefore, the envelope constraint
defined in (18) is guaranteed at each time step k over
the horizon [0, N ]. The proof is now complete.
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