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Event-based Distributed Filtering over
Markovian Switching Topologies

Qinyuan Liu, Zidong Wang, Xiao He and D. H. Zhou

Abstract—In this paper, we consider the distributed filtering
problem for continuous-time stochastic systems over sensor
networks subject to Markovian switching topologies. Due to
limited communication energy and bandwidth, an event-based
communication scheme is proposed with the aim to decrease the
transmission frequency. An individual triggering condition is put
forward to regulate the communication rates for each component
of the system state in order to better reflect the engineering
requirements. The aim of this paper is to design a distributed
filter over sensor networks with Markovian switching topologies
such that the dynamics of the estimation error is exponentially
mean-square bounded. It is shown that, with the proposed
event-based distributed filtering algorithm, the exponential mean-
square boundedness of the estimation errors is guaranteed if
the sensor network is distributively detectable and the combined
communication topology is strongly connected. A numerical
example is presented to illustrate the usefulness of the developed
algorithm.

Index Terms—Sensor networks, distributed filtering, Marko-
vian switching topology, event-based scheme, exponential bound-
edness.

I. INTRODUCTION

Wireless sensor networks have been well recognized as
one of the most distinguished technological advances in the
past decades [3], [13]. Small and inexpensive sensors, which
are spread spatially over monitored regions, are connected
through wireless links to form sensor networks that work
as a foundation of various complicated applications such as
battlefield surveillance, traffic control, environmental monitor-
ing, machine health monitoring, and so on. A fundamental
issue of these applications is the distributed filtering, namely,
estimate the state vector of the target plant by exploiting noisy
observations taken from a group of sensors. This problem
has been widely investigated under various objectives, see, for
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example, [5], [12], [14] for optimal filter design and [34], [9]
for H∞ performance.

Although the wireless sensor network provides us with
unprecedented opportunities, the limitations of sensor devices
and wireless channels do introduce new challenges to the
distributed applications. For instance, the tendency of minia-
turization of modern sensors in general seriously restricts the
battery supply and colorred wireless bandwidth constraints
do not allow frequent communication. Therefore, resource-
efficient transmission schemes have been a focus of research
because of their explicit engineering insights in extending
the serving hours of sensor networks. Up to now, a number
of resource-efficient schemes have been developed in the
literature from various perspectives in order to preserve the
network resources. Such schemes include, but are not limited
to, optimal routing algorithms, sensor/estimator scheduling
strategies and event-based transmission approaches [26], [15].
Among others, special attention has been paid to the event-
based communication strategy because of its cost effective-
ness. A guiding ideology behind such a strategy is to reduce
the communication frequency through introducing an event
generator to decide whether the signals shall be sent to the
estimator/controller or not. Recently, a rich body of research
results has been reported in the literature on the event-based
communication problems, see e.g., [15], [8], [20], [6], [29].
To be specific, in [29], the stability has been investigated for
event-based networked control systems. By transforming the
event-induced error into a system delay model, a sufficient
condition that guarantees the stability of closed-loop systems
has been obtained by utilizing linear matrix inequalities. In
[15], the event-based distributed filtering problems have been
considered in order to obtain the optimal estimation. Note that,
it is generally impossible to compute the error covariance in
a closed form primarily due to the event-induced error, and
an alternative way is therefore to design the suboptimal filters
by minimizing certain upper bound of error covariance.

It has now been well recognized that the communication
networks may suffer from some degree of topological changes
due to potentially harsh, uncertain, and dynamic wireless
environments, and this gives rise to the so-called dynamic
topology problem that have drawn considerable research in-
terest in the context of consensus problems for multi-agent
systems, see e.g., [25], [28], [33], [30], [4]. In [28], the
stochastic link failure, which stems from the irregular detection
areas of agents during the information exchange, has been
thoroughly investigated. The dynamically changing interaction
topologies have been addressed in [25], where the consensus
has been shown to be achieved if the union of the directed
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interaction graphs has a spanning tree. As for the stochastic 
topologies, it has been proved in [33] that the mean topology 
determines whether the consensus of single-integrator agent 
can be achieved, and this result has then been extended to the 
case of Markovian switching topology in [30]. Although the 
issue of stochastically switching topologies has been attracting 
more attention in the community of multi-agent systems, the 
corresponding results concerning distributed filtering problems 
are scattered despite the profound application insights of 
wireless sensor networks.

Recently, some results have been available in the literature 
on the event-based distributed filtering problems, see e.g. [23],
[16]. Nonetheless, under the Markovian switching topologies, 
the topologies may stochastically change among a set of 
disconnected graphs at every sampling instant, which sub-
stantially impedes the information exchange between sensors 
and thus hinders the cooperation of the distributed filters. 
Consequently, in order to guarantee the satisfactory filtering 
performance (e.g. mean-square boundedness of the estimation 
errors) for the distributed filtering dynamics, there is an 
urgent need to develop algorithms capable of accommodating 
the topology switching while achieving adequate estimation 
accuracy. As such, the focus of this paper is on the event-based 
distributed filtering problems for wireless sensor networks over 
Markovian switching topologies.

The main challenges we are facing can be highlighted as 
follows: 1) how to define the triggering rule for each state 
with an individual threshold; 2) what is the influence of 
the Markovian switching topologies on the distributed filters; 
and 3) under which conditions the exponential mean-square 
boundedness of the estimation error dynamics for the dis-
tributed filtering system can be guaranteed? These challenges 
are properly handled in this paper by developing a novel 
event-based distributed filtering algorithm. Specifically, a set 
of distributed event schedulers are deployed in every sensor 
to check its individual state so that the communication is 
only executed whenever an individual triggering condition is 
satisfied. By exploiting the stochastic analysis techniques and 
the graph theory, we conclude that the event-based distributed 
filters with Markovian switching topologies can achieve ex-
ponential mean-square boundedness if the sensor network is 
distributively detectable and the combined interaction topology 
is strongly connected. A numerical example is utilized to 
demonstrate the practical significance of the developed algo-
rithm.

Notations. The notations used in this paper are standard 
(or otherwise will be clarified as we proceed). Rn denotes 
the n-dimensional Euclidean space, Rn×m is the set of all 
n × m matrices and R+ represents the set of all positive 
real numbers. E{x} denotes the mathematical expectation 
of a random vector x, E{x|y} represents the conditional 
expectation of x given y and P{·} stands for the occurrence 
probability of the event “·”. We refer to col{x1, x2, · · · , xn} 
as the column vector {x′

1, x′
2 · · · , x′

n}
′ and 0n×m as a n ×m 

zero matrix. diag{x1, x2, · · · , xn} is a block diagonal matrix 
with the ith block being xi and all other entries being zero. 
λmax(A) (λmin(A)) is the eigenvalue of the matrix A with 
the largest (smallest) modulus. δ(·) represents a Dirac delta

function with the properties

δ(t) =

{
0 for t 6= 0

∞ for t = 0
and

∫ ∞

−∞

δ(t)dt = 1.

II. PROBLEM FORMULATION

A. The Markovian switching topology

Directed graphs can be utilized to describe the communica-
tion connections of the individual sensors in sensor networks.
A directed graph is denoted by G = (V , E ,A) with a vertex
set V ={v1, v2, · · · , vN}, an edge set E ⊆ V × V , and an
adjacency matrix A= [aij ]N×N with nonnegative elements
aij . The edge set represents the topology connections between
nodes. Note that (vi, vj) ∈ E , if and only if aij > 0,
indicating that the ith node can receive the data from the
jth node. We do not allow the self-loops, namely, aii = 0,
∀i ∈ V . The set of neighbors of ith node is denoted by
Ni = {vj ∈ V|(vi, vj) ∈ E}. The Laplacian matrix for G
is defined as H = D−A, where D = diag{d1, d2 · · · , dN} is
a diagonal matrix with the entries di =

∑N

j=1 aij . The graph
is said to be strongly connected if every node is reachable
from every other node.

In the paper, we suppose that the sensor nodes are de-
ployed with the communication connections subject to a set
of time-varying graphs G(r(t)) = (V , E(r(t)),A(r(t))). The
evolution of the graph G(r(t)) is governed by a homogeneous
continuous-time Markov process {r(t)} (with right continuous
trajectories) taking values on a finite set S = {1, 2, · · · , S}. As
such, we have the corresponding adjacency matrix A(r(t)), the
set of neighbors Ni(r(t)) and the Laplacian matrix H(r(t)).
The transition probabilities of the Markov process are given
by:

P{r(t+∆t) = j|r(t) = i} =

{
πij∆t+ o(∆t), if i 6= j

1 + πii∆t+ o(∆t), elsewise

where [πij ]S×S is a finite-dimensional transition rate matrix
of the Markov chain with πij ≥ 0 for i 6= j and πii =
−
∑

j 6=i πij . The term o(∆t) represents an infinitesimal of
higher order than ∆t, i.e., lim∆t→0 o(∆t)/∆t = 0.

B. The wireless sensor network

Consider the target plant described by the following non-
linear continuous-time stochastic system:

ẋ(t) = f(x(t), t) + b(t)w(t), (1)

where x(t) = (x1(t), x2(t), · · · , xn(t))
′ ∈ Rn is the internal

state of the plant, f(x) = (f1(x), f2(x), · · · , fn(x))′ ∈ Rn

is a nonlinear function which contributes to the dynami-
cal evolution of the target plant, b(t) = (b1(t), b2(t), · · · ,
bn(t))

′ ∈ Rn represents the noise intensity, and w(t) is a scalar
Gaussian random variable with zero mean and autocorrelation
E{w(t)w(t + τ)} = δ(τ).

For every i ∈ V , the measurement of sensor i is given as
follows:

yi(t) = Cix(t) + vi(t)ζi(t), (2)
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where yi(t) ∈ Rmi is the measurement signal, vi(t) = (vi1(t), 
vi2(t), · · · , vin(t))′ ∈ Rn represents the noise intensity, and 
ζi(t) ∈ R is a scalar Gaussian random variable with zero mean 
and autocorrelation E{ζi(t)ζj (t+τ)} = δ(i−j)δ(τ). Ci is the 
measurement matrix of appropriate dimensions. The random 
variables r(t), w(t) and ζi(t) are mutually independent, and 
the components of the vectors b(t) and vi(t) are bounded, 
i.e., 0 < bk(t) ≤ b̄k and 0 < vik(t) ≤ v̄ik, for i ∈ V and 
k = 1, 2, · · · , n, where b̄k and v̄ik are positive scalars. The 
system (1)-(2) under consideration is assumed to satisfy the 
following assumptions.

Assumption 1 ([32]): The nonlinear function f(·) : Rn → 
Rn is analytic everywhere and satisfies the following condition

(x− y)′P (f(x, t)− f(y, t)−∆(x − y))

≤ −η(x− y)′(x− y), ∀x, y ∈ R
n

(3)

where P = diag{p1, p2, · · · , pn}, ∆ = diag{δ1, δ2, · · · , δn},
and η, pi, δi are positive scalars.

Assumption 2: The continuous-time Markov process {r(t)}
with the transition rate matrix [πij ]S×S is ergodic.

Remark 1: Under the ergodic assumption, the state of the
Markov process can be reached from any other state and, for
any initial distribution, there always exists a unique stationary
distribution {π̄i > 0, i ∈ S} with

∑n

i=1 π̄i = 1. Moreover,
when the Markov process is started off initially with such a
stationary distribution, the distribution will be invariant over
time.

C. The event-based distributed filter

A fundamental issue of the filtering problems is to estimate
the state vector x(t) based on the noisy measurements. It is
noted that, different from the classical single filter case, the
target plant is now observed by a group of smart sensors,
and the estimation is carried out in every sensor node in a
distributive fashion. Due to the physical limitations of the
sensors, the individual sensor usually has insufficient abilities
to estimate the plant state based on the local measurements
only. To achieve high accuracy estimation, we need to utilize
the complementary messages gathered from all the local and
neighboring nodes. As such, the distributed filtering algorithm
is chosen as follows:




dx̂i(t)

dt
= f(x̂i(t), t) + cLi(yi(t)− Cix̂i(t))

+ c
∑

j∈Ni(r(t))

aij(r(t))(x̂j (t)− x̂i(t))

x̂i(0) = 0

(4)

where x̂i(t) ∈ Rn is the local estimate of the full state vector
x(t) from the ith sensor. The filter gain Li ∈ Rn×m and the
strength c ∈ R are parameters to be designed. According to
the above structure, every sensor calculates the local estimate
based on its measurements yi(t) as well as the estimates x̂i(t)
received from the neighboring sensors.

When taking the energy and bandwidth restrictions into
account, some new challenges arise for the distributed filtering
problem. As shown in (4), in order to compute the local
state estimates, one needs to use the real-time neighboring

estimates transmitted via wireless networks. Note that the
network communication constitutes one of the main sources
for the consumption of the constrained resources. Too frequent
transmissions will inevitably put more burden on the network
and deteriorate the network performance leading to some unfa-
vorable phenomena such as packet losses and communication
delays. As such, in this paper, an event-based scheme is
introduced to determine whether the local information will be
broadcast or not.

To begin with, we define a sequence of event instants
for the sth entry of the estimate x̂i(t) (i.e., x̂i,s(t)) by
a monotonically increasing sequence 0 = t0i,s < t1i,s <
t2i,s < · · · and the broadcast is triggered only at these event
instants. Such a sequence is determined iteratively on-line
according to the following rule tk+1

i,s = inf{t ∈ R+|t >

tki,s, ~i,s(x̂i,s(t), x̂i,s(t
k
i,s), t) > 0}, where the event function

~i,s(·) : R× R× R+ → R is chosen to be

~i,s(x̂i,s(t), x̂i,s(t
k
i,s), t) = (x̂i,s(t)− x̂i,s(t

k
i,s))

2 − σi,s

for i ∈ V and s = 1, 2, · · · , n with the individual thresholds
σi,s being positive scalars. From the above event-based mech-
anism, it can be seen that, whenever the triggering condition
~i,s(x̂i,s(t), x̂i,s(t

k
i,s), t) > 0 is satisfied, a broadcast of x̂i,s(t)

is triggered with the marked event instant tk+1
i,s such that

x̂i,s(t) = x̂i,s(t
k+1
i,s ) and thus that ~i,s(x̂i,s(t), x̂i,s(t

k+1
i,s ), t)

is equal to −σi,s. As such, the following inequalities are
always true

~i,s(x̂i,s(t), x̂i,s(t
k
i,s), t) ≤ 0.

For the purpose of clarity, we augment all
the components at the latest event instants
x̂t
i(t) , col

{
x̂i,1(t

ki,1(t)
i,1 ), · · · , x̂i,n(t

ki,n(t)
i,n )

}
. where

ki,j(t) = max{κ ∈ N | tκi,j < t}. According to the
event-based mechanism, let us revise (4) by only using the
neighboring information at their latest event instants. In the
event-based case, the distributed filter is given as follows:

dx̂i(t)

dt
= f(x̂i(t),t) + cLi(yi(t)− Cix̂i(t))

+ c
∑

j∈Ni(r(t))

aij(r(t))(x̂
t
j (t)− x̂t

i(t)),

(5)

which is further rewritten as below:

dx̂i(t)

dt
=f(x̂i(t), t)− c

N∑

j=1

hij(r(t))x̂
t
j(t)

+ cLi(yi(t)− Cix̂i(t)), (6)

where hij(r(t)) is the (i, j)th element of the Laplacian matrix
H(r(t)) associated with the graph G(r(t)).

Denote the event-induced and estimation errors by eti(t) ,
x̂t
i(t) − x̂i(t) and ei(t) , x̂i(t) − x(t), respectively. By

subtracting (6) from (1), we can obtain the dynamics of the
estimation error as follows:

dei(t)

dt
= f(x̂i(t), t)− f(xi(t), t)− cLiCiei(t)
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− c

N∑

j=1

hij(r(t))ej(t) + cLivi(t)ζi(t)

− c
N∑

j=1

hij(r(t))e
t
j(t)− b(t)w(t). (7)

Before proceeding, we introduce the following definition for
the exponential mean-square boundedness.

Definition 1: The dynamics of the estimation error in (7) is
said to be exponentially bounded in mean square if there exist
real numbers ρ > 0, τ > 0 and µ > 0 such that

N∑

i=1

E{‖ei(t)‖
2} ≤ ρe−τt

N∑

i=1

E{‖ei(0)‖
2}+ µ. (8)

where τ is the decay rate and µ is the ultimate bound.
Remark 2: It is noteworthy that the mean-square bound-

edness of error dynamics could be regarded as an important
criterion judging whether the filtering algorithm is feasible or
not, and therefore it is widely considered in many works, see
for example [7], [10], [21].

The objective of this paper is to design the parameter c and
the filter gains Li for each sensor such that the dynamics of
the distributed estimation error (7) is exponentially bounded
in the mean-square sense.

III. MAIN RESULTS

In this section, a sufficient criterion will be established
to guarantee the exponential mean-square boundedness of
the estimation errors for the proposed event-based distributed
filtering algorithm over Markovian switching topologies.

A useful lemma is presented as follows.
Lemma 1 ([31]): Suppose that a directed graph G with the

Laplacian matrix H is strongly connected. Then, there exists
a positive vector ξ = (ξ1, ξ2, · · · , ξN )′ such that ξ′H = 0.
Furthermore, (H)s , (ΞH + H ′Ξ) is a symmetric matrix
with zero row sum, where Ξ = diag{ξ1, ξ2, · · · , ξN}.

To continue the discussion, we need to introduce the defi-
nition for the distributive detectability as follows,

Definition 2: A sensor network described by (1)-(2) is
said to be distributively detectable if there exist matrices Li

satisfying

PLiCi + C′
iL

′
iP ≥ 2

∑

k∈Mi

Θik,

⋃

∀i∈V

Mi = {k}nk=1,
(9)

where P is a positive definite diagonal matrix defined in
Assumption 1, Mi is any arbitrary subset of {k}nk=1, and
Θik is a diagonal matrix of the form

Θik , diag{0, · · · , 0,︸ ︷︷ ︸
k−1

γik, 0, · · · , 0︸ ︷︷ ︸
n−k

},

with a positive real number γik > 0.
Remark 3: For linear time-invariant systems, it has been

shown that the mean-square boundedness can be achieved
when (A,C) is distributively observable, where C =
[C1;C2; ...;Cm]. Unfortunately, as the system in (1) has

nonlinear dynamics, the observability of linear time-invariant
systems is inapplicable. In this case, we need to establish
another type of distributive detectability to guarantee the
boundedness of the estimation error dynamics.

The distributive detectability property plays an essential
role in guaranteeing the boundedness of the estimation error
dynamics. For a distributive detectable system, the following
condition always holds:

x′(t)P
(
LiCix(t)

)
≥

∑

k∈Mi

γikx
′
k(t)xk(t), (10)

from which we can see that the kth (k ∈ Mi) entry of the state
vector can be extracted by sensor i. Notice that the union of all
the subsets equals to the whole set, i.e.,

⋃
∀i∈V Mi = {k}nk=1.

In this case, we will show that the sensor network can complete
the distributed estimation from a cooperative perspective.

For simplicity, we introduce the notations
e(t) , [e′1(t), e

′
2(t), · · · , e′N(t)]′, et(t) ,

[(et1(t))
′, (et2(t))

′, · · · , (etN (t))′]′, ẽk(t) ,

[e1,k(t), e2,k(t), · · · , eN,k(t)]
′ and Θ̂ik ,

diag{0, · · · , 0,︸ ︷︷ ︸
i−1

γik, 0, · · · , 0︸ ︷︷ ︸
N−i

}, where ei,k(t) is the kth

element of the vector ei(t). Additionally, we denote the set
gathering all the sensors that can extract the kth entry of the
target state by M−

k , {i : k ∈ Mi, for i ∈ V}.
When the sensor network has the distributive detectabil-

ity as defined in Definition 2, it can be verified that⋃
∀k∈{1,··· ,n} M

−
k = V . Furthermore, the ergodicity of the

Markov chain ensures that there exists a unique stationary
distribution {π̄i > 0, i ∈ S}. Without loss of generality, we
assume that the Markov process starts from such a stationary
distribution. As such, it can be seen that P{r(t) = i} =
π̄i > 0, ∀t ≥ 0. Moreover, we define the weighted Laplacian
matrix as Ĥ ,

∑S

l=1 π̄lH(l) whose corresponding graph
is called the combined graph. According to Lemma 1, we
can compute the matrix Ξ with respect to the weighted
matrix Ĥ if the combined graph is strongly connected. Let
ξ− = min{ξ1, ξ2, · · · , ξn}, ξ+ = max{ξ1, ξ2, · · · , ξn}, p− =
min{p1, p2, · · · , pn}, and p+ = max{p1, p2, · · · , pn}.

Now, we are in the position to obtain a sufficient condition
for the exponential mean-square boundedness in the following
theorem.

Theorem 1: Consider the system (1)-(2) subject to Marko-
vian switching topologies. Under Assumptions 1-2, if the
following criteria

(2pkδk + 1)Ξ− c


pkĤ +

∑

i∈M−

k

Θ̂ik




s

< 0 (11)

are satisfied for k = 1, 2, · · · , n, then the filtering error
dynamics (7) is exponentially mean-square bounded with the
decay rate τ < 2η/p+ and the ultimate bound µ = µ̃/τξ−p−

where

µ̃ =
N∑

i=1

n∑

k=1

ξipk b̄
2
k + c2p+

N∑

i=1

n∑

k=1

ξiλmax(L
′
iLi)v̄

2
ik

+ c2ξ+λmax(Ĥ
′Ĥ)

N∑

i=1

n∑

k=1

pkσi,k. (12)
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Proof: Construct the following Lyapunov-like function 
for system (7):

V (e(t), j) =

N∑

i=1

ξie
′
i(t)Pjei(t). (13)

where Pj are positive definite matrices. Denote the infinitesi-
mal operator L(·) of the random process {e(t), r(t)} by

LV (e(t), j)

, lim
∆t→0+

1

∆t

{
E{V (e(t+∆t), r(t +∆t))|r(t) = j, e(t)}

− V (e(t), j)
}
,

then, we have (see [19], [22])

LV (e(t), j)

=
N∑

i=1

{
2ξie

′
i(t)Pj

(
f(x̂i(t), t)− f(xi(t), t)

− c
N∑

j=1

hij(r(t))ej(t)− c
N∑

j=1

hij(r(t))e
t
j(t)

− cLiCiei(t)
)
+ c2ξiv

′
i(t)L

′
iPjLivi(t)

+ ξib
′(t)Pjb(t)

}
+

S∑

l=1

πjlV (e(t), l). (14)

From Assumption 1, we have

e′i(t)P
(
f(x̂i(t), t)− f(xi(t), t)

)

≤ −ηe′i(t)ei(t) + e′i(t)P∆ei(t). (15)

Moreover, through some algebraic manipulations, it can be
verified that

2

N∑

i=1

ξie
′
i(t)P∆ei(t)

= 2

N∑

i=1

n∑

k=1

ξie
′
i,k(t)pkδkei,k(t)

= 2

n∑

k=1

pkδkẽ
′
k(t)Ξẽk(t), (16)

and

2

N∑

i=1

ξie
′
i(t)P

(
c

N∑

j=1

hij(r(t))ej(t)
)

= 2c

N∑

i=1

N∑

j=1

n∑

k=1

ξie
′
i,k(t)pkhij(r(t))ej,k(t)

= c

n∑

k=1

pkẽ
′
k(t)(H(r(t)))s ẽk(t), (17)

where (H(r(t)))s = ΞH(r(t))+H ′(r(t))Ξ. Furthermore, we
have

N∑

i=1

ξib
′(t)Pb(t) =

N∑

i=1

n∑

k=1

pkξib
′
k(t)bk(t)

≤
N∑

i=1

n∑

k=1

pkξib̄
2
k. (18)

and
N∑

i=1

c2ξiv
′
i(t)L

′
iPLivi(t)

≤ c2p+
N∑

i=1

n∑

k=1

ξiλmax(L
′
iLi)v

′
ik(t)vik(t)

≤ c2p+
N∑

i=1

n∑

k=1

ξiλmax(L
′
iLi)v̄

2
ik. (19)

Note that the Markov process {r(t)} starts from the invari-
ant distribution {π̄i > 0, i ∈ S}. According to [19] and [24],
we have

E {LV (e(t), r(t))} =

S∑

j=1

E {LV (e(t), j)π̄j} .

Letting Pi = P . Substituting (14)-(19) into the above equa-
tions and together with

∑S

j=1 πij = 0, we obtain

E {LV (e(t), r(t))}

≤ E

{
− 2η

N∑

i=1

ξie
′
i(t)ei(t)

}
− E

{
2c

N∑

i=1

ξie
′
i(t)PLiCiei(t)

}

+ E

{
2

n∑

k=1

pkẽ
′
k(t)

(
2δkΞ− c(Ĥ)s

)
ẽk(t)

}

+ E

{
2

N∑

i=1

ξie
′
i(t)P

(
c

N∑

j=1

ĥije
′
j(t)

)}

+
N∑

i=1

n∑

k=1

c2p+ξiλmax(L
′
iLi)v̄

2
ik +

N∑

i=1

n∑

k=1

pkξib̄
2
k, (20)

where ĥij is the (i, j)th element of the matrix Ĥ. Invoking
the basic inequality (x+ y)′(x+ y) ≥ 0, one derives that

− 2
N∑

i=1

ξie
′
i(t)P

(
c

N∑

j=1

ĥije
t
j(t)

)
≤

N∑

i=1

ξie
′
i(t)Pei(t)

+

N∑

i=1

ξi

(
c

N∑

j=1

ĥije
t
j(t)

)′

P
(
c

N∑

j=1

ĥije
t
j(t)

)
. (21)

The second term in the right-hand side of the above inequality
can be rewritten as follows:

N∑

i=1

ξi

(
c

N∑

j=1

ĥije
t
j(t)

)′

P
(
c

N∑

j=1

ĥije
t
j(t)

)

= c2et(t)′
(
(Ĥ ′ΞĤ)⊗ P

)
et(t)

≤ c2ξ+λmax(Ĥ
′Ĥ)

N∑

i=1

n∑

k=1

pkσi,k, (22)

where the last inequality follows from
~i,s(x̂i,s(t), x̂i,s(t

(i,s)
k ), t) ≤ 0. Substituting (21)-(22)

into (20) yields that

E {LV (e(t), r(t))}

≤ E

{ n∑

k=1

pkẽ
′
k(t)

(
2δkΞ− c(Ĥ)s + Ξ

)
ẽk(t)

}
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− E

{
2c

N∑

i=1

ξie
′
i(t)PLiCiei(t)

}
+ µ̃

− E

{
2η

N∑

i=1

ξie
′
i(t)ei(t)

}
, (23)

By utilizing the distributed detectability of the sensor net-
work (9), we obtain

− 2

N∑

i=1

ξie
′
i(t)P

(
cLiCiei(t)

)

≤ −2c

N∑

i=1

∑

k∈Mi

γikξie
′
i,k(t)ei,k(t)

= −2c
n∑

k=1

∑

i∈M−

k

γikξie
′
i,k(t)ei,k(t)

= −2c

n∑

k=1

ẽ′k(t)
(
Ξ

∑

i∈M−

k

Θ̂ik

)
ẽk(t). (24)

As such, when the condition in (11) is fulfilled, the following
inequality can be derived

E {LV (e(t), r(t))} ≤ −2ηE
{ N∑

i=1

ξie
′
i(t)ei(t)

}
+ µ̃. (25)

To further prove the exponential mean-square boundedness,
we construct a new function as follows:

V (t, e(t), r(t)) , eτtV (e(t), r(t)),

where τ > 0 is a constant to be determined later. It is
straightforward to show that

E{LV (t, e(t), r(t))}

= eτtE{LV (e(t), r(t))} + τeτtE{V (e(t), r(t))}.

Note that

E{V (e(t), r(t))} ≤ p+E
{ N∑

i=1

ξie
′
i(t)ei(t)

}
.

Choosing τ < 2η/p+, in conjunction with (25), it is not
difficult to prove that

E{LV (t, e(t), r(t))}

≤ (−2η + τp+)eτtE
{ N∑

i=1

ξie
′
i(t)ei(t)

}
+ eτtµ̃ ≤ eτtµ̃.

By using the generalized Itô formula [1], one has

E {V (t, e(t), r(t))}

= E {V (0, e(0), r(0))}+

∫ t

0

E {LV (s, e(s), r(s))} ds

≤ E {V (e(0), r(0))} + µ̃

∫ t

0

eτsds. (26)

Obviously, we have E{V (e(t), r(t))} ≥
ξ−p−

∑N

i=1 E{‖ei(t)‖
2} and E{V (e(0), r(0))} ≤

ξ+p+
∑N

i=1 E{‖ei(0)‖
2}. Thus, from (26), it follows

that
N∑

i=1

‖ei(t)‖
2 ≤

ξ+p+

ξ−p−
e−τt

N∑

i=1

‖ei(0)‖
2 + µ,

which eventually implies that the distributed filtering system
is exponentially mean-square bounded. The proof is complete.

The following corollary is readily accessible from Theorem
1.

Corollary 1: Consider the event-based distributed filtering
system over Markovian switching topologies. If the sensor
network is distributively detectable and the union of the graphs
{G1, · · · ,GS} is strongly connected, then by choosing the
parameter

c > max
k

(2pkδk + 1)ξ+

λmin

{(
pkĤ +

∑
i∈M−

k
Θ̂ik

)s} . (27)

the filtering error dynamics (7) is exponentially mean-square
bounded.

Proof: Because of the distributive detectability of the
sensor networks, every component of the state can be observed
by at least a sensor node, i.e., M−

k 6= ∅, for k = 1, 2, · · · , n,
where ∅ represents an empty set. Since the combined graph
is strongly connected, the weighted Laplacian matrix Ĥ is
irreducible. According to Lemma 1, it is not hard to verify
that the matrix (pkĤ)s is a new symmetric Laplacian ma-
trix with the eigenvalues satisfying λN ((pkĤ)s) ≥ · · · ,≥
λ2((pkĤ)s) > λ1((pkĤ)s) = 0. As a result, we have(
pkĤ +

∑
i∈M−

k
Θ̂ik

)s

> 0. To this end, it can be seen that,
if we choose c according to (27), then the criteria (11) is
satisfied and therefore the dynamics of the estimation error is
exponentially mean-square bounded, which ends the proof.

Remark 4: In the proposed distributed filter, there are
two parameters (i.e., strength c and filter gains Li) waited
to be designed, where Li can be obtained by solving
the inequalities in (9) and c can be determined based on
(27) in Corollary 1. That is to say, if the conditions in
Corollary 1 are satisfied, then by choosing the parameter

c > maxk (2pkδk + 1)ξ+/λmin

{(
pkĤ +

∑
i∈M−

k
Θ̂ik

)s}
,

the filtering error dynamics must be exponentially mean-
square bounded.

Remark 5: Note that the threshold σi,s determines the size
of an event domain. A large σi,s will result in the increase
of ultimate bound µ̃ (see (12)) while usually reduce the
communication frequency. Particularly, when the thresholds
σi,s = 0, the event-based transmission strategy reduces to the
classical clock-driven one.

Remark 6: Although the model under investigation is not
general for all the real plants, it can describe a lot of practical
systems such as three-tank systems [36] and wind turbine
systems [17]. The goal of this paper is to establish an explicit
condition guaranteeing the mean-square boundedness of the
estimation error. Unfortunately, the nonlinear output would
significantly complicate the analysis process making it very
difficult to obtain an explicit condition. Therefore, the model
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Figure 1. (a) and (b) are the topology of G1 and G2, respectively. (c) is the
topology of the combined graph. The combined graph is strongly connected,
while neither the separated topology is.

with nonlinear output is beyond the scope of current paper,
but it represents a potential topic for our future research.

Remark 7: For estimator design problems of stochastic non-
linear systems subject to Brownian perturbations, an excellent
work [18] has been carried out which provides a rigorous
mathematical proof of the finite-time input-to-stabilization
of the estimation error dynamics. Different from [18], we
consider the distributed state estimation in this paper where
the nonlinear stochastic system under consideration is subject
to both Brownian perturbations and Markovian switching
topologies.

IV. NUMERICAL EXAMPLE

In this section, a numerical example is provided to demon-
strate the applicability of the proposed filtering technique.

The sensor network under consideration is composed
of N = 4 nodes. The directed graphs G(r(t)) =
(V , E(r(t)),A(r(t))) with r(t) ∈ {1, 2} are depicted in Fig. 1.
The adjacency matrices A1 and A2 are given by

A1 =




0 0 0 0
1 0 0 0
0 0 0 1
0 1 0 0


 , A2 =




0 0 1 1
0 0 0 0
0 0 0 1
0 0 0 0


 .

The transmission probability matrix is chosen to be

[πij ]2×2 =

[
−1 1
1 −1

]
.

Suppose that the initial distribution of the Markov process
obeys an invariant distribution π̄1 = 0.5 and π̄2 = 0.5. The
dynamics of the target system is

{
ṡ = −s+ 0.2132α+ 0.1521s2α2 + b1w,

α̇ = −0.5000α− 0.1018α3 + b2w,

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

t

√

∑

4 i
=

1
E

[e
i
(t

)]
2

Figure 2. The evolution of the mean-square error

where s represents the position and α is the velocity with the
respective initial values −3.70 and 5.50. It is not hard to verify
that the above dynamics satisfies the constraint in Assumption
1 with P = diag{1, 1}, ∆ = diag{8, 7}, and η = 0.01. The
measurement matrices are chosen to be

C1(k) = [10 0], C2(k) = [0 2], C3(k) = [5 0], C4(k) = [0 1].

Other parameters are set to be σik = 0.2, b̄k = 1, and
v̄ik = 1, for k = 1, 2 and i = 1, 2, 3, 4. Furthermore, the filter
gains Li are designed as follows

L1(k) = [1 0], L2(k) = [0 3], L3(k) = [2 0], L4(k) = [10 0].

such that the sensor network is distributively detectable. Ac-
cording Lemma 1, one can obtain

Ξ = diag{0.3288, 0.6576, 0.1644, 0.6576}

From the results of Corollary 1, it is not hard to verify
that the criteria (11) can be fulfilled by choosing the strength
c = 2. For the sake of simulating the proposed event-based
distributed filtering algorithm, we set the simulation step dt to
be 0.01s and examine the triggering conditions at each step.

The simulation result is presented in Fig. 2, which depicts
the trajectories of the mean-square error of the distributed
filters under 1000 independent experiments. The result shows
that the estimation error of the distributed filters interacting
over Markovian switching topologies is exponentially mean-
square bounded. Additionally, the number of events among
2000 steps is presented in Table I, from which we confirm
that the communication frequency has been greatly reduced.

Table I
TRIGGERING TIMES IN TOTAL 2, 000 STEPS

Sensor 1th 2th 3th 4th
First element 321 375 747 413

Second element 1130 705 1084 1286
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V. CONCLUSION

This paper has addressed the event-based distributed filter-
ing problems over Markovian switching networks. To focus 
on specific components of the target state, we have intro-
duced individual triggering conditions by utilizing individual 
thresholds for different components. We have shown that the 
exponential mean-square boundedness of distributed estima-
tion error is always achieved if the sensor network is distribu-
tively detectable as a whole and the combined communication 
topology is strongly connected. Finally, the validity of the 
proposed filtering strategy has been illustrated via numerical 
simulation. We note that the proposed distributed filter is 
only valid when the nonlinear function f(x(t), t) satisfies 
Assumption 1 and the measurement output y(t) is linear. Then, 
a relevant research topic is to investigate the distributed filter 
design problem for general nonlinear systems based on the 
Takagi-Sugeno fuzzy model as [17]. Moreover, another future 
research topic would be the extension of our main results to 
more complex situations such as considering time delay or 
quantization effect in the communication process [27], [2],
[35].
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[6] F. Forni, S. Galeani, D. Nešiċ, and L. Zaccarian. Event-triggered trans-
mission for linear control over communication channels, Automatica,
vol. 50, no. 2, pp. 490–498, 2014.

[7] G. Battistelli and L. Chisci, KullbackCLeibler average, consensus on
probability densities, and distributed state estimation with guaranteed
stability, Automatica, vol. 50, no. 3, 707–718, 2014.

[8] W. Heemels, M. Donkers, and A. Teel, Periodic event-triggered control
for linear systems, IEEE Trans. Automatic Control, vol. 58, no. 4,
pp. 847–861, 2012.

[9] C. Huang, D. W. C. Ho, and J. Lu, Partial-information-based distributed
filtering in two-targets tracking sensor networks, IEEE Transactions on
Circuits and Systems I - Regular Papers, vol. 59, no. 4, pp. 820-832,
2012.

[10] K. Reif, S. Gunther, E. Yaz, and R, Unbehauen, Stochastic stability
of the discrete-time extended Kalman filter, IEEE Trans. on Automatic
control, vol. 44, no. 4, pp. 714–728, 1999.

[11] B. Kim and R. Baldick, A comparison of distributed optimal power flow
algorithms, IEEE Trans. Power Systems, vol. 15, no. 2, pp. 599–604,
2000.

[12] W. Li, Y. Jia, and J. Du, Distributed Kalman consensus filter with
intermittent observations, Journal of the Franklin Institute, vol. 352,
no. 9, pp. 3764–3781, 2015.

[13] Q. Liu, Z. Wang, X. He, and D. H. Zhou, On Kalman-consensus filtering
with random link failures over sensor networks, IEEE Trans. Automatic
Control, DOI: 10.1109/TAC.2017.2774601, 2017.

[14] Q. Liu, Z. Wang, X. He, G. Ghinea, and F. E. Alsaadi, A resilient
approach to distributed filter design for time-varying systems under
stochastic nonlinearities and sensor degradation, IEEE Trans. on Signal
Processing, vol. 65, no. 5, pp. 1300–1309, 2017.

[15] Q. Liu, Z. Wang, X. He, and D. Zhou, Event-Based recursive distributed
filtering over wireless sensor networks, IEEE Trans. Automatic Control,
vol. 60, no. 9, pp. 2470–2475, 2015.

[16] Q. Liu, Z. Wang, X. He, and D. Zhou, Event-based filtering with
individual triggering thresholds in wireless sensor network: Distributed
detectability analysis, IEEE Proc. 34th Chinese Control Conference,
Hangzhou, P. R. China, pp. 1734–1739, 2015.

[17] X. Liu, Z. Gao, and Z. Q. Chen, Takagi-Sugeno fuzzy model based fault
estimation and signal compensation with application to wind turbines,
IEEE Trans. on Industrial Electronics, vol. 64, no. 7, pp. 5678–5689,
2017.

[18] X. Liu and Z. Gao, Robust finite-time fault estimation for stochastic
nonlinear systems with Brownian motions, Journal of the Franklin
Institute, vol. 354, no. 6, pp. 2500–2523, 2017.

[19] W. Li and Z. Wu, Output tracking of stochastic high-order nonlinear
systems with Markovian switching, IEEE Trans. Automatic Control,
vol. 58, no. 6, pp. 1585–1590, 2013.

[20] M. Lemmon, Event-triggered feedback in control, estimation, & op-
timization. In A. Bemporad, M. Heemels and M. Johansson (Eds.),
Networked control systems, London: Springer, pp. 293–358, 2010.

[21] Y. Li, Y. Sun and F. Meng, New criteria for exponential stability of
switched time varying systems with delays and nonlinear disturbances,
Nonlinear Analysis:Hybrid Systems, vol. 26, pp. 284–291, 2017.

[22] X. Mao, Exponential stability of stochastic delay interval systems with
Markovian switching, IEEE Trans. Autom. Control, vol. 47, no. 10,
pp. 1604–1612, Oct. 2002.

[23] X. Meng and T. Chen, Optimality and stability of event triggered
consensus state estimation for wireless sensor networks, IEEE Proc.
2014 American Control Conference, Portland, Oregon, USA, pp. 3565–
3570, 2014.

[24] S. M. Ross, Stochastic Processes, New York: Wiley, 1996.
[25] W. Ren and R. Beard, Consensus seeking in multi-agent systems under

dynamically changing interaction topologies, IEEE Trans. Automatic
Control, vol. 50, no. 5, pp. 655–661, 2005.

[26] C. Schurgers and M. Srivastava, Energy efficient routing in wireless
sensor networks, MILCOM Proc. Communication for Network-Centric
Ops.: Creating the Info. Force, McLean, VA, 2001.

[27] J. Song, Y. Niu, and Y. Zou, Asynchronous sliding mode control of
Markovian jump systems with time-varying delays and partly accessible
mode detection probabilities, Automatica, vol. 93, pp. 33–41, 2018.

[28] F. Xiao, L. Wang, and T. Chen, Connectivity preservation for multi-agent
rendezvous with link failure, Automatica, vol. 48, no. 1, pp. 25–35, 2012.

[29] D. Yue, E. Tian, and Q. Han, A delay system method for designing
event-triggered controllers of networked control systems, IEEE Trans.
Automatic Control, vol. 58, no. 2, pp. 475–481, 2013.

[30] K. You, Z. Li, and L. Xie, Consensus condition for linear multi-
agent systems over randomly switching topologies, Automatica, vol. 49,
no. 10, pp. 3125–3132, 2013.

[31] W. Yu, G. Chen, M. Cao, and J. Kurths, Second-order consensus for
multi-agent systems with directed topologies and nonlinear dynamics.
IEEE Transactions on Systems, Man, and Cybernetics–Part B, vol. 40,
no. 3, pp. 881–891, 2010.

[32] W. Yu, G. Chen, and M. Cao, Consensus in directed networks of agents
with nonlinear dynamics, IEEE Transactions on Automatic Control,
vol. 56, no. 6, pp. 1436–1441, 2011.

[33] Y. Zhang and Y. Tian, Maximum allowable loss probability for consen-
sus of multi-agent systems over random weighted lossy networks, IEEE
Trans. Automatic Control, vol. 57, no. 8, pp. 2127–2132, 2012.

[34] S. Zhang, Z. Wang, D. Ding, and H. Shu, H∞ fuzzy control with
randomly occurring infinite distributed delays and channel fadings, IEEE
Trans. on Fuzzy Systems, vol. 22, no. 1, pp. 189–200, 2014.

[35] M. Zhong, D. Zhou, and S. X. Ding, On designing H∞ fault detection
filter for linear discrete time-varying systems, IEEE Transactions on
Automatic Control, vol. 55, no. 7, pp. 1689–1695, 2010.

[36] D. H. Zhou, X. He, Z. Wang, G. Liu and Y. Ji, Leakage fault diagnosis
for an internet-based three-tank system: an experimental study, IEEE
Transactions on Control Systems Technology, vol. 20, no. 4, pp. 857–
870, 2012.




