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1. 

Introduction 

In the technical report TR/25 we developed continued fractions 

for a number of the so-called special functions of mathematics. 

We also derived rigorous error estimates for the rational function 

approximations we obtained by truncating these continued fractions. 

Now it is known that quadrature formulae are centred on the partial 

fraction expansions of truncated continued fractions, so in this 

paper we will extend our analysis and estimate the errors in using 

certain quadrature formulae. We first derive the quadrature formulae 

related to the Laplace transforms of Bessel functions and then develop 

the error analysis for them. We will demonstrate that the error 

estimates can be very effective, and that for the special cases 

we consider are relatively simple to calculate. 

This paper is a sequel to the technical report TR/25, and relations 

in that report are referenced directly. The general form of our 

continued fractions in TR/25 was 
 

where ci,di denote polynomials in s. Writing the n convergent 
1nY

nY
nd

nc

2d
2c

1d
1c

Y

−
−

+−−−++=
 

of Y(s) as the rational function 
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We also showed that for the special functions, Laquerre, Hermite, 

Legendre and the Laplace transform of a Bessel function, this 

error term can often be replaced by an expression of the form 

w(s)e2 i φ [1-tanh(θ+ iφ)] - 2w(s)e-2θ(s) 

where w(s) is the weight function. 
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2. 2. 

Clearly  whenever  Y(s)  is  replaced  by 
(s)

(

nD

s)nC we  can  attempt  to 

estimate  the  error  incurred.  In  particular  awkward terms  in  integrals 

can  frequently  be  dealt  with by  replacing them by 
(s)

(

nD

s)nC and  it  is 

with  this  application  that  we  will  be  primarily  concerned.  With  the 

results  in  TR/25  as  our  basis,  we  could  establish most  of  the  common 

Gaussian  quadrature  formulae  with  error  estimates.   But  as  we  indicated 

above  we  will  concentrate  on  just  a  few.  Let  us  start  by  deriving  the 

Gauss-Legendre  quadrature  formula  for  the  definite  integral 

f(x)dx.1
1∫−  

 



3. 

21. Quadrature Formulae

Given a function f(x) regular in a domain D containing the 

interval [-1,1]. We write this function f(x) as a Cauchy integral 
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where the path of integration C encloses the point x, C is chosen 

to lie in D. 

Integrating from -1 to 1 gives 

(21.2) 

But log can be expressed as the C.F.(4.6) and from (4.10) 
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where the x denote the roots of the Legendre polynomials, 
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and Pn (s), Qn (s) are the Legendre functions of the first and 

second kinds. 
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4. 4. 

the usual Gauss-Legendre quadrature formula, but with a precise 

expression for the error En . 

The above immediately generalises to include quadrature formulae 

for integrals containing a weight function w(x), as has been pointed 

out by Takahasi and Mori [∫∫7]. Given a function f(x) regular in 

a domain D containing the interval [a,b] which may be infinite, and 

with w(x) regular in (a,b), we write 

(21.5) 
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which we obtain from the nth convergent of the J fraction 

for the function on the right, the xr being the roots of the 

denominator polynomials Dn (s), we find 
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where again we have a precise expression for the error 
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The expansion (21.6) of the integral 
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is obtained from the J fraction for Y(s). This continued fraction 

can be constructed either directly, by forming successively the 



linear relations equivalent to the fraction, or, when 

Y(s) satisfies a first order linear differential equation, 

by the method developed in ∫∫11 of TR/26. The J fractions 

required for the common quadrature formulae are known. 

A variety of techniques have been used to estimate the error 

En of the common quadrature formulae, for example Davis and 

Rabinowitz [18] give error bounds in terms of the product of 

norms of the integral operator and the integrand, while 

Takahasi and Mori [4.2] estimate │En│ numerically by an approximate 

steepest descent method which they claim is fairly accurate. 

Our approach will be direct. In TR/25 we developed estimates for 

the truncation errors of a number of continued fractions, some were 

both simple and reliable, we will place these in (21.8) to estimate 

the En of certain quadrature formulae. 

5. 



6. 6. 

22. Error Estimates for Two Special Cases. 

In this section we obtain estimates depending explicitly on 

n for the error En for the Gauss-Legendre and Gauss-Chebyshev 

formulae, these being special cases of the more general quadrature 

formula related to Bessel functions considered in the next section. 

a) Gauss -Legendre quadrature. 

Consider the Gauss-Legendre formula (21.4) that we have just derived 
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A useful approximation for the ratio of the Legendre functions is 

from (4.14) in TR/25, s= cosh ζ, 

(22.2) 
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(22.6) 

where C is mapped in the u plane on to C'. 



7. 

s _plane u plane

s = ½(u + u-1 )

This mapping of the s plane on to the u plane is particularly- 

convenient for it completely removes the branch cut, and gives 

a contour C' which we can expand or contract. The contribution 

to (22.6) from the origin (or infinity) can he deduced if the Laurent 

series 

(22.7) 

 

can he evaluated. 

Thus to estimate En we have the choice of evaluating one of the 

simple contour integrals (22.4) and (22.6). Let us take two 

elementary examples to illustrate results that we have obtained 

from these integrals. Our estimates of E are impressive and we 

suspect are typical. 
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We see that the integrand has simple poles at s = ±2(2m+1), 

where m is a positive integer. For a first approximation to 
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8. 8. 

this integral let us expand C beyond the first poles, so that 
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n G - L 

quad(22.l) 
En 
 

2 2.22483966 1.96(-2) 
3 2.24294052 1.46(-3)
4 2.24429263 1.07(-4)
5 2.24439165 7.76(-6)
6 2.24439885 5.62(-7)
7 2.24439937 4.06(-8)
8 2.24439941 2.93(-9) 

Estimate (22.8) 

2.21(-2) 
1.59(-3) 
1 .14(-4) 
8.l8(-6) 
5.88(-7) 
4.22(-8) 
3.03(-9) 

From these tabulated values we see that (22.8) provides a good 
estimate of En even for n small, 

 

2) To illustrate (22.6) this example almost 

suggests itself, for (22.6) becomes 
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9. 

e 3 x  d x =
3
1
 ( e 3 - e - 3 )  = 6.678583285 

n  G - L quad (22.1) 

2 5.82915488 
3 6.61789733 
4 6.67622947 
5 6.67852591 
6 6.67858233 
7 6.67858327 
8 6.67858328 

 
En 
 

Estimate (22.9) 

8.49(-1) 9.55(-1) 

6.07(-2) 6.56(-2) 
2.35(-3) 2.50(-3) 
5.74(-5) 6.0l(-5) 
0.96(-6) 1.00(-6) 
1.17(-8) 1.2l(-8) 
1.13(-10) 1.12(-10) 

Again for n small in (22.9) we have a good estimate of En. 

By making use of the asymptotic formula 
 

see for example Abramowitz and Segun [9.7.7], we can obtain an 

expression for the error E in terms of more elementary functions 
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This expression gives, for t = 3, values which are not very different 

to those we obtained using (22.9). 

The first of these examples illustrates the important point that 

usually it will be the singularities of f(s) nearest to the cut (-1,1) 

that will dominate E as n is increased. When f(s) has only poles 

outside C, we can replace (22.5) by 

En ~ - 2πi [residues from poles nearest to cut]. 

In particular a pole at s contributes to this expression for En
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10. 10. 

b) Gauss-Chebyshev quadrature. 

From (21.5) we ℒsee that 

(22.10) 

But 

(22.11) 

Now Murphy [4.1] has examined the error in approximating 

by the nth convergent of the C.F. which matches its series 

for s large. 

(22.12) 

He found that with s = cosh ζ and ζ = iθ 

(22.13) 

where Dn (s) = cos nθ and Cn  and are the Chebyshev 

polynomials of the first and second kinds. Further he expanded 
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(22.14) 

ds.
2x1

dx
xs

11
1f(s)c2ΠΠ

1
dx

2x1

f(x)1
1

−−
∫−∫=

−
∫−  

Π
coss

dΠ
o2x1

dx

xs

11
1 =

φ−

φ
∫=

−−
∫− ℒ 

12s

Π
(t)oI

−
=  

1
1
2 −s

 

.
2s
1

2s
1

2s
1

s
1

1s

1
2

−−−−
−

−
−−

−
−

12s

2n ζ2e

sinh ζinhζc

n ζe

(s)nD

(s)nC

12s

1

−

−
−

−
=−

−
 

θsin

nθsin

nD
nC  

.

n

) Π
2
1

(r
coss

1n

1rn
1

(s)nD

(s)nC

−
−

∑
=

=

Substituting (22.13) in 

ds
12s

11
1 c f(s)2 Π

Π
dx

2x1

f(x)

−
∫− ∫=

− i
 

(22.15) 



11. 

gives the quadrature, with φr ≡ 

(22.16) 

where 

(22.17) 

 
2

1
=s  (u+u-1), that we used to obtain (22.6) 

also considerably simplifies this contour integral. Denoting, as 

before, the contour that C maps onto in the u plane by C', we 

deduce 

(22.18) 

Again we have found a simple and convenient starting point for 

analysing the error En. 

These two quadrature formulae Gauss-Legendre and Gauss-Chebyshev 

are of course closely related both being special cases of the following. 
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12. 12. 

dx.2
1v
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We now construct a quadrature formula with the weight function 
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the essential step is to use the C.F.(5.6) and replace 
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by the nth convergent of (5.6) together with an 

error term, 
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13. 

This is the required expansion (21.6) and hence by (21.7) 

(23.7) 

where the error term 

(23.8) 

(23.9) 

Again we have made the substitution s=½(u+u) -1 , C and C' are 

the same contours as we used in the previous section. The n is 

still in a suitable position for deriving asymptotic estimates 

for the error. 

If we take f(x) = etx in (23.7), we get that 
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which is in essence our result (5.22). Quadrature results 

can be regarded as an extension of previous results obtained 

by inverting Laplace transforms. 
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14. 
14. 

Conclusion

In this short report we have deduced some useful simple 

complex integrals that approximately give the errors En of 

the Gauss-Legendre and Gauss-Chebyshev quadrature formulae. 

We also showed that these were special cases of a more 

general result. The potential of these complex integrals 

was illustrated by deriving some specific error estimates 

as functions of n. 

It is often desirable to be able to choose the number of 

terms n in a quadrature formula in advance, in particular 

when approximating to an integral containing parameters or 

to a function that is one in a sequence of calculations. 

Our numerical results indicate that the value of n required 

to achieve a given accuracy could be accurately selected 

using our estimates. 
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