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ABSTRACT 

Finite element methods for solving biharmonic boundary 
value problems are considered. The particular problem 
discussed is that of a clamped thin plate. This 
problem is reformulated in a weak, form in the Sobolev 
space  Techniques for setting up conforming trial 

2
2W

Functions are utilized in a Galerkin technique to 
produce finite element solutions. The shortcomings 
of various trial function formulations are discussed, 
and a macro—element approach to local mesh refinement 
using rectangular elements is given. 
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1• Introduction

In this paper we consider the problem of the 

clamped plate. Here the function u=u(x,y), which at 

any point (x,y) is the transverse displacement.of the 

plate from its equilibrium position, satisfies 

Δ2[u(x,y)] = f(x,y), (x,y) ∈ Ω , (1) 

u(x,y) = n
)y,x(u

∂
∂ = 0 ,  (x,y) ∈ əΩ , (2) 

Where Ω is a simply connected open bounded domain with 

boundary Ω, and ∂ n∂
∂  denotes the derivative in the 

direction of the outward normal, to the boundary. It is 

assumed that the function f satisfies all required 

continuity conditions, and that the boundary ∂Ω 

satisfies certain smoothness conditions (for example a 

restricted cone condition, see Agmon [1] . ) Problem 

(1)—(2) is called the first biharmonic problem. 

The solution of problem ( l ) - ( 2 )  is the function 

which minimizes the functional 
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over the space  For equation (3)  .)(W
O

Ω
2
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)(H.)(W Ω≡Ω 2
2
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is the Sobolev space of functions which together with 

their first and second generalized derivatives are in 

L2(Ω), and  is the .)(W
O

Ω
2
2

subspace of  functions )(W Ω
2
2

of which also satisfy the homogeneous boundary 

conditions (2). The technique of minimizing a 

functional to solve the problem ( l ) - ( 2 )  is a variational 
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technique. 
An alternative approach is to form a weak problem 

associated with ( 1 ) — (2) by multiplying ( 1 )  by a test 

function  and integrating over Ω. Thus )(Wv
O

Ωε
2
2

.)(Wv)v,f()v,u(
O

Ωε∀=Δ
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(4) 

After integration by parts and use of the boundary 

conditions, equation ( 4 )  becomes 
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In (5) the bilinear form a 1 (u,v) is a Dirichlet form 

associated with the biharmonic operator Δ2 However, 

the Dirichlet form is not unique. Following Agmon [1] 

p.96, we use the identity 
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and obtain from ( 4 )  the weak formulation 
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3 
Infinitely many Dirichlet forms 

 ,)v,u(a)t()v,u(at)v,u(a t 21 1 −+=  

for real t, can be obtained from (5) and (6) In 
particular choice of t ½ leads to the form 
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Note that I[v ] = a(v,v) - 2 ( f , v ) .  We thus finally 
have the following weak form of the problem ( l ) - ( 2 ) :  

find u ∈   such that .)(W
O

Ω
2
2
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Under sufficient conditions of smoothness of f and 

 ∂Ω the bilinear form a(u,v) is
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elliptic and 

continuous; that is there exist constants ρ > 0, γ  > 0 

such that respectively 
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The finite element approximation U(x,y) to the 

problem (1)- (2)  is derived via the weak formulation 

(8). for this the region Ω is partitioned into non- 

overlapping elements (usually triangles or rectangles) 

so that there are m nodes Z1 , Z 2 ....... Z m in  

 Some of these nodes may coincide, and thus Ω∂∪Ω≡Ω
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the concept of multiple nodes is allowed. In 

particular, at element vertices on the boundary, those 

nodes associated with essential boundary conditions are 

not included in the set .. There are k nodes { } 1=i
mzi

in any one element. 

Consider the interpolant ,)y,x(,)y,x(u~ Ωε  which 

for any element takes the values of u, and some or all 

of the derivatives of u of order <  p, at the k nodes in 

the element. Let the interpolant in each element have 

the form 

 ,)y,x()uD()y,x(u~ iii

k

i

e φ= ∑
= 1

 (11)

where (Di.u)i are partial derivatives of u with respect 

to x and y of order less than or equal to p evaluated 

at the points ( x i , y i ) ,  and the iφ  (x,y) are the cardinal 

basis functions of the (Hermite) interpolation. The 

approximating function U(x,y) derived with the finite 

element method has, in each element, the from 

 ,)y,x()UD()y,x(U iii

k

i

e φ= ∑
= 1

   (12) 

here the ( D i U i ) .  are derivatives of U as in (11). 

The cardinal basis functions are local to each 

element, but, taken over the totality of elements of Ω  

they together form the linearly independent set of 

functions 
 
These B1=i

m})y,x(B{ i i ' s are the basis 

functions of the finite element method. Each B i is 
 



5 
associated with a single node zi,i = 1,2,...,m, and 

is non-zero only in those elements which have zi as a 

node. 

Further, 

 Dj Bi (zj) = δij , I, j= 1,2,……,m, 

 

and for any node zi, which belongs to an element 

involving part of the boundary ∂Ω , we demand that the 

associated Bi(x,y) satisfies the essential boundary 

conditions (2) at nodal points on the boundary. If 

the øi's, which in each element are polynomials, are 

chosen so that 

     i = 1,2,....,m, ,)(w)y,x(B
0

2
2i Ωε

then the set {Bi (x,y) }  spans an m-dimensional  1=i
m

piecewise polynomial space S h which is a subspace of 

.)(W
O

Ω
2
2

 
A discrete formulation of the weak problem (8) is; 

find U ε Sh such that 

a (U,V) = (f,v) ∀  v ε Sh .    (14) 

In particular U can be calculated by setting 

   (15) ,m,.....,2,1i,)y,x(B)UD()y,x(U iii

m

1i

==∑
=

 and solving 

 a(U,Bj.) = ( f , B j ),                   j=1,2,.......m, 



6 

that is 

  (16).m,...2,1j,)B,f(,)B,B(a)UD( jjiii

m

1i

==∑
=

Equations (l6) are known as the global stiffness 
equations of the finite element method. 
   If follows from (9) that 
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The inequality ( 17 ) holds in particular when V ∈  Sh 

is the interpolant ũ to u mentioned previously , and 
the problem of bounding the finite element error thus 
becomes one of interpolation theory. Many bounds for 
the errors in two dimensional interpolation have been 
derived, especially in triangles and rectangles. We 
therefore limit consideration here to the cases where 
in the problem ( l ) - ( 2 )  the boundary ∂Ω , is either 
polygonal or rectangular in shape. It is further 
assumed that the smoothness of Ω is such that ∂
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inequalities (9 )  and (10) hold. 

When Ω in polygonal, the region Ω is split into ∂

triangular elements having generic length h. In this 

case if the piecewise polynomial space  )(
O
WhS Ω⊂ 2

2

consists of functions which in each clement are complete 
polynomials of degree q , so that the interpolant can be 
written 

 ,jyixija
q

ji
e|)y,x(u~ ∑

=+
=

0
the bounds then have the form 
 

  ,)(L||uqD||)(
O
W||u~u|| 2

1
1

2
2

2
2

⎭
⎬
⎫

⎩
⎨
⎧

Ω
+<Ω− ∑   (18) 

where 

,
)(L

||uqD||q|u| 2
1

2
21

1 ⎭
⎬
⎫

⎩
⎨
⎧

Ω
+≡+ ∑  

 
the summation being over the q + 2 derivatives 
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For the derivation of bounds of this type see, for 

example Zlamal [ 15 ], Bramble and Zlamal [5] 

Bramble and Hilbert [4], and Ciarlet and Raviart [7]. 

When the region has a rectangular boundary, it is 

partitioned into rectangular elements. For this 

Birkhoff, Schultz and Varga [3] show that, if in each 



8 
u~  has the form element the interpolant 

 

,jyixija
s

j

s

i
e|)y,x(u~ ∑∑

−

=

−

=
=

12

0

12

0
 
then 

   

,s|u|shK||u~u||.
)(

o
W

2
22

2
2
2

−<−
Ω

        
(19) 

where h is the length of the longer side of the 
rectangle. 

The use of (17) together with (18) or (19) gives 
bounds for the error in the finite element approxima- 
tion. 
 
2. Conforming Elements

The error hounds of Section 1 have been derived 
through the use of the inequality (17), which in turn 
is dependent on the condition that . This )(

2
2o

W
h

s Ω⊂

inclusion is fundamental to the whole analysis, and 
is known as the conforming condition. The sufficient 

condition that functions U(x,y) belong to  is )(
o

W Ω2
2

that they belong to )(C Ω1  and satisfy the essential 
boundary conditions (2) on ∂Ω. In constructing the 

basis functions  we seek to satisfy these 1=i
m}))y,x(iB{

simpler conditions and consider only conforming 
elements. 
 
Triangles

)(CU Ωε 1
Perhaps the best known trial function  

for the case of a triangle partition is that which in 
each element is the complete quintic polynomial 
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in x and y 

 ,jyixija
s

ji
e)y,x(U ∑

=+
=

0
 (20)

having 21 degrees of freedom; see Zlamal [15] 
This is uniquely determined in the triangle by pre- 
scribing at each of the three vertices the six values 

,yyU,xyU,xxU,yU,xU,U  and at each of the mid—points of 

the sides the values of the normal derivatives n
U
∂
∂ . 

If the vertices are treated as nodes of multiplicity 6, 
this means that in the notation of ( 1 2 )  the orders of 
the derivatives ( D i U ) i  at the vertices are 0, 1 or 2, 
whilst at the mid-points the ( D i U ) i .  are of order 1. The 
quintic cardinal basis functions ø i -(x,y)  in each 
triangle are chosen so that the Bi (x,y) satisfy (13). 

Thus we have )(CU Ωε 1
 If in addition the essential 

boundary conditions (2)  are imposed at the boundary 
nodes, the desired inclusion is obtained. It is seen 
from (18) that use of this piecewise quintic trial 
function leads to an O ( h 4 )  error bound on the finite 
element error, when it is assumed that the sixth order 
derivatives of u are all in L 2 (Ω )  

Clearly a disadvantage of this technique is that 
the order in of the linear system ( l 6 )  is likely to be 
large on account of the six fold nodes at the element 
vertices. Thus methods have been sought which reduce 
the total number of nodes whilst keeping conformity. 
One effective way of removing three of the twenty—one 
degrees of freedom in each element of the above is to 
demand that for  in (20) the normal derivative e|U

along each side of the triangle be a cubic. The nodal 
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values at the vertices of the triangle determine the 
cubic along the side, so that continuity of normal 
derivative across interelement boundaries is maintained. 
However, in each element the 18 -parameter reduced 
quintic trial function is no longer a complete quintic, 
so that the order of the error bound is reduced. 
Other approaches for reducing the number of 
parameters while preserving conformity include that of 
grouping together terms from complete polynomials and 
of augmenting cubic polynomials with rational functions, 
Birkhoff and Mansfield [2]. However, in this latter 
case Sh is a space of piecewise rational functions and 
new problems arise in the evaluations of the integrals 
in (16). Alternatively there is the technique of 
Clough and Tocher [8] of forming a macro-triangle 
by splitting each triangle of the partition into three 
subtriangles, and combining different cubic polynomials 
in each to form a 12 - parameter trial function in each 
macro-triangle. 
Rectangles

When the region Ω is rectangular, trial functions 

)(CU Ωε 1
 can be obtained using rectangular elements by 

taking U in each rectangle to be the bicubic polynomial 

,jyixija
ji

e)y,x(U ∑∑
==

=
3

0

3

0
 

which has 16 degrees of freedom.This is uniquely determin- 
ed by prescribing at each of the four vertices the 
values U,Ux ,Uy,Uxy . These are the derivatives (DiU)i    
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or (12) where each vertex is a node of multiplicity 4. 
Bicubic basis func tions ø i (x,y)  are again chosen to 
produce Bi(x,y), i = 1 , 2 ) . . . , m ,  satisfying (13), and 
these with the implementation of the essential boundary 
conditions give the desired inclusion. It is seen from 
 
(19) that this produces an O(h 2) error bound, provided 
that the fourth derivatives of u are in L2 (Ω). 

Rectangular elements lack the versatility of 
triangles in that it is difficult to produce a concen- 
tration of elements near any point of Ω without also 
introducing (unnecessarily) extra elements in other 
parts of Ω. The ability to perform this local mesh 
refinement is particularly desirable when the boundary 
∂Ω contains a re-entrant corner, the presence of which 
slows the rate of convergence with decreasing mesh size 
of the finite element solution of the problem to the 
exact solution. An example of local mesh refinement 
with rectangles in the neighbourhood of a point 0 
is given in Figure 1. It is seen that the 

 

Figure 1



12 
 

 

refinement produces mid-side nodes in some elements; 

e.g. the point B in ABCDE. Clearly special procedures 

must be adopted to produce, for this case, trial 

functions which are )(C Ω1
.  One such approach with 

square elements is due to Gregory and Whiteman [11] 

who adopt the macro-element approach and split elements 

of the type ABCDE into two equal parts along the line 

BB', Figure 2. In each part they use the bicubic 

interpolant to the values of U,Ux,Uy,Uxy at 

 

 
Figure 2 

the four vertices, arid then eliminate the values of 

these four quantities at the point B' using Hermite cubic 

interpolation with the appropriate values at D and E. 

The resulting trial function is C1 over the macro-element 

ABCDE, and is cubic along each of AB,BC,CD,DE and 

EA. 

This together with use of the standard bicubic, described 

above, in all "four node elements" produces a trial 

function which is )(C Ω1
.   

3 Discussion

Applications of finite element methods to plate 

problems of the type (l)-(2) are without number. 

kolar et al [12] consider the case of a clamped square 
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thin plate under the action of a uniform load 

(f=constant) for which the exact value of the displace- 

ment u(x,y) is known. Using complete quintics with 

triangles and bicubics with rectangles as described 

above they obtain greater accuracy for a given number 

of subdivisions of the plate with triangular elements 

than with squares. This is to be expected on account of 

the higher degree of local trial function and the 

higher order error bound in the triangular case. 

Gallagher [10] ,  Chapter 12, gives an intensive 

study of a similar problem for the case of a simply 

supported plate using triangular and rectangular 

elements with conforming and nonconforming trial 

functions. In particular he finds that the results for 

triangles with the 21- parameter piecewise quintic and 

the 18-parameter piecewise constrained quintic con- 

forming trial functions are "highly accurate". However, 

it must be pointed out that the amount of computational 

effort required in forming the global stiffness equa- 

tions (16) in this case is considerable. This has to 

be balanced against accuracy in any computation. 

The functional I[v] in (3) and the weak form (8) 

of the problem ( 1 ) - ( 2 )  are associated with the potential 

energy of the plate. All the emphasis in this paper has 

been on finding global trial functions which satisfy 

the "C 1 conforming condition" for the space . )(
o

W Ω2
2

There are of course many other energy formulations, 

such as the complementary and Riessner energies, and,as 

has been pointed out, many functionals and weak forms; 

see for example Ciarlet [6], The possibility of using 
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functionals and weak formulations defined over spaces 

for which the conforming condition is that the trial 

functions be in )(C Ω0
 rather than )(C Ω1

 has been 

considered. An example of this approach is that of 

Westbrook [13] who uses a perturbed variational 

principle for the clamped plate which has only a Co 

conforming condition. 

The global stiffness equations (16) can be thought 

of as difference equations. This view has been taken 

for the case of Lagrangian approximating functions for 

Poisson problems by Whiteman [l4]. When, as here, 

Hermite global approximating functions are used, the 

equations (16) involve as unknowns not only nodal values 

of the approximating function U(x,y) but also values 

of certain derivatives of U at the nodal points. When 

riewed from the difference point of view, equations (16) 

thus differ from the usual concept of difference equa- 

tions. Difference stars of this type have been derived 

using mehrstellenverfahren by Collatz [9]- In regions 

which can be partitioned using a regular triangular or 

rectangular mesh, a considerable saving in computation 

time can be made by generating the stiffness equations 

(16) using the difference stars rather than through the 

usual finite element approach of repeated use of a 

local stiffness matrix. 
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