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ABSTRACT

A simple, modified finite-difference method is described
for solving Laplace's equation with boundary singularities
of the infinite derivative type. Modified approximations
for the derivatives of the Laplacian equation are employed
near the singularity. These are developed from a truncated
series form of the local analytical solution. The method
is applied to the problem of Motz. The numerical results

compare favourably with those obtained by other techniques.






1. Introduction

The problem of Motz [5], with its singularity due to a re-entrant
corner of internal angle 2n (Figure 1), has been treated by many
authors to demonstrate the effectiveness of their singularity
treatments. An alternative formulation of the problem, based on
its antisymmetric properties, was given by Woods [15] (Figure 2),
and it is in this form that the problem is treated in the literature

[4,6,7,9 — 14].

In this report the nature of the singularity is discussed and a
new method proposed for obtaining numerical solutions near the
singularity. The proposed method is based on that used by Motz
in that it uses modified finite-difference approximations near the
singularity which are developed from a local truncated series form
of the solution. The method differs in that the modified
approximations are developed from the derivatives in the governing
Laplacian equation rather than, as done by Motz, from algebraic
equations for the solution values. The method also differs in the
set of neighbouring points used to approximate the unknown
coefficients in the truncated series approximations for the
derivatives. The method is an extension of the method of Bell and

Crank [3].
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The problem of Motz is to solve

8_23) + a—zg) =0 (2.1)
Ox oy
in the square containing a slit (Figure 1). The slit represents
a re-entrant corner of internal angle 27 with Neumann boundary
conditions on the arms OB and OH. Converting to local polar

co-ordinates x =pcosO, y = psinf , centred on 0,

2 2
a_(PJrla_(PJrLza_(P:o, (2.2)
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With — =0 on ©6 = 0 and ©6 = 2m. (2.3)

Motz sought the local, variable-separable solution of (2.2),

¢(p,0) = R(p)w(H), (2.4)

Which gave

v = A cos nf + B sin n0

n,A,B,C arbitrary constants(2.5)
R =Cp"

Fitting the boundary condition (2.3) gave

B:Mn:%,kzomlm (2.6)

Thus the local series form of the solution near the singularity at
0 1is

1 3
® =cqo +cp’ cos% + cop cosO +C3pzcos%+.... (2.7)

where the c¢j are unknown constants (to be found).
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3. An antisymmetric Formulation, Woods [15]
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Woods used the fact that ¢- 500 1s antisymmetric about the line BE
containing the slit and, by imposing the boundary condition ¢ = 500
on EO, only needed to consider the top half of the square (Figure 2).
However, this can lead to some confusion in that the local series form
of the solution is altered since the re-entrant corner now has to be

regarded as having an internal angle of m with boundary conditions

%:OonGZO;d):SOOonG:n. (3.1)

Application of (3.1) to (2.5) gives

B =0 : n==%k+1, k=0,1,2,.. (3.2)

This gives the new local series form
1 0 3 30 3 56
_ 2 v 2 2Y 2 =2
¢—c0+clp c052+02p cos 5 + C5p* cos 5 + .. (3.3)
Comparing this with (2.7) we note that there are no longer any terms
in integer powers of p and multiples of 0, but that the first two
terms are the same. The difference in forms did not affect the work

of Woods since he used only the first singular term, ¢ Wait and
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Mitchell [10], however, used an asymptotic expansion of the form

3
(2.7) up to powers of p? for the antisymmetric form of the problem,

- strictly speaking they should have used an expansion of the

form (3.3).

4. Standard Finite-difference Solution for Woods' Form

The problem of Figure 2 is scaled by setting

(i) u = ¢ - 500 (4.1)
(ii) B = (1,0) : c=(1,1) ; D=(-1,1) ; E=(-1,0). (4.2)

To enable comparisons with the work of Motz and Woods, the region
is discretised as shown in Figure 3 with 6x = 6y = h = 2/7.

This discretisation results in a mesh length of h/2 at the edges

ED, DC and CB and, following Motz and Woods, values on ED and DC
are not computed. Inspection of the Taylor series approximations

for points on the mesh lines h/2 away from the edges ED, DC and CB

shows that the discretisation error is only O(h) for these points.
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The governing equation is

2 2
i%+§%:o, (4.3)
ox oy

Approximation of (4.3), using the standard, central-difference

formulae, leads to the usual five-point approximations of O(h2)

Uiigi T Yien T e o1 T Ve T M T 0 (4.4)

for points (i,j) not involving the boundary, where
x =1ih , 1=0,1,2,... ; y=jh , j=0,1,2, ... (4.5)

For points involving the Neumann boundary condition the usual
central difference approximations for the derivatives are used

and the fictitious point argument applied. Figure 8 compares

the numerical solution obtained using these standard finite-
difference approximations with the highly accurate results produced
by the conformal transformation method of Papamichael and
Whiteman [7]. The results show that a high degree of inaccuracy
occurs near the singularity and illustrate the fact that

inaccuracies spread throughout the entire region. This is called

the pollution effect by Babuska and Aziz [1].

5. Modified Five-point Approximations near the Singularity

Instead of applying the standard finite-difference approximations
throughout the entire region, a neighbourhood N(0) near the
singularity is chosen and, for points in N(0), modified approximations
are developed which take into account the nature of the singularity.
These modified approximations are formed by approximating each of

the derivatives in (4.3) using the local polar co-ordinate series



form

3 50

0) = c.02 ) 36 3
u(p,0) = ¢;p* cos 5 egp? cos ==+ cap? cos o

which is obtained by comparison with (3.3). A five-point approximation

is formed by taking the following three-term truncated form of (5.1) :

21—
3 = s
W(p.0) = 5 cifi(p.0) where fi(p.0) = p 2 cos%e :

1=

Using the standard differential relations

Pu_  2,0% _sin20 2w sin’0 o°u _sin®0 du sin20 du
ox? & P B 2 a2 p P B
u _ 20 0% sin20 O%w  cos"0 O%u  cosO du  sin20 u
oy o> P p® 2 2 p p  pr B

where approximations for the p and 6 derivatives are obtained by

differentiating (5.2), the following three-term series approximations

2 2
for 2—3 , gy—lzlare found:
X
2 % 3
ou
> = X ¢iwi(p,0)
19).4 =1
2 %k 3
0°u '
= 3 cwi(p.0)
oy i=1
cos30/2
where w, =— ———;w, =
4p?
W' =—W =

3
with truncation error 0(p?) ,
1
3c0s0/2 15p2 cos6/2
B R T —
4p2

= 1,2,3.

The symmetry of the w. arises from the symmetry of (5.3) and

(5.4).
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Approximations for the constants C. 1=1,2,3 are found in terms

of neighbouring u values by using the three-term approximation (5.2).

Referring to Figure 4, and denoting u*j,pj,ej to be the corresponding

u*, p,0, values at the points j = 1,2,3,4,5, then u* values at three
neighbouring points in the horizontal direction are used to find the
62u*
. ox2

¢, in (5.5) for X

point 1 The most obvious choice, and that

which leads to a five-point formula, is to use points j = 1,2 and 3

to give the following three equations for the c.
% .
ug = z Cifi (pj,ej), ] =123.

Figure 4

7 X
The solution of (5.8) is denoted by
_ * * ¥ .
c, = Biu2 + Ciu1 + Diu3, 1 =123.
ou*
. . . . 2 .
Similarly, to find the ¢, in (5.6) for boint 17 points 4,1

and 5 are used in the vertical direction. The solution is denoted

by

R % vk vk -
c. = Biu4+Ciu1+Diu5, 1 =123.

(5.8)

(5.9)

(5.10)
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Substitution of (5.9) and (5.10) in (5.5) and (5.6) respectively
gives the five-point approximation

2 % o%u* ou* * * * * *
T o2 M2 T et T ety T ests e = 0: (-11)

3
whete €y =2 w.B.

5 (5.12)

eq =_§1 WiDi’ el=‘§ WiCi + WiCi ,
1= 1=1
for a typical point 1 in N(0) , the w. and wi' being evaluated

at the point 1.

The above technique of horizontal and vertical derivative
replacement is based on that used by Bell and Crank [3] who
2

treated —121 as above but used the standard central difference
oy
82u
formula for — - The method used above is a generalisation of
Ox

the ideas of Bell and Crank in that

(i) both derivatives are treated

(ii) the approximations (5.5) and (5.6) are written in a general
way so that the neighbouring points chosen need not lie on the same

horizontal or vertical line.

The generalisation (i1) is useful in developing higher-order,

multi-point modified approximations by varying the number of terms included
in the truncated series expression and the set of

neighbouring points used for any one point in N(0). The method can

be extended to the time-dependent case by following Bell and Crank .

The neighbourhood N(0) can include points away from the singularity

at 0, as long as the three-term approximation (5.2) remains valid.



9.
This may be checked as described in Motz [5]. The approximate s
of N(0) can be determined by noting that the discretisation error
in the standard finite-difference approximations (4.4) is 0(h?)

whereas the modified approximations (5.5) and (5.6) contain a

3
truncation error of 0(p?). Thus application of the modified
approximations is advantageous as long as the truncation error
does not exceed the discretisation error. An approximate rule is

then to choose N(0) such that the maximum p value in N(0), pyax.

3
say, is such that pélax is of the same order of magnitude as

3
h?, - practical experience suggests that prilax < 5h? is a useful

guide. In practice only a few points in N(0) are needed.

Five-point 'molecules' differing from that given in Figure 4 are
needed for points in N(0) which involve the boundary. Points to
the right of 0 on j = 0 do not have a point at the j-1 level,
necessitating a different molecule, e.g. Figure 5, Points to the
left of 0 on j =1 involve points on j = 0 for which 6 = n. The

fact that 6 = m means that each of the fi (p,6) in (5.2) are zero,

and thus solutions to (5.8) cannot be found. A suggested alternative
is given in Figure 6. The first point on the right of 0 on j =0
involves both the above problems and a suggested molecule is given

in Figure 7. The general form of the modified approximations allows

for any combination of five neighbouring points provided 0 # &

Figure 5 Figure 6 Figure 7
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6. Numerical Results

Referring to Figure 9, the four immediately neighbouring points

P,P,, P, and P, around O are chosen for N(0) since here

3
pélax ~ 0.26 and h? ~ 0.08. This choice of points is similar to

that used by Motz and Woods and enables comparisons to be made
with their results. Modified approximations of the form (5.11)
are applied at points inside N(0) using the suggested molecules
of Figures 5 - 7 where appropriate. Standard finite-difference
approximations (4.4) are used for points outside N(0). The
highly accurate values of Papamichael and Whiteman [7] based on
a conformal transformation are used to represent exact values.
The results obtained are comparable with those of Motz and Woods

and give good agreement with the conformal transformation values.

The values of the e, in (5.11) are given in Figures 10-13 for

the points P, —P, with h = 2/7. The values given have been scaled

so that e.= -4.0000.
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These yalues are used since they take into

account the antisymmetry whereas Motz's work [5] did not.

Whiteman [12]

CRANK and FURZELAND
modified formulae

The ¢
values are from u+500,

at P, to P,.

see (4.1).
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