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ABSTRACT

Super-resolution (SR) of hyperspectral images (HSIs) aims
to enhance the spatial/spectral resolution of hyperspectral im-
agery and the super-resolved results will benefit many remote
sensing applications. A generative adversarial network for
HSIs super-resolution (HSRGAN) is proposed in this paper.
Specifically, HSRGAN constructs spectral and spatial blocks
with residual network in generator to effectively learn spec-
tral and spatial features from HSIs. Furthermore, a new loss
function which combines the pixel-wise loss and adversari-
al loss together is designed to guide the generator to recover
images approximating the original HSIs and with finer tex-
ture details. Quantitative and qualitative results demonstrate
that the proposed HSRGAN is superior to the state of the art
methods like SRCNN and SRGAN for HSIs spatial SR.

Index Terms— Hyperspectral images, super-resolution,
generative adversarial network, residual network

1. INTRODUCTION

The development of hyperspectral technology has made the
hyperspectral images irreplaceable in many civil and military
fields such as environmental monitoring, geological explo-
ration, agriculture, military applications, etc., which has pro-
foundly affected the economic development, national defense
construction and social life. However, due to the limitation
in Signal-to-Noise Ratio (SNR) and time constraint, there is
a tradeoff between spatial and spectral resolution in remote
sensing. Consequently, hyperspectral sensing produces ex-
tremely high spectral resolution and low spatial resolution.

Single-image spatial SR is a signal processing technique,
which can improve a low spatial resolution image to a high
spatial resolution image without any other prior or auxiliary
information. The basic method of SR is through a nonlin-
ear interpolator, such as bilinear and bicubic interpolation [1],
which directly exploits the information of neighboring pixel-
s. However, these methods often lead to edge blur or ringing

effect. Recently, deep learning based methods have been ap-
plied to the SR of color images and demonstrated great superi-
ority. SR Convolutional Neural Network (SRCNN) [2] is a pi-
oneering work for deep learning in SR reconstruction, which
firstly uses bicubic interpolation to enlarge the low-resolution
image to a target size and then fits the nonlinear mapping
through a three-layer convolutional network. Efficient sub-
pixel CNN [3] extracts features directly from a low-resolution
image by convolutional layers and enlarges the image size
by a sub-pixel convolutional layer. A generative adversari-
al network for super-resolution (SRGAN) [4] is proposed to
reconstruct a more realistic image with finer texture details.
Transferred generative adversarial network (TGAN) [5] is im-
proved from SRGAN and trained in a transfer-learning fash-
ion to cope with the insufficiency of remote sensing training
dataset. However, HSIs have unique characteristics compared
with nature images. The network pre-trained with non HSIs
is not suitable or even misleading to learn useful features.

All of the above CNNs for the SR of color images can be
directly applied to HSIs in a band-by-band or 3-band-group
manner. However, spectral distortion is often induced in such
straightforward extensions since the strong spectral correla-
tion in contiguous bands is ignored. Therefore, in this paper, a
new generative adversarial network for HSIs super-resolution
(HSRGAN) is proposed which effectively extracts spectral
and spatial features from hyperspectral data. The experimen-
tal results demonstrate that the proposed method makes im-
provement in terms of both the objective evaluation and the
subjective perspective. The main contributions of this paper
can be summarized as follows:

• For the first time, Generative Adversarial Network (GAN)
is used for hyperspectral images SR.
• Spectral and spatial residual blocks are constructed in gen-

erator to explore both spectral correlation in adjacent band
images and the spatial contexts between neighboring pixels
so that the spectral distortion is alleviated.
• A new loss function which combines the pixel-wise loss

and adversarial loss together is designed to guide the gener-



ator to reconstruct images approximating the original HSIs
and with finer texture details.

2. METHODOLOGY

2.1. Adversarial network structure

The general idea of GAN is that it aims to train a generator to
reconstruct high-resolution images for fooling a discrimina-
tor that is trained to distinguish generative images from real
ones. The generator structure of HSRGAN is illustrated in
Fig. 1. Spectral and spatial residual blocks are the core part
of generator network. HSIs usually have hundreds of con-
tiguous bands with abundant spectral signatures and spatial
contexts. General 2D convolution that is straightly applied to
HSIs in a band-by-band or 3-band-group manner will result
in spectral distortion. Though ordinary 3D convolution oper-
ation can explore spectral and spatial features together so that
the spectral distortion is suppressed, it is still hard to extract
effective features from rich and redundant spectral signatures
in HSIs. Therefore this special structure containing spectral
and spatial residual blocks is designed to learn both spectral
correlation in adjacent band images and the spatial contexts
between neighboring pixels. The structure of basic residu-
al block is shown in Fig. 2. It contains two convolutional
layers followed by a Parametric Rectified Linear Unit (PRe-
LU) layer as the activation function to adaptively learn the
parameters of the rectifiers [6]. In spectral residual block, the
convolutional kernel size is set as 1 × 1 × 9 so that the pa-
rameters to be learned is a 1D vectors, which can be seen as
a special case of 3D convolutional kernels. It benefits to ex-
tract spectral features from abundant and redundant spectral
signatures in contiguous bands. In spatial residual block, the
convolutional kernels with a size of 3 × 3 × d are applied to
extract the spatial contexts between neighboring pixels and
further fine-tune spectral distortion, where d depends on the
depth of input HSIs. Other convolutional layers in the gener-
ator network are set as 3 × 3 × 3 as usual. All the convolu-
tion operation is more efficient because it is performed on low
resolution images instead of interpolated images. In addition,
padding is used to prevent shrink in the size of the image in
these convolutional layers. Finally, a sub-pixel convolutional
layer proposed by [3] is adopted to increase the resolution of
the input images. The architecture of discriminator network is
almost same as SRGAN except that 3D convolution operation
is adopted rather than 2D convolution.
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Fig. 2. The “Basic block” in the proposed model.

2.2. Loss function

The loss function designed in HSRGAN is to guide the gen-
erator to reconstruct images approximating the original HSIs
and with finer texture details. It is defined as the sum of a
pixel-wise loss and an adversarial loss.

Traditional pixel-wise loss Mean-Squared-Error (MSE)
measured by L2-norm is much larger in the case of outliers
compared to the least absolute deviations measured by L1-
norm. As a consequence, MSE based loss function may try
to adjust the model according to these outlier values. On
the contrary, L1-norm based loss function is more robust to
outliers, which is especially beneficial for training a network.
In this paper, the L1-norm based loss function is adopted as
the pixel-wise loss:

L1 =
1

HWD

H∑
i=1

W∑
j=1

D∑
k=1

∣∣∣IHR
i,j,k −G(ILR)i,j,k

∣∣∣ (1)

where ILR represents a input low-resolution image and IHR

represents a corresponding high-resolution image with the
size of H ×W × D, G(ILR) represents the super-resolved
result.

In standard GAN, such as SRGAN, the discriminator
simply estimates the probability that one input image is real.
However, the Relativistic average Discriminator (RaD) pro-
posed by [7] is proven to be able to fix and improve standard
GAN. It predicts the probability that the given real image xr
is relatively more realistic than fake one xf . This forms a
class of models named Relativistic average GANs (RaGAN)
that is adopted in this paper. Then the discriminator loss is
defined as:

LRaGAN
D = −Exr [log(D̄(xr))]− Exf

[log(1− D̄(xf ))]

(2)

The adversarial loss for generator is in a symmetrical form:

LRaGAN
G = −Exr [log(1− D̄(xr))]− Exf

[log(D̄(xf ))]

(3)

where

D̄(x) =

{
sigmoid(C(x)− Exf

C(xf )) if x is real
sigmoid(C(x)− Exr

C(xr)) if x is fake
(4)

where C(x) is the non-transformed discriminator output and
Ex[·] represents the operation of taking average for all fake or
real data. xf = G(ILR) and xr is IHR. It can be seen that
the LRaGAN

G is influenced by gradients from both xf and xr.
In other words, our generator can be guided by both super-
resolved image and real image in adversarial training, while
only super-resolved image plays a part in SRGAN.

Overall, the total loss for the generator is formulated as:

LG = L1 + LRaGAN
G (5)
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Fig. 1. The generator network of the proposed HSRGAN.

where L1 is the pixel-wise loss that calculates the L1-norm
distance between the super-resolved image G(ILR) and the
ground-truth IHR to make them more like. LRaGAN

G is the
adversarial loss for generator resulting more realistic image
with finer texture details.

3. EXPERIMENTS

3.1. Dataset and training details

In this experiment, Pavia Center dataset acquired by famous
hyperspectral sensor ROSIS is selected. It has 102 spectral
bands and contains 1096 × 715 effective pixels. For quanti-
tative assessment, the original dataset is used as the ground-
truth IHR. Then the input ILR is simulated from IHR by us-
ing Gaussian low-pass spatial filtering with a down-sampled
factor of 2. In this dataset, a 150 × 150 sub-region is select-
ed to validate the performance of our proposed model, while
the remaining pixels are used for training. In order to gen-
erate inputs for the proposed HSRGAN, sub-images with a
size of 64× 64× 102 are cropped by using a 64× 64 spatial
window sliding on the simulated ILR. Their corresponding
128× 128× 102 IHR are also cropped as ground-truth.

The implementation is based on Pytorch framework and
accelerated with a single NVIDIA 1080Ti GPU. He initial-
ization [6] and Adam optimizer with β1 = 0.9, β2 = 0.999
are employed for networks, where Back Propagation (BP) s-
trategy is adopted to alternately update the generator and dis-
criminator network with a learning rate of 0.0002 until the
model converges.

3.2. Comparison

The performance of the proposed HSRGAN is evaluated on
the Pavia Center dataset and compared with other methods in-
cluding bicubic interpolation, SRCNN and SRGAN. In order
to evaluate the performance of HSRGAN quantitatively, three
metrics are used to evaluate the quality of the super-resolved
results, including mean peak signal-to-noise ratio (MPSNR),
mean structural similarity index (MSSIM), and spectral angle
mapper (SAM). The comparative results are listed in Table 1,
in which the best values are marked in bold. As one can see,
The performance of SRGAN with perceptual loss is slightly
worse than SRCNN with MSE loss and outperforms tradition-

Table 1. Comparative results of different methods over Pavi-
a Centre dataset. For MPSNR and MSSIM, the bigger, the
better. For SAM, the smaller, the better.

Dataset
Algorithm MPSNR MSSIM SAM

(Ideal Values) (+∞) (1) (0)

Pavia Centre

Bicubic 31.615 0.937 4.376

SRCNN 33.848 0.961 4.142

SRGAN 33.429 0.951 4.256

HSRGAN 35.396 0.962 4.052

al bicubic interpolation on objective measures. However, the
proposed HSRGAN achieves the best performance among all
the compared methods, with the highest MPSNR and MSSIM
values and lowest SAM values. Specifically, the MPSNR of
HSRGAN is 1.967dB, 1.548dB and 3.781dB higher than S-
RGAN, SRCNN and Bicubic respectively. The MSSIM of
HSRGAN is 0.011, 0.001 and 0.025 higher than SRGAN, S-
RCNN and Bicubic respectively. The SAM of HSRGAN is
0.204, 0.09 and 0.324 lower than SRGAN, SRCNN and Bicu-
bic respectively.

To facilitate the comparison of subjective quality, the
super-resolved results are shown in Fig. 3 and a subscene
in yellow square are zoomed up for better observing. It is
obviously seen that the experimental results of the classical
super-resolution method with bicubic interpolation has se-
vere spectral distortion and edge blurring. SRCNN mitigates
spectral distortion compared to traditional interpolation, but
there exists excessive texture smoothing. As the first super-
resolution method based on GAN, SRGAN produces sharper
results, which alleviates the over smoothing problem of S-
RCNN, however, it fails to reconstruct texture details when
directly applied on HSIs because the network was originally
designed for natural images. Compared to these methods, the
proposed HSRGAN reconstructs clear and sharper results in
terms of both overall concept style and texture details, greatly
improving the quality of the super-resolved results.
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Fig. 3. Super-resolved results reconstructed for Pavia Center dataset by different methods. Band 15, 30, 60 are displayed as
blue, green, and red respectively to show the composite color images. In order to observe more clearly, the part of each result
with yellow square is zoomed up and shown correspondingly under the whole result.

4. CONCLUSION

This paper presents a novel super-resolution method for hy-
perspectral images which considers learning both spectral and
spatial features based on generative adversarial network. Ex-
perimental results on Pavia Center dataset demonstrate that
the proposed method can produce high quality super-resolved
results and outperforms the state-of-the-art methods.
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